Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

A MODELING FRAMEWORK FOR COMPLEX SYSTEMS

Maria Julia Blas?, and Silvio Gonnet!

YInstituto de Desarrollo y Disefio INGAR, CONICET-UTN, Santa Fe, Santa Fe, ARGENTINA

ABSTRACT

This paper presents a modeling framework for defining abstractions of real-world complex systems
promoting the development of discrete-event simulation models based on DEVS. An ontology, a
metamodel, and a reasoner are combined in one single structure to allow an upgrade of an abstraction model
to an implementation model. Our motivation is to reduce the effort related to the modeling part when
specifying DEVS models for complex systems described from an abstraction of reality built over a research
guestion. Applications include an easier introduction to M&S for students of any scientific field that can
define an abstraction model with an easier introduction to DEVS models (from formalization to
implementation).

1 INTRODUCTION

Complexity exists at many levels within a system, including structural, behavioral, and knowledge levels,
and emergent behavior is an expected consequence of complexity (Szabo et al. 2023). Many challenges
arise from the fact that systems expand in scale and complexity, including modeling and representation of
such systems, their implementation, the integration of artificial intelligence models within traditional
modeling and simulation, and so on. Regarding building a representation for simulation purposes (i.e.,
Modeling and Simulation -M&S-), these new levels of complexity challenge the modeling task by requiring
a more detailed abstraction model to deal with it.

M&S comprise two parts i) modeling residing on the abstraction level and ii) simulation residing on
the implementation level. Abstraction focuses on an aspect of reality (often called “phenomenon”) to reduce
the complexity of the reality being considered (Zeigler et al. 2018). It is mainly devoted to specifying what
we need to model starting from reality. Ontologies are frequently used to capture reality in a computational
form. An ontology is an explicit specification of a conceptualization (Gruber 1993). It is an abstract and
simplified worldview that includes concepts, relationships, and constraints for representing a domain.
Unlike other disciplines (where ontologies are used to describe an assumed objectively observable system),
in M&S ontologies are one instrument able to be used for capturing a system from reality according to a
research question which bounds the scope and resolution of models (Turnitsa et al. 2010). More
importantly, they should capture ontological, epistemological, and teleological considerations for further
composability and interoperability. That is, as ontologies are representations of specifications, they need to
consider how these representations are differentiable by computers since when models and/or simulations
are placed together (composability) they should share context (interoperability) (Turnitsa et al. 2010). One
approach for achieving such a shared context is defining architectural support for the ontologies used for
M&S purposes. The authors of (Ruy et al. 2016) identify three types of ontologies: foundational, core, and
domain. When these types are combined, accurate worldviews can be built by enriching specific domains
from independent domains across a well-defined architecture.

On the other hand, implementation is intended to make it easier to work out the implications of the
abstraction and implement it in reality. Hence, it is mainly devoted to defining how we are going to build a
simulation model to represent as closely as possible the abstraction previously defined. In this regard, the
Discrete Event System Specification (DEVS) is a popular formalism for modeling complex dynamic

979-8-3315-3420-2/24/$31.00 ©2024 2809

Blas, and Gonnet

systems using discrete-event abstraction (Zeigler et al. 2018). Due to its general systems basis, DEVS
provides a set of (mathematical) elements for modeling time-varying systems. DEVS formalism can be
used in either of two forms i) as a mathematical formalism for specifying models using set theory notation,
or ii) as an executable representation for implementing models using a programming language. In theory,
both strategies should be consistent with each other (since executable models should be grounded in formal
models). However, it is well known that ensuring that an implementation conforms to a formalization is not
straightforward (Sarjoughian et al. 2015). Moreover, since there is no common format used by all tools,
porting DEVS models between tools implies rewriting the model (Van Tendeloo and Vangheluwe 2017).
This paper presents a modeling framework for defining abstractions of real-world complex systems
promoting the development of discrete-event simulation models based on DEVS. At the core, two different
components are used i) an ontology-based component and ii) a metamodeling-based component. The first
is defined by a multi-tier ontological model named FCD-OntoArch (Foundational-Core-Domain
Ontological Architecture for Sciences) supporting the description of real-world scenarios (from any
domain) using different levels of modeling depending on the (science) representation goal. Such ontological
support provides ontological consistency and makes modeling decisions easier. The latter is defined by a
metamodel architecture based on Model-Driven Engineering (MDE) principles for structuring (and
implementing) DEVS simulation models. Such metamodeling support defines the simulation language. By
combining these components, an algorithm is defined as a reasoning engine to make mapping inferences
based on a set of well-defined rules. These inferences are used to recommend actions regarding how the
DEVS models should be defined starting from a real-world abstraction built by the modeler. Our motivation
is to reduce the effort related to the modeling part when specifying DEVS models for complex systems that
can be described from an abstraction of reality built over a research question. Hence, the main contribution
is the overall two-fold modeling framework composed of both modeling components and the algorithm
used to create a mapping between abstraction and implementation (in the form of DEVS formal models).
The remainder of this paper is structured as follows. Section 2 presents a literature review of existing
approaches used to support both abstraction and implementation modeling. Section 3 introduces the
modeling framework by explaining how each component was deployed. Section 4 presents a case study
and a discussion regarding the results of our proposal. Section 5 is devoted to conclusions and future work.

2 RELATED WORK: EXISTING APPROACHES

In applied sciences, models are built based on abstraction. Most simulation models start from the abstraction
of a phenomenon contextualized (in a particular world) with a research question (Turnitsa et al. 2010,
Zeigler 2019, Robinson 2014). Such an abstraction is frequently related to the conceptual modeling task
since “conceptual modeling involves abstracting a model from the real world” (Robinson 2014). However,
such a model also needs to be executed on simulation software. That is often called “reduction to a concrete
form” (Zeigler 2019), meaning that the abstraction needs to be formalized and implemented in a particular
simulation language. Hence, the differentiation between what is modeling-oriented and what is
implementation-oriented is highly important for M&S.

Ontologies definition allows an unambiguous specification of the structure of knowledge in a domain,
enables knowledge sharing and reuse, and consequently, makes automated reasoning about ontologies
possible (Orgun and Meyer 2008). Furthermore, ontologies are widespread in the engineering field, and
M&S is no exception. Several ontologies have been defined over the years for dealing with M&S. Given
that this paper is focused on the use of ontologies for event-based dynamic systems as a vehicle for having
feasible representations of abstractions (i.e., dealing only with the modeling-oriented part of M&S), this
section only includes the most relevant ontologies related to this topic (DESO and DeMO). In our case, the
implementation-oriented part is directly defined by DEVS to delegate the simulator perspective on a
formalized language. As we will show in Section 3, such an implementation-oriented part is outside the
scope of the ontological model.

DESO (Guizzardi and Wagner 2010) is a foundational ontology for discrete event system modeling
derived from the foundational ontology UFO. The main purpose of such ontology is to provide a basis for

2810

Blas, and Gonnet

evaluating discrete event simulation languages. The authors claim that “a discrete event system model may
be expressed at different levels of abstraction”. In this context, they preset two ontologies derived from
UFO: i) the Design-Time Ontology DESO-U that describes a discrete event system by defining the entity
types (i.e., the instances that are part of the system), and ii) the Run-Time Ontology DESO-I that deals with
individuals of different types from the simulator perspective.

The Discrete-event Modeling Ontology (DeMO) (Silver et al. 2011) is a web-accessible ontology for
discrete-event modeling. When building this ontology, the authors try to capture as much knowledge about
the discrete event modeling domain, resulting in four main concepts: DeModel, ModelConcepts,
ModelComponents, and ModelMechanisms. Such concepts are related as follows: “A DeModel is built from
model components and is “put in motion” by model mechanisms” (Miller et al. 2004). The
ModelComponent concept is used to describe the model elements used for building a DeModel. Such
components correspond to the elements of n-tuples traditionally used in literature to formally define the
models. On the other hand, the ModelMechanism concept is used to specify rules of engagement adopted
by specific modeling techniques (e.g., EventSchedulingMechanism and Clock-SettingMechanism).

However, unlike other disciplines where ontologies are used to describe an assumed objectively
observable system, in M&S ontologies should capture a system from reality according to a research
guestion that bounds the scope and resolution of models. This is consistent with the notion of abstraction
(or conceptual modeling). Both cases detailed above exhibit the semantic meaning of what is occurring in
an implemented simulation or simulation component, not for the conceptual model. As Turnitsa et al. (2010)
enunciated, they are correct for their role (i.e., describing a functional utility), not for describing the
modeling decisions and assumptions that went into their design.

Table 1 classifies DESO and DeMO along with our proposal to highlight the main differences. As we
will show in the following section, our proposal embeds the event-based description as one piece of a well-
defined ontological structure and, at the same time, isolates the abstraction model description by making it
independent of the simulation language (for us, DEVS).

Table 1: Differences between DESO, DeMO, and our proposal. All approaches use a discrete-event view.

Provides support to define...
Ontology Abstract Model Implementation Model
Modeling utility Functional utility Formalization level Software level
DESO © ° ©
DeMO ° °
This paper °) °

3 THE TWO-FOLD MODELING FRAMEWORK FOR M&S OF COMPLEX SYSTEMS

Figure 1 shows the high-level architecture of the modeling framework. As the figure shows, two
components are used to support the model definitions: FCD-OntoArch and the Multi-level Layered
Conceptualization of DEVS. Then, a reasoning engine based on an algorithm is introduced as a vehicle for
moving forward from abstraction to implementation. Each component is detailed in the following sections.

3.1 FCD-OntoArch: The Ontological Model

FCD-OntoArch is a multi-tier architecture based on modularization, reuse, and specialization of concepts
and relationships across levels (Olsina 2021). Such an architecture considers Foundational, Core, Top-
Domain, Low-Domain, and Instance levels. These levels promote an accurate design within the overall
schema according to the following rules:

rulei) A new ontology located at level Core, Top-Domain, or Low-Domain must guarantee
correspondence of its elements with the elements defined at the immediately higher level.

2811

Blas, and Gonnet

rule ii) Ontologies placed at the same level —except Foundational and Instance levels- can be related
to each other, but they must guarantee their joint definition (as a whole) does not invalidate the
principles of the next higher level.

rule iii) At the Instance level, only individuals of particular things can be found.

These rules allow maintaining an ontological structure to represent real-world scenarios with different
levels of abstraction depending on the goal. By rule i), the design promotes terms and relationships defined
at the lower levels to be semantically enriched with the terms and relationships placed at the higher levels.
Then, rule ii) allows the terms and relationships of ontologies placed at the same level act as complement
each other, maintaining correlation with the definitions of the ontologies of the higher levels. Finally, by
rule iii), any individual placed at the lowest level will be an instance of a particular class at higher levels.
These rules together allow using FCD-OntoArch for M&S purposes as an ontological approach that
combines consistency between several domains (due to a well-defined structure of layered abstractions)
with an accurate modeling template for redefining the missing (new) domains in an easier way.

The modeler defines reality The modeler defines a simulation
using his worldview based model to work out more easily
on a research question. As with the previous abstraction. As
aresult, an abstraction === _~— = emmmssmssssssssse—ee a result, an implementation
model is created. Reasoning model is created.
Engine

based on based on

@ input 1

sml

@ Mapping é 5
stored in {‘é} Algorithm Java

instance on Instance

FCD-OntoArch <— Ontological
Model

DEVS instance of

Simulation
Model

Multi-level Layered
Conceptualization of
DEVS

Abstraction Model Implementation Model
Essentially, this model seeks to Essentially, this model seeks to answer “How
answer "What do we model?". do we model what needs to be modeled?".

Figure 1: High-level architecture of the modeling framework. Components highlighted in green are used to
support both abstraction and implementation models. The reasoning engine is used to support the set of
mapping rules used as guidelines for the M&S of a real-world phenomenon (abstraction model) using
DEVS models (implementation model).

Figure 2 depicts the FCD-OntoArch architecture using the set of conceptual components already
included in the structure as ontologies placed at a specific level of abstraction. Quick level identification is
given through naming convention (e.g., the ontology at the foundational level is called Foundational
Ontology -FO for short-, ontologies at the core level are named Core Ontologies -CO-, and so on). At the
foundational level, an ontology called Thing FO is included (Olsina 2023). Foundational ontologies are
representations of primitive top-level concepts, independent or neutral of any domain. In this context, Thing
FO has a minimum set of terms that refers to particular and universal concepts of the world. As a result, the
ontology includes 17 terms as concepts, 15 terms as concept attributes, 3 axioms specified in first-order
logic, and 12 terms as non-taxonomic relationships well balanced with the taxonomic relationships. For
details regarding the Thing FO ontology, please see (Olsina 2023).

Regarding other abstraction levels included in FCD-OntoArch, the architecture includes: i) at the core
level: Process CO (Becker et al. 2021), Goal CO, Situation CO, Project CO, and Particular Event CO
(PEvent CO) (Blas et al. 2022); ii) at the top-domain level: Test TDO (Tebes et al. 2021), Functional
Requirements TDO (FRs TDO), Non-Functional Requirements TDO (NFRs TDO), and Measurement and
Evaluation TDO (MEval TDO); and iii) at the low-domain level: Metrics LDO and Indicators LDO.

Since this paper is intended to build simulation models based on DEVS, the PEvent CO ontology is
mainly used as the foundation of the reasoning engine. A brief description of PEvent CO is presented below.

2812

Blas, and Gonnet

Such a description includes all the features required to follow our proposal. Due to space reasons,
supplementary ontologies composing the FCD-OntoArch are not discussed. At this point, it is critical to
mention that this does not imply other ontologies are not used during reasoning. Moreover, as described
before, all features of the ontologies placed on top (and on the same level) of PEvent CO are guaranteed.
For ontologies placed below PEvent CO, the PEvent CO definition is also kept directly by enriching specific
concepts with such notions.

3.1.1 PEvent CO

PEvent CO is a core ontology based on Thing FO that incorporates the notion of events as assertions taking
place due to the behavior of the entities. Hence, it is based on the existing terms and relationships of Thing
FO by the definition of new elements at the core level to facilitate the representation of event-based
behaviors. Figure 3 presents the terms (i.e., concepts, concept attributes, taxonomic relationships, and non-
taxonomic relationships) included in PEvent CO.

[l [Thngro]
£o1 47 7:’c_l| — Process CO ll‘ [[Geaico] _smng_ PEventCO | A‘Pm-crco 1
TD;I .i: _________ ;DOZ F _ F - | "~ NFRITDOI "~ [EEampol
ﬁl_‘ Tél M!!rit;.I:DO Indi:llu‘r-lLDD 1 :

Figure 2: Five-tier ontological architecture defined through the set of ontologies already included as
conceptual components placed at each level.

1 <<TFO:Thing>> 1 causes P 11 [T 7rGAssertion on Particulars=> <<TFO: Assertion on Particulars>>
Entity <<TFQ: Action-related Assertion=> considers B> <<TFO: Time-related Assertion>>
1 1 Particular Event Time Boundary
has as polver has as poperty event specification & time specification
e AN
o qx {complete, disjoint}
<<TFO:Power>> <<TFO:Property>> 1. o externally acts
Behavior State Property
External Event
1.* A
{complete, overlapping} internally acts
1
| External Behavior | | Internal Behavior I | Internal Event Ii o {complete, overlapping}
L 1 L 1 L 1 :
1 1 1 Input Event I | Output Event |
L 1 L 1
specifies an internal action as > 1.
specifies an external actionas P
(
dinfuences

Figure 3: The PEvent CO ontology. Note that TFO stands for Thing FO. Stereotypes are used to show how
the new concepts semantically enrich other concepts defined at the foundational level in Thing FO.

An Entity represents a particular or concrete, tangible or intangible object, for which a dynamic

behavior is defined explicitly using its Properties and Powers. Entity has the semantics of Thing (from the
Thing FO ontology) implying that an Entity is not a particular object without its Properties and Powers. At

2813

Blas, and Gonnet

the foundational level, the tuple Thing-Property-Power defines a unity that can be either i) semantically
enriched at the CO, TDO, and LDO levels or ii) instantiated at the 10 level. At the PEvent CO ontology,
the Properties are stated explicitly as the State Properties of an Entity. State Property refers to the intrinsic
state structure of a particular dynamic Entity. On the other hand, the Powers are stated explicitly as the
Behaviors of an Entity. Behavior refers to how a particular Entity behaves under established conditions.
Hence, the structural part of an Entity definition is centered on how its Behaviors change its State
Properties, ideally, over time. Since “things have properties, these properties instantiate [...] acting powers,
and this ensemble of things, properties and powers cause any events that might occur” (Fleetwood 2009, p.
12), the PEvent CO ontology introduces the notion of Particular Event. A Particular Event is an Assertion
on Particulars and, at the same time, an Action-related Assertion that explicitly states and specifies the
occurrence of an Entity action. The Particular Event mechanisms should consider Time Boundaries besides
the changes or queries used to support the states of Entities (detailed as State Properties). A Time Boundary
is a Time-related Assertion specifying temporal limits and restrictions from which a Particular Event or
series of Particular Events can be related and modeled. Hence, the dynamic part of an Entity definition is
given by the tuple Entity-Behavior-State Property-Particular Event (i.e., a Particular Event determines the
occurrence of a concrete object action in an explicit context or place during a range or at an instant of time).

At this point, it is important to denote how events may take place. The PEvent CO ontology considers
two types of Behaviors: Internal Behavior and External Behavior. Internal Behavior is a type of Behavior
that refers to what a particular Entity can do to act over its State Properties. External Behavior is a type of
Behavior that refers to the occurrence of external actions over an Entity. Then, Internal Behavior refers to
internal actions fired from an Entity over itself. If a Particular Event explicitly states and specifies the
occurrence of an action acting over the State Properties of such an Entity, it is called an Internal Event. On
the contrary, an External Event is a Particular Event that explicitly states and specifies the occurrence of
an external action on an Entity. Two types of External Events are included: Input External Event and Output
External Event. An Input Event is an External Event that explicitly states and specifies the occurrence of
an external action that acts over the State Properties of an Entity according to its External Behavior. An
Output Event is an External Event that explicitly states and specifies the occurrence of an external action
having some impact on other Entities. That is, the entities cannot produce an impact between them directly.
The Behavior of an Entity can produce a new event that may result in a state change in another Entity
depending on how the latter reacts to the input event using its own Behavior.

The correspondence of the PEvent CO elements and elements defined at the immediately higher level
(i.e., Thing FO) was specified also using a set of axioms. Such axioms were formalized in first-order logic.
For example, the model includes an axiom defining that “an entity that causes a particular event is a thing
that defines an assertion on particulars” as follows:

Ve, Vev:[Entity(e) » ParticularEvent(ev) * causes(e,ev) — defines(e,ev)] (1)

Equation (1) maps the causes relationship (defined at PEvent CO level between an Entity and a
Particular Event) as the defines relationship (defined at the Thing FO level between a Thing(e) and an
AssertionOnParticulars(ev)). A set of twelve axioms was defined as part of PEvent CO to ensure an
accurate integration with the foundational level.

Due to rule ii) defined at the FCD-OntoArch, PEvent CO allows the definition of event-based behaviors
for all concepts of ontologies placed at the same level based on the notion of Thing (e.g., Target Entity and
Context Entity from Situation CO, and Work Entity and Product Entity from Process CO). For ontologies
placed below PEvent CO, the concepts can be semantically enriched by the notion of Entity.

The PEvent CO ontology of the FCD-OntoArch structure has been implemented in Telos language
using ConceptBase (Koubarakis et al. 2021) as a software tool. Telos is a conceptual modeling language
for representing knowledge regarding information systems based on object-oriented technology, integrity
constraints, and deductive rules. Hence, the language has been used to define formally the concepts,
relationships, and axioms required for instantiating a model at the Instance Ontological Level using the
event-based modeling centered on PEvent CO. Such instances are stored on a “.sml” file.

2814

Blas, and Gonnet

3.2 The Multi-Level Layered Conceptualization of DEVS

DEVS models are mathematically defined, but their simulation is performed by concrete DEVS simulation
systems. Given that DEVS is an abstract formalism independent of any particular implementation, when
engineers want to simulate DEVS models, they need to program them in the input language of a concrete
simulator, which means writing code in Java or C++, or another general-purpose programming language
(Cristia et al. 2019). Moreover, since there is no common DEVS format used by all the software tools,
DEVS modelers are tied to their tools (Van Tendeloo and Vangheluwe 2017). To address these issues, Blas
et al. (2021) have proposed a set of layers based on the practical implementation of DEVS formal models
as part of a multi-level conceptualization. These levels were designed following the principles of MDE.

MDE is a software development methodology that focuses on creating and exploring domain models
as conceptual models of all topics related to a problem-specific domain (Schmidt 2006). The methodology
differentiates three types of models as engineering artifacts: domain models, platform-independent design
models, and platform-specific implementation models. Supporting MDE, metamodels are used along with
model transformations to provide a process that enables the automated development of new artifacts
(Brambilla et al. 2017). The MDE principles have been applied in the M&S field for several years to
produce well-structured and maintainable simulation models by increasing the level of abstraction through
well-defined representations (Cetinkaya et al. 2011; Sarjoughian et al. 2015; Dalmasso et al. 2023).

In this regard, the practical views of the multi-level layered conceptualization of DEVS were defined
as follows (Figure 4): i) formalization is the level that offers the DEVS formalism as a domain language
allowing to define a DEVS formal simulation model (atomic or coupled) for any event-based system; ii)
platform-independent implementation is the level focused on the common concepts included in most
Object-Oriented (OO) implementations of DEVS software tools; and iii) platform-specific implementation
is the level that provides a concrete realization of the platform-independent implementation that can be
deployed in a target M&S environment based on an OO programming code.

Each layer was designed as an independent modeling level. Layers i) and ii) are supported by
metamodels. In Figure 4, these metamodels are depicted as DEVS Formal Specification (DFS) for level i)
and DEVS OO-Implementation (DOI) for level ii). A detailed version of the DFS metamodel can be found
in (Blas and Gonnet 2023). Across these metamodels, traceability relationships are included (i.e., the trace
association). Such a traceability relationship implies two concepts (placed at different modeling levels)
define the same element (i.e., a piece of a DEVS model) from two distinct perspectives. Linking concepts
from different metamodels allows us to obtain “new knowledge” from the DEVS model definition. On the
other hand, the modeling level placed at layer iii) is linked to OO programming languages, allowing the
introduction of DEVS implementations as Java or C++ code. Hence, the structure of the conceptualization
allows for defining model-to-model and model-to-code transformations among distinct modeling levels
employing traceability associations. Now, the complete definition of a DEVS simulation model D is given
by the set of models instantiated from the conceptual modeling levels as D = {formalization model,
platform-independent implementation model, platform-specific implementation code}. The metamodels
required to support the conceptualization depicted in Figure 4 were implemented with the existing modeling
technology of the Eclipse platform (The Eclipse Foundation 2024). Such metamodels were designed as a
set of UML diagrams restricted by OCL constraints. An instance of the metamodel is stored in an xmi file.

3.3 The Reasoning Engine

The reasoning engine that upgrades the abstraction model to an implementation model founded on a DEVS
formal model definition is based on an algorithm. Such an algorithm was implemented in Java (Figure 1).
The algorithm starts defining the high-level structure of the DEVS model. Based on an Instance Ontology,
the reasoner detects the main component with the semantic of Thing composed of several elements of type
Entity. Such a component is upgraded to a CoupledModel. Then, the basic mapping is centered on
transforming each Entity into an AtomicModel. A pseudocode detailing the main steps of the algorithm
described below can be found here.

2815

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2024/06/Figure-Reasoner.png

Blas, and Gonnet

DFS Concept 1

DEVS

Formal instarice o Formalization
Specification Madel

(DFS)

DEVS
Formal
Models

Platform-
Independent
Implementation
Model

DEVS 00- instance of
DOI State i
| Implementation

[0ol concepta || (Dol

00 programmed in
= Programming +—
P Language

Figure 4: Multi-level layered conceptualization of DEV'S proposed in Blas et al. (2021). Each metamodel
is sketched as a set of concepts to show domain independence. As an interoperability example, both include
the State concept. Even though both States refer to the same simulation model, each level employs the
concept differently (following the intended meaning at the modeling level).

Platform
independent
OO0-DEVS
Models

DEVS Simulation Model

Platform-
Specific
Implementation
Code

DEVS
Models in M&S
Software Tools

Platform
specific
Implementation Implementation Formalization

For each AtomicModel required, an AtomicStructuralPart and an AtomicBehavioralPart are created.
These parts are concepts included in the DFS metamodel to classify the tuples used during formalization.
Over the AtomicStructuralPart, the State is defined using all the State Properties of an Entity. Each State
Property (linked by the predicate hasAsProperty to the Entity) is used to create a StateVariable. The
structure of StateVariables is defined following the structural description detailed at the ontological level.
On the other hand, around the AtomicBehavioralPart, the required functions InternalTransitionFunction,
ExternalTransitionFunction, and OutputFunction are defined with the following guidelines:

e For the InternalTransitionFunction, the predicate hasAsPower related to the Entity is used. Taking
the Event defined with the specifiesAninternalActionAs, the NextStateSpecification is built. Such a
state specification is designed following the StateProperties over which the Event is linked by the
internallyActs predicate.

e For the OutputFunction, both causes and influences predicates are used. At this point, the causes
predicate is linked to the actual Entity, while the influences predicate links the actual Entity to a
secondary Entity. Then, an OutputSpecification is defined. To complete such a specification, an
OutputPort is created (if it does not exist).

e For the ExternalTransitionFunction, the algorithm uses the InputEvents that are linked by the
externallyActs predicate to the actual Entity. Such a relationship is based on the notion that an
InputEvent is caused by an external Entity over the actual Entity (i.e., due to the causes predicate).
Then, if it does not exist, an InputPort is created. Also, the NextStateSpecification is defined using
the event specification property and the StateProperties over which the event internallyActs.

Once all the AtomicModels are defined, couplings are built. At this point, ExternallnputCouplings and
ExternalOutputCouplings are defined following the location of the Entities on their containers (i.e.,
components with the semantic of Thing identified during step 1). For InternalCouplings, the OutputEvents,
along with the causes and influences predicates, are used to create an InternalCoupling between two Entities
(the one that causes the event and the one that is influenced by it). Finally, over each CoupledModel, a
CoupledStructuralPart is created to collect all AtomicModels and couplings defined in it.

4 RESULTS AND DISCUSSION

4.1 Case Study: Using M&S for Health Patient Monitoring

To show how a real-world abstraction can be defined using the ontological part of our framework, we
employ a case study centered on monitoring health patients with Tuberculosis in Argentina. Tuberculosis

2816

Blas, and Gonnet

(TB) surveillance incorporates all the components that involve the management of the person with TB from
diagnosis to the completion of treatment (World Health Organization 2012). Any healthcare provider (or
health service) that detects TB cases must notify the World Health Organization. Case detection means that
TB is diagnosed in a patient and is reported within the TB surveillance system to receive a TB treatment.
Each detected case should be classified according to the history of previous treatment (if exists). According
to the Ministry of Health (Secretaria de Salud 2020), the tracking required is based on studying new,
relapsed, and transferred (e.g., due to relocation) patients or, in worst cases, patients with lost tracking (i.e.,
patients that do not return to the health center) or with a failed treatment. Once a treatment has started,
information about treatment is updated to follow up on the patient status as follows: treatment completed,
patient cured, patient follow-up missed, patient deceased, treatment failed, patient transferred or unknown.

Considering the real-life system, several parts can be identified (e.g., healthcare provider, patient,
treatment, and so on). However, when a research question is proposed for studying such a system with an
M&S approach, an abstraction model (based on that question) can be defined. For our case study, the
research question proposed was “How effective are the healthcare providers on the follow-ups of patients?”.
Following such a basis, we define an abstraction model IOTBSurveillance as a new ontology on
the Instance level of FCD-OntoArch. The main characteristics of such a model (stored as
10TBSurveillance.sml) were the following:

e The TB Surveillance System is based on a Particular Situation (from Situation CO) including two
entities: Patient and Healthcare provider. The last two have the semantic meaning of Target Entity
(from Situation CO) and Entity (from Event CO).

e The Healthcare provider manages diagnosis and treatment of Patients (i.e., produces the laboratory
exam to get a diagnostic, if the diagnostic is positive for TB produces a treatment, and so on). A
simplification introduced at this level of abstraction is that a Patient starting a new treatment on a
Healthcare provider is not attached to its previous history.

e A Patient who starts treatment is classified by the Healthcare provider as one of the following
cases: NEW, RELAPSE, TRANSFERRED, LOST TRACKING, or FAILURE.

e A Patient who ends a treatment is classified by the Healthcare provider as one of the following
cases: TREATMENT COMPLETED, CURED, FOLLOW-UP MISSED, DECEASED, FAILED,
TRANSFERRED or UNKNOWN.

The engine detailed in Section 3.3 was executed over the 10TBSurveillance model to get a partial
formalization of the DEVS model representing such a situation. Then, the DEVSTBSurveillance model was
created. Such a model was stored in the DEVSTBSurveillance.xmi file. As a result, a DEVS simulation
model structured following the formalization metamodel was obtained. Both models can be found here.
Figures 5 and 6 show a representation of both models using diagrams. For space reasons, the figures only
include part of the models.

Even when the description includes only two components (patient and healthcare provider), the number
of elements defined in the abstraction model is not small. Then, this model allows us to show how all these
elements are upgraded to discrete-event elements that follow the formal definition of DEVS models. Of
course, a complete formalization of such an abstraction is not possible due to the level of detail involved in
the ontology regarding, for example, set values. Even so, a 73% definition is available directly from the
algorithm. Such a percentage is obtained as number of concepts instantiated during the algorithm execution
/ total number of concepts required. Over such a DEVS definition, the modeler can complete the missing
elements. Hence, an easier introduction to DEVS is encouraged with our framework.

4.2 Strengths and Limitations

Robinson (2019) identifies “grand challenges” in conceptual modeling for discrete-event simulation in the
following areas: conceptual modeling itself, developing conceptual modeling frameworks, and the
representation of conceptual models. Our two-fold modeling framework helps in this direction by

2817

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2024/06/IOTBSurveillance.rar

Blas, and Gonnet

promoting the design of the conceptual model directly from an abstraction model well-structured according
to an ontological foundation.

The main benefit obtained from establishing the ontological foundations of the core concepts of a real-
world abstraction model used for M&S purposes is a clarification of its semantics as a whole, as complete
as we can, through a large-scale structure that allows combining several domains at multiple levels
according to their ontological meaning (in philosophy). Therefore, the ontological architecture encourages
modularity, extensibility, and reuse of ontological elements at different levels. That follows the well-known
contributions of ontology-based systems (Yang et al. 2019), such as enabling interoperability and
communication among multiple disciplines, describing concepts and their relationships explicitly and
accurately to avoid incompleteness and ambiguity, providing core and basic concepts as a reference to
describe other concepts, and sharing a common understanding of a domain (in this case, an abstraction
model for M&S). In this way, our framework allows building abstraction models for complex scenarios by
reusing existing foundational and core models in new domains or enriching the structure with missing core
models to improve the real-world view.

[:l IOTBSurveillance.gel - TelosPalette: M_admin - chserver.iithis.se:4001 - |
- causes
- > Tmny —

/ has_as_power

has_as _prapon;
|

n*\t

-
e,
LTI . ¥, TFE
TR v Exlemal Behavior |
.
¥ \-‘ . .. A~

L |
"o .
T * .| Input_External_Behavior
e
v
o \ “
'

R
L
o=

attendFirstCons.

1 | treatmentStatus I|nalC|assn‘lcat|on

‘ p
\ s Mty notifyPatienthoy

i prop
[" ‘-H
props " . _
g healthCareProvider ' " " . T2
) - Lt i pwrt stariTreatment_|
propt ; [
rp— Syat P == cases laboratories [N
rveillance System prop? L—‘ o i prescribe Studies
' "

\
| death_IntEv II givellpTreatment_IntEv " treatn

| endOfTreatmentExecution_IntEv || laboratoryf _|

Figure 5: Part of the situation defined in the IOTBSurveillance represented directly from ConceptBase.

~ OutputPort outports structure _ AtomicModel
name = "patient" name = "healthCareProvider"
componentiodelOutput MS% variable - StateVariabl
T N pr——— stjte name = aboratory”
componentModellnput variable | _: StateVariable
name = "cases"
= InputPort - variable K X
structure name = "healthCareProvider" inports = Wi "
name = "initialCase'
| AtomicStructuratpard > - State| -
¢ Model . A icM state _ StateVariable
structure —n .
name = "tbSurveillanceSystem" name = "patient” variable name = "treatmentStatus

Figure 6: Part of content created in the DEVSTBSurveillance.xmi file represented as a class diagram
describing the DEVS structural parts instantiated from the model detailed in Figure 5.

2818

Blas, and Gonnet

On the other hand, our research group has studied DEVS formalism as a common language for
describing and handling discrete-event simulation models for several years (Blas et al. 2017, Blas et al.
2021, Blas and Gonnet 2023, Blas et al. 2023, Dalmasso et al. 2023). We are aware that there are several
issues when implementing DEVS models from scratch. By using abstraction models defined over a
modeling “template” (i.e., the ontological support), a common guide for formalizing DEVS models is
provided. Our proposal centered on the MDE approach allows “navigating” from one modeling level to the
other using translation rules defined over the different DEVS metamodels.

In summary, the resulting modeling framework leads mainly to i) exploiting the reuse capabilities of
models at a semantic level allowing implementation compatibilities; ii) validating the consistency among
discrete dynamic system descriptions and their DEVS formal models; and iii) verifying the consistency
among DEVS formal models and their simulation implementations developed using specific software tools.

5 CONCLUSIONS AND FUTURE WORK

Modeling and Simulation are distinct activities. Modeling is the process of developing and using
abstractions to simplify the real world for focused analysis, while simulation subsumes modeling activities
and focuses on model execution in a simulator. In the modeling activity, the question “What do we model?”
should be answered. During the simulation activity, such a question is reformulated to “How do we model
what needs to be modeled?”. Our motivation is to reduce the effort related to the modeling task on both
parts of the M&S process. We adopt ontology-based modeling for the modeling part (i.e., for answering
“What do we model?””) and metamodel-based modeling for the simulation part (i.e., for answering “How
do we model what needs to be modeled?”). We promote DEVS as a formal specification for defining
simulation models (i.e., DEVS acts as a vehicle to describe how simulation models should be defined for
studying “what needs to be modeled”). Hence, although the latter is presented as a particular case (we use
DEVS, but ideally, you may use any other formalism or software tool for implementing the simulation
models), the former is the key to representing “what needs to be modeled”.

Even when it would seem unlikely that a single, accepted framework could emerge for studying any
available domain (given that each domain has its own properties), we strongly believe that our two-fold
proposal can help in this direction. By linking two different modeling strategies (ontologies and
metamodels) on a single structure, we encourage simulationists to use real-world focused descriptions as a
basis for building their simulation models. In future work, we want to improve our framework for including
information that helps (besides abstract and implementation modeling) during the validation process.

REFERENCES

Becker, P., M. F. Papa, G. Tebes, and L. Olsina. 2021. “Analyzing a Process Core Ontology and Its Usefulness for Different
Domains” In QUATIC 2021: Quality of Information and Communication Technology, edited by A. C. R. Paiva, A. R. Cavalli,
P. Ventura Martins, and R. Pérez-Castillo, 183-196. Switzerland: Springer.

Blas, M. J.,, and S. Gonnet. 2023. “Modeling and Simulation Through the Metamodeling Perspective: The Case of the Discrete
Event System Specification”. In Handbook of Model-Based Systems Engineering, edited by A.M. Madni, N. Augustine, and
M. Sievers, 1189-1228. Cham: Springer.

Blas, M. J., S. Gonnet, P. Becker, and L. Olsina. 2022. “A Core Ontology for the Representation of Entities with Event-based
Behaviors”. Electronic Journal of SADIO, 21(2):17-41.

Blas, M., S. Gonnet, D. Kim, and B. Zeigler. 2023. “A Context-Free Grammar for Generating Full Classic DEVS Models”. In 2023
Winter Simulation Conference (WSC), 2579-2590. https://doi.org/10.1109/WSC60868.2023.10407991.

Blas, M., S. Gonnet, and H. Leone. 2017. “Routing Structure over Discrete Event System Specification: A DEVS Adaptation to
Develop Smart Routing in Simulation Models”. In 2017 Winter Simulation Conference (WSC), 774-785.
https://doi.org/10.1109/WSC.2017.8247831.

Blas, M., S. Gonnet, and B. Zeigler. 2021. “Towards a Universal Representation of DEVS: A Metamodel-Based Definition of
DEVS Formal Specification”. In Proceedings of the 2021 Annual Modeling and Simulation Conference, July 19t"-22nd,
Fairfax, USA, 1-12.

Brambilla, M., J. Cabot, and M. Wimmer. 2017. Model-Driven Software Engineering in Practice, 2nd ed. Switzerland: Springer.

Cetinkaya, D., A. Verbraeck, and M. D. Seck. 2011. “MDD4MS: A Model-Driven Development Framework for Modeling and
Simulation”. In Proceedings of the 2011 Summer Simulation Conference, June 27"-30™, Hague, Netherlands, 113-121.

2819

https://doi.org/10.1109/WSC60868.2023.10407991
https://doi.org/10.1109/WSC.2017.8247831

Blas, and Gonnet

Cristia, M., D. A. Hollmann, and C. Frydman. 2019. “A Multi-target Compiler for CML-DEVS”. Simulation 95(1):11-29.

Dalmasso, F., M. J. Blas, and S. Gonnet. 2023. “Enriching UML Statecharts through a Metamodel: A Model Driven Approach for
the Graphical Definition of DEVS Atomic Models”. IEEE Latin America Transactions 21(1):27-34.

Fleetwood, S. 2009. “The Ontology of Things, Properties and Powers”. Journal of Critical Realism, 8(3):343-366.

Gruber, T. A. 1993. “A Translation Approach to Portable Ontology Specifications”. Knowledge Acquisition 5(2):199-220.

Guizzardi, G. and G. Wagner. 2010. “Towards an Ontological Foundation of Discrete Event Simulation”. In 2010 Winter
Simulation Conference (WSC), 652-664. https://doi.org/10.1109/WSC.2010.5679121.

Koubarakis, M., A. Borgida, and P. Constantopoulos. 2021. “A Retrospective on Telos as a Meta-modeling Language for
Requirements Engineering”. Requirements Engineering 26(1):1-23.

Miller, J. A., G. T. Baramidze, A. P. Sheth, and P. A. Fishwick. 2004. “Investigating Ontologies for Simulation Modeling”. In
Proceedings of the 371" Annual Simulation Symposium, April 1822 Arlington, USA, 55-63.

Olsina, L. 2021. “Applicability of a Foundational Ontology to Semantically Enrich the Core and Domain Ontologies”. In
Proceedings of the 13 International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, October 25-27t, Lisbon, Portugal, 111-119.

Olsina, L. 2023. “The Foundational Ontology ThingFO: Architectural Aspects, Concepts, and Applicability”. In Knowledge
Discovery, Knowledge Engineering and Knowledge Management, edited by A. Fred, D. Aveiro, J. Dietz, J. Bernardino, E.
Masciari, and J. Filipe, 73-99. Cham: Springer.

Orgun, M. A. and T. Meyer. 2008. “Introduction to The Special Issue on Advances in Ontologies”. Expert Systems: The Journal
of Knowledge Engineering, 25(3):175-178.

Robinson, S. 2014. Simulation: The Practice of Model Development and Use. 2™ Ed. New York: Palgrave MacMillan.

Robinson, S. 2019. “Conceptual Modelling for Simulation: Progress and Grand Challenges”. Journal of Simulation, 14(1):1-20.

Ruy, F. B., R. A. Falbo, M. P. Barcellos, S. D. Costa, and G. Guizzardi. 2016. “SEON: A Software Engineering Ontology Network™.
In Proceedings of the 201 International Conference on Knowledge Engineering and Knowledge Management, edited by E.
Blomaqvist, P. Ciancarini, F. Poggi, F. Vitali, 527-542. Cham: Springer.

Sarjoughian, H. S., A. Alshareef, and Y. Lei. 2015. “Behavioral DEVS Metamodeling”. In 2015 Winter Simulation Conference
(WSC), 2788-2799. https://doi.org/10.1109/WSC.2015.7408384.

Schmidt, D. C. 2006. “Model-driven engineering”. Computer, 39(2):25-31.

Secretaria de Salud. 2020. Instrucciones para la Notificacion de Tuberculosis al Sistema Nacional de Vigilancia de la Salud SNVS
2.0. https://bancos.salud.gob.ar/sites/default/files/2020-10/instrucciones-notificacion-tuberculosis-SNVS2.0.pdf, accessed 4%
April.

Silver, G. A., J. Miller, M. Hybinette, G. Baramidze, and W. S. York. 2011. “An ontology for discrete-event modeling and
simulation”. Simulation, 87(9):747-773.

Szabo, C., R. Castro, J. Denil, and S. Sanchez. 2023. “Resilience and Complexity in Socio-Cyber-Physical Systems”. In 2023
Winter Simulation Conference (WSC), 660-670. https://doi.org/10.1109/WSC60868.2023.10408660.

The Eclipse Foundation. 2024. “Eclipse modeling project. Eclipse modeling framework™. https://www.eclipse.org/modeling/emf/,
accessed 271" March 2024.

Tebes, G., L. Olsina, D. Peppino, and P. Becker. 2021. “Specifying and Analyzing a Software Testing Ontology at the Top-Domain
Ontological Level”. Journal of Computer Science and Technology, 21(2):126-145.

Turnitsa, C., J. J. Padilla, and A. Tolk. 2010. “Ontology for Modeling and Simulation”. In 2010 Winter Simulation Conference
(WSC), 643-651. https://doi.org/10.1109/WSC.2010.5679124.

Van Tendeloo, Y. and H. Vangheluwe. 2017. “An Evaluation of DEVS Simulation Tools”. Simulation 93(2):103-121.

World Health Organization. 2012. Electronic Recording and Reporting for Tuberculosis Care and Control.
https://www.who.int/publications/i/item/9789241564465, accessed 4™ April.

Yang, L., K. Cormican, and M. Yu. 2019. “Ontology-based systems engineering: A state-of-the-art review”. Computers in Industry,
111(1):148-171.

Zeigler, B. P. 2019. “How Abstraction, Formalization and Implementation Drive the Next Stage in Modeling and Simulation”. In
Summer of Simulation, edited by J. Sokolowski, U. Durak, N. Mustafee, and A. Tolk, 25-37. Switzerland: Springer Nature.

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System
Computational Foundations. 3rded. London: Academic Press.

AUTHOR BIOGRAPHIES

MARIA JULIA BLAS is an Assistant Researcher at INGAR and an Assistant Professor at UTN. She received her Ph.D. degree
in Engineering from UTN in 2019. Her research interests include UML modeling and discrete-event M&S. Her email address is
mariajuliablas@santafe-conicet.gov.ar.

SILVIO GONNET received his Ph.D. degree in Engineering from UNL in 2003. He currently holds a researcher position at

CONICET. His research interests are models to support design processes and conceptual modeling. His email address is
sgonnet@santafe-conicet.gov.ar.

2820

https://doi.org/10.1109/WSC.2010.5679121
https://doi.org/10.1109/WSC.2015.7408384
https://bancos.salud.gob.ar/sites/default/files/2020-10/instrucciones-notificacion-tuberculosis-SNVS2.0.pdf
https://doi.org/10.1109/WSC60868.2023.10408660
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1109/WSC.2010.5679124
https://www.who.int/publications/i/item/9789241564465
mailto:mariajuliablas@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar

