
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

AGGLOMERATIVE CLUSTERING OF SIMULATION OUTPUT DISTRIBUTIONS USING
REGULARIZED WASSERSTEIN DISTANCE

Mohammadmahdi Ghasemloo1 and David J. Eckman1

1Dept. of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA

ABSTRACT

We investigate the use of clustering methods on data produced by a stochastic simulator, with applications
in anomaly detection, pre-optimization, and online monitoring. We introduce an agglomerative clustering
algorithm that clusters multivariate empirical distributions using the regularized Wasserstein distance and
apply the proposed methodology on a call-center model.

1 INTRODUCTION

Outputs of a simulation model typically correspond to key performance indicators (KPIs) of interest to the
decision maker, e.g., profit, throughput, or service level. For stochastic simulation models, simulating a given
scenario generates outputs that vary from replication to replication, thus each scenario has an associated
probability distribution describing the stochastic behavior of its outputs. Common tools for analyzing
simulation output data include summary statistics (e.g., sample means, variances, and covariances) and
visualization (e.g., histograms and boxplots). For problems with multiple KPIs, the multivariate empirical
distribution produced by the data contains valuable information about system performance, but can be
difficult to analyze and plot. To reveal important patterns and relationships that cannot be detected by
conventional data analysis methods, we propose clustering the empirical distributions of simulated scenarios.
Traditional clustering methods often fail to capture the distributional characteristics due to their reliance on
simple distance metrics. We introduce an agglomerative clustering approach for simulation outputs using
regularized Wasserstein distance, which enhances both accuracy and computational efficiency by leveraging
the theory of optimal transport. We discuss the use cases and versatility of clustering simulation output
distributions.

Anomaly Detection In simulation experiments, anomalies can be artificial or systemic. Artificial
anomalies are associated with logic or coding errors, while systemic anomalies arise from inherent features of
the system. When using hierarchical clustering algorithms, anomalous output distributions can be identified
by examining dendrograms, inter-cluster distances, and cluster sizes. When an anomaly is detected, the
simulation code is first scrutinized to determine if the anomaly is artificial; if it is not, further investigation
might be conducted on the marginal distributions, correlation matrices, and input variables.

Pre-Optimization In practical scenarios, multiple KPIs often present tradeoffs, making it difficult
for the decision maker to define good versus bad performance a priori. Clustering output distributions and
obtaining barycenters allows a decision maker to compare a manageable number of distributions, which
can be further pared down through closer examination. Clustering analysis can also aid in identifying
which metrics should appear as objectives or constraints in simulation-optimization problems and setting
achievable thresholds based on performance outcomes. By examining inputs associated with promising
clusters, decision makers can identify regions in the input space from which to initiate optimization searches.

Online Monitoring This application addresses how simulation outputs are influenced by state
variables, which evolve over time and are observable but not directly controllable. An online monitoring
framework is proposed, where clustering is performed offline and state variables are tracked online (in real
time), with classification algorithms being used to predict the cluster to which an observed state’s output
distribution belongs and thus anticipate changes in system performance. If the classification algorithm
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struggles to assign a state to a cluster, it suggests impending changes in system performance, prompting
possible intervention.

2 METHODOLOGY

To measure the dissimilarity between distributions, we employ the regularized Wasserstein distance. The
regularized optimal transportation map between two empirical distributions µ and µ′ having probability
vectors pµ and pµ′ , respectively, denoted by γ∗

λ, is defined as follows:

γ∗
λ := argmin

γλ∈Π(pµ,pµ′ )
⟨D,γλ⟩ − λE(γλ), (1)

where λ is the regularization parameter, D ∈ RMµ×Mµ′ is a cost matrix consisting of the pairwise distances
between points in the supports of µ and µ′, and ⟨·, ·⟩ denotes the summation of the element-wise product of
two matrices. The map γ∗

λ is calculated using an iterative procedure introduced in Benamou et al. (2015),
and the clustering algorithm uses ⟨D,γ∗

λ⟩ as the distance between distributions.
Agglomerative clustering is a hierarchical method that begins by treating each instance as an individual

cluster and successively merges the closest pairs based on a specified distance metric, allowing clusters to
form organically from the data. This method is advantageous for several reasons. It excels in situations where
the optimal number of clusters is unknown, unlike k-means clustering which requires a predefined number.
Additionally, centroid-based methods such as k-means are sensitive to outliers, which can significantly
skew the centroid’s location and distort the clustering process. In contrast, the complete-linkage approach
in agglomerative clustering considers the maximum distance between points in distinct clusters, making
it more robust to outliers and resulting in tighter, more spherical clusters. Furthermore, agglomerative
clustering provides a valuable output in the form of a dendrogram. This dendrogram depicts the distances
between clusters at each stage of the merging process, which can help to comprehend relationships between
instances and determine an appropriate number of clusters. Unlike the k-means algorithm, agglomerative
clustering does not require repeated calculations of cluster centroids.

After clustering the distributions, we propose using the regularized Wasserstein barycenter to summarize
each cluster. The regularized Wasserstein barycenter is a discrete distribution that minimizes the average
regularized Wasserstein distance between itself and each distribution in the cluster, effectively acting as an
“average” of distributions. The barycenter is computed using an iterative algorithm introduced in Benamou
et al. (2015).

3 NUMERICAL EXPERIMENTS

We tested our method on a call-center simulation model that simulates customer arrivals, call routing, and
services, incorporating variability in arrival times and service times. Our clustering approach successfully
identifies distinct patterns in the simulation outputs, aiding in the determination of optimal staffing levels
to achieve acceptable performance across five performance metrics, including mean waiting time of the
customers and the mean overwork time of the operators. Additionally, we demonstrate the effectiveness
of the online monitoring framework by tracking queue lengths in real time and predicting the performance
metrics over the next hour. Future research directions include clustering simulation output distributions in
a streaming-data setting and clustering simulation sample paths, which can provide deeper insights into
dynamic system behavior.
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