
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

DEVS COPILOT: TOWARDS GENERATIVE AI-ASSISTED FORMAL SIMULATION
MODELLING BASED ON LARGE LANGUAGE MODELS

Tobias Carreira-Munich1,2, Valentín Paz-Marcolla1, and Rodrigo Castro1,2

1Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
2Instituto UBA-CONICET de Ciencias de la Computación, Buenos Aires, ARGENTINA

ABSTRACT

In this paper we explore to which extent generative AI, in the form of Large Language Models such as
GPT-4, can assist in obtaining a correct executable simulation model. The starting point is a high-level
description of a system, expressed in natural language, which evolves through a conversational process based
on user input, including suggestions for corrections. We introduce a methodology and a tool inspired by
the metaphor of a copilot, a form of human-AI teaming strategy well known for its success in programming
tasks. We adopt the Discrete Event System Specification (DEVS), a suitable candidate formalism that
allows general-purpose simulation models to be specified in a simple yet rigorous modular and hierarchical
way. The result is DEVS Copilot, an AI-based prototype that we systematically test in a case study that
builds several lighting control systems of increasing complexity. In all cases, DEVS Copilot succeeds at
producing correct DEVS simulations.

1 INTRODUCTION

Large Language Models (LLMs) have had great development in recent years. This generative type of
Artificial Intelligence (AI) models are currently used in a vastly broad spectrum of activities such as writing
essays, answering customer questions (Wang et al. 2023) or generating computer programs (Chen et al.
2021; Xu et al. 2022; Merow et al. 2023). LLM development is currently an intense area of R&D with
new and sometimes unimagined applications emerging on a daily basis.

The ability of LLMs to produce quality programming code naturally raises the question of the capability
of this technology to produce useful simulation algorithms, not without a plethora of concerns about their
reliability, interpretability, reusability, etc. (i.e. standard criteria used in the discipline to qualify simulation
systems). LLMs are also recognized as capable of producing inaccurate or incorrect answers. Additionally,
the explainability/interpretability of why a given response (either correct or incorrect) was given remains
a challenge (Ali et al. 2023) as LLMs constitute a black-box type of machine learning model.

In this scenario, there appears to exist a significant gap between a conceptual model, initially expressed
in natural language form, and on the other end of a typical development cycle a final simulation algorithm
for that model (which could be considered both accurate and explainable).

We consider that a methodologically robust attempt to bridge such a gap is to rely on sound modeling
and simulation formalisms. This approach can provide a concise and unambiguous intermediate language
from which to reason about and evaluate the multiple quality dimensions of the resulting simulation models.

In this work we propose the Discrete Event System Specification (DEVS) (?) as a suitable candidate
formalism that allows general-purpose simulation models to be specified in a simple yet rigorous modular
and hierarchical way. In DEVS, model structure and model behavior are clearly separated. The structure
can be conceptualized as a directed graph connecting subunits that implement behavior and exchange
messages with each other using the connections provided by the structure. Behavior is then defined with
concise, often simple state transition functions.

Among other salient features, DEVS provides the ability to define systems that correctly combine
subsystems of any type of discrete dynamics with accuracy-controlled approximations of continuous

2785979-8-3315-3420-2/24/$31.00 ©2024

Carreira-Munich, Paz-Marcolla, and Castro

dynamics, including both deterministic and stochastic types. Such generality and compactness combined,
together with programming language agnosticism, an unambiguous abstract simulator recipe, and a minimal
formal specification make DEVS a very compelling choice for exploring the limits of LLM capabilities to
generate correct generalized simulation models.

There is little previous work looking at connections between natural language processing (NLP) and
formal model specifications (Guan et al. 2023; Liu et al. 2022). Concerning simulation modeling
Shuttleworth and Padilla (2022) explored the use of NLP to generate conceptual models from narratives.
In (Giabbanelli 2023) the author describes different typical modeling and simulation tasks that LLMs
could help automate, in particular on the explanation, verification, and validation of previously developed
models, which are very relevant aspects that we envisage can show relevant complementarities with the
methodology and tools presented in this work.

However, there is no existing methodology that helps to automate the full specification of executable
simulation models departing from informal system descriptions, using LLMs as assistants (a copilot) to
streamline the process. We aim at creating a tool that improves modelers’ tasks without intervening the
underlying structure of any existing DEVS simulation toolkit, relying on an LLM at its core: a copilot (Chen
et al. 2021) that generates DEVS-compliant specifications, along with final simulation code, departing from
natural language conceptual models. The copilot concept takes the hybrid intelligence approach, where
humans and algorithms do not replace each other but are complementary instead, performing much better
at the provided task than if one did the entire job alone.

The remainder of this paper is structured as follows. Section 2 delves into what LLMs, DEVS, and
GPT-4 are, while Section 3 describes the proposed methodology to transform natural language descriptions
of systems into a DEVS executable simulation model using the aforementioned concepts. Section 4 provides
a list of usages, in increasing levels of complexity, to show the potential of the current proof of concept
to understand the main features of DEVS models. Finally, Section 6 discusses the results obtained and
proposes future lines of work.

2 BACKGROUND

2.1 Large-scale Pre-trained Language Models (LLMs)

Large Language Models (LLMs) are a class of Deep Neural Network (DNN) based on the transformer
architecture concept (Vaswani et al. 2017) specifically designed for processing sequential data like natural
language and characterized by their vast parameter space (typically ranging from tens of millions to over
a hundred billion parameters). Transformers capture long-range dependencies and relationships within an
input sequence, and unlike traditional recurrent neural networks (RNNs) or convolutional neural networks
(CNNs), these rely solely on self-attention mechanisms to weigh the importance of different input tokens
when processing the input sequence.

LLMs have significantly enhanced generative artificial intelligence’s ability to produce code and tackle
complex tasks by training on extensive datasets, encompassing code, academic papers, and the broader
internet. In this work we hypothesize and systematically test the notion that the training data used for
LLMs encapsulate extensive prior knowledge acquisition in the domain of simulation modeling.

Salient examples of successful LLMs include GPT-4 (OpenAI et al. 2023), LLaMA (Touvron et al.
2023) and Gemini (Gemini Team et al. 2023), to name a few. They offer a conversational interface for
users, resembling chat sessions, where input prompts (usually expressed in natural language) are processed
by the transformer. The prompts are split into an array of tokens, later vectorized using an embedding.
Transformers generate a response by iteratively predicting the most probable next token (tn). Each new token
is inferred from a limited size context window composed by a set of all previous tokens (tn−1, . . . , t0). At
each new interaction, the LLM increases its conversational sessions’ history via the prompts and responses
that are stored in the context, which due to its limited size may only keep the latest tokens in this buffer,
this can ultimately result in out-of-context responses.

2786

Carreira-Munich, Paz-Marcolla, and Castro

Another important concept in LLMs is its so-called temperature parameter, used to reshape (usually
softening) the discrete probability distribution of next tokens. This value is associated with creativity and
the ability to generalize in the choice of future tokens and carries the risk of producing meaningless results.
The model’s outputs become more predictable as the “temperature” approaches zero, but its responses also
become more conservative. The level of adequacy of such probabilistic, diverse traits of the produced
responses to what is expected by a user depends largely on the type of application (ranging from arts to
engineering, gaming to medicine, etc.)

Most LLMs make a strong distinction between system prompts and user prompts. The former is used
to provide initial behavioral instructions, environment configurations, and general settings, while the latter
represents the sequence of user interactions (acting as new inputs for the transformer).

2.1.1 The Choice of GPT-4 for LLM-assisted Model Design

OpenAI’s GPT-4 stands as one of the most ubiquitous and capable LLMs currently available. Several others
exist, each with different versions, capabilities, and licensing schemes.

In this work, as we shall see, a key requirement for adopting an LLM is its ability to produce quality
code in the Python language (Hou and Ji 2024) and to offer the largest possible context token size (we
envision this methodology to be used on much larger examples than those experimented with in this work,
including more elaborate system model descriptions).

GPT-4 offers these features and, in addition, provides a robust and massively tested API interface.
At the time this decision was made Claude 3 was not yet released, Claude 2 was not efficient enough,
Google’s Gemini Pro had a maximum of 30k token context, LLaMA 2 4k and CodeLLaMA 16k. We
will not be using any features unique to GPT-4 for our experiments, so replacing GPT-4 (specifically
gpt-4-0125-preview with a 128k token context) with a similar alternative should be transparent. As
for fine-tuned LLM models: they usually perform much better than their standard counterparts. However,
this option has not been used in this work to better compare results against other LLMs in the future.

LLMs provide different hyperparameters to control randomness and internal sampling. For this paper,
the temperature was fixed and set to 0.5, to give GPT-4 creativity without compromising much on coherence
(?). All experimental results should be interpreted as specific to this hyperparameter value, while a detailed
parameter sweeping remains a subject of future work.

2.2 Formal Simulation Modeling with DEVS

The DEVS formalism (?) allows expressing simulation models that are based on discrete events. DEVS
defines two main constructs: atomic and coupled models. The elements of these constructs shall be reflected
in a BNF grammar for classic DEVS proposed in Section 3.3.

An atomic model is defined by the tuple M =< X ,Y,S,δint ,δext ,λ , ta >, where X is the set of input
event values, Y is the set of output event values, and S is the set of state values. δint : S → S is the
internal transition function, δext : S×ℜ≥0 ×X → S is the external transition function, λ : S → Y is the
output function, and ta : S → ℜ≥0 is the time advance function.

DEVS models can be coupled together in modular and/or hierarchical ways. A DEVS coupled model
(CN) is defined by the following tuple structure: CN =< X ,Y,D,{Mi},{Ii},{Zi, j},Select >, where X and
Y are the sets of input and output event values, D is the set of component (atomic or coupled) references.
For each d ∈ D, Md is a DEVS model and Id is the set of influences of model d. Select function is the
tie-breaking selector. As d ∈ D components can also be of type coupled, hierarchical (multilevel) constructs
can readily be defined. A unique root coupled model serves as a default universe (a top-level container)
for the entire system.

2787

Carreira-Munich, Paz-Marcolla, and Castro

3 PROPOSAL OF THE AI-ASSISTED DEVS MODELING METHODOLOGY

In this section we describe our proposed methodology to generate DEVS simulation models from natural
language descriptions of a system. We split the pipeline into two subsequent stages: the Copilot stage
(3.1), where the user interacts conversationally with the LLM to produce PythonPDEVS simulation models
and their corresponding system specifications; and the simulation stage where the concrete simulator is
run producing simulation results. The overall user flow is as follows (see Figure 1):

1. The modeler creates a system description explaining the system, its components, and their rela-
tionships. This need not be DEVS oriented, but a natural language conceptual system explanation.

2. The Copilot application is run, presenting to the modeler the intermediate specifications produced
and the candidate PythonPDEVS simulation model generated.

3. If the modeler finds any of the answers unsatisfactory, they should interact again with the Copilot
providing new prompts in natural language requesting for the intended corrections (back to step 2)

4. The modeler is satisfied with the produced specifications. Run the produced simulation model.
5. Examine the simulation results. If unsatisfactory, give the Copilot new instructions, corrections

or requirements. In such a case, go back to step 2. Otherwise, the process ends satisfactorily.

Figure 1: Proposed AI-assisted interactive and iterative modeling and simulation process.

PythonPDEVS (Van Tendeloo and Vangheluwe 2014) is our concrete simulator of choice, and as a
first approach, we will focus on Classical DEVS definitions only. As there is currently no standardized
DEVS specification language (Blas et al. 2023; Hong and Kim 2006; Kim and Kim 1999) we propose a
custom DEVS-compliant language for the intermediate specifications (see details in 3.3).

3.1 The DEVS-Copilot Component

The DEVS Copilot is an application that issues 2 different calls to the OpenAI’s GPT-4 API. This
sequencing is aimed at splitting the semantic understanding from the syntactic code generation, allowing
for more targeted corrections by the modeler, thus providing a controlled, multi-stage LLM-assisted process.
For example: a field ordering problem in a specification is not conceptually equivalent to the model behaving
incorrectly, and should not be treated in the same way.

The first component is the Concept Specifier, intended to transform a user-provided system description
(its user prompt) and enrich it with DEVS meta-model information, remove redundant information, and
disambiguate model relations and internals, finally generating a semi-structured DEVS conceptual specifi-
cation (conceptual spec for short). This result should be human-readable, possibly having some ambiguity,
but much closer to a formal, correct, and complete description of the system, giving an idea of the LLM’s
ability to understand what a DEVS conceptual model that fits the described system looks like.

The second component is the Formal Specifier, intended to produce a formal DEVS specification
(formal spec for short) which is a proposed structured and parsable formal specification, a form of
Domain Specific Language (DSL). Its user prompt is the conceptual spec produced at the previous stage,

2788

Carreira-Munich, Paz-Marcolla, and Castro

while its system prompt provides a grammar and other specifics about Python (the base language of
PythonPDEVS). Thus, this second stage is independent of the prior, and focuses only on the target
simulator and specification.

If we changed the target simulator language or the specification grammar, only the formal spec would
need adjustments, making the Copilot more general than if both stages handled intertwined concerns.
For example, it is reasonable to assume that if a given conceptual spec produces a correct specification, it
would also produce a correct result for some other target simulator or specification language. An example
of a conceptual spec can be seen in Listing 1, that corresponds to the formal spec in Listing 2, both part
of the System 1 presented next in the results Section 4. The source code of the Copilot , along with the
results of this work, can be found in https://git-modsimu.exp.dc.uba.ar/valchulen/DEVS_Copilot.

Listing 1: System 1 - Conceptual specification.
1 ### Root Model
2 - The root model is named "root".
3 - It contains two atomic models: "Controller" and "Light".
4 - The "Controller" sends signals to the "Light".
5 - Connections:
6 - From "Controller" output port "signal" to "Light" input port "command".
7 ### Controller Atomic Model
8 - **Ports**:
9 - Output: "signal" (sends "on" or "off" commands).

10 - **State Variables**:
11 - ‘currentState‘: Indicates whether the next signal to send is "on" or "off". Initial

value is "on".
12 - ‘frequency‘: Determines the rate at which signals are sent. Initial value is 1Hz.
13 - ‘timeAdvance‘: Time advance variable, initially set to 10 seconds to start the cycle

.
14 - **Internal Transition Function**:
15 - Toggles ‘currentState‘ between "on" and "off".
16 - Resets ‘timeAdvance‘ to 1/frequency seconds after each toggle.
17 - **External Transition Function**:
18 - Not applicable as the controller does not respond to external inputs in this

scenario.
19 - **Output Function**:
20 - Sends the value of ‘currentState‘ ("on" or "off") through the "signal" port.
21 ### Light Atomic Model
22 - **Ports**:
23 - Input: "command" (receives "on" or "off" commands).
24 - **State Variables**:
25 - ‘status‘: Indicates the current state of the light ("on" or "off"). Initial value is

"off".
26 - ‘timeAdvance‘: Set to infinity since the Light model does not have self-triggered

actions.
27 - **Internal Transition Function**:
28 - Not applicable as the light’s state changes are only triggered by external inputs.
29 - **External Transition Function**:
30 - On receiving a "command":
31 - Updates ‘status‘ to reflect the received command ("on" or "off").
32 - **Output Function**:
33 - Not applicable as the Light model does not generate outputs.
34 ### Model Instances and Connections
35 - Instances within the "root" coupled model:
36 - One instance of the Controller atomic model, named "ControllerInstance".
37 - One instance of the Light atomic model, named "LightInstance".
38 - Connections:
39 - From "ControllerInstance" output port "signal" to "LightInstance" input port "

command".
40
41 This setup describes a discrete event simulation where a controller toggles a light on

and off at a frequency of 1Hz, starting the cycle 10 seconds after the simulation
begins, and continuing indefinitely.

2789

https://git-modsimu.exp.dc.uba.ar/valchulen/DEVS_Copilot

Carreira-Munich, Paz-Marcolla, and Castro

3.2 Copilot variants: adding memory to the process.

It is widely known that LLMs are quite good at generating programming code (Chen et al. 2021; Xu et al.
2022; Merow et al. 2023), so the focus of this work is not on deep-diving into the ways in which LLMs
generate a formal specification, but rather on grasping their formal modeling capabilities. In that spirit,
the Copilot has two variants that differ only in the conversation history content of Formal Specifier.

Listing 2: System 1 - Formal specification.
1 # Controller Atomic Model
2 [Controller]
3 in_ports = []
4 out_ports = ["signal"]
5 time_advance = 10
6 internal_transition_function = """
7 if currentState == "on":
8 currentState = "off"
9 else:

10 currentState = "on"
11 timeAdvance = 1 / frequency
12 """
13 output_function = """
14 send(signal, currentState)
15 """
16
17 [Controller.state.currentState]
18 type = "string"
19 initial_value = "on"
20
21 [Controller.state.frequency]
22 type = "float"
23 initial_value = 1.0

24 # Light Atomic Model
25 [Light]
26 in_ports = ["command"]
27 out_ports = []
28 time_advance = inf
29 external_transition_function = """
30 if port_name == "command":
31 status = message
32 """
33 [Light.state.status]
34 type = "string"
35 initial_value = "off"
36
37 # Root Coupled Model
38 [root]
39 [[root.component]]
40 model = "Controller"
41 name = "ControllerInstance"
42 [[root.component]]
43 model = "Light"
44 name = "LightInstance"
45 [[root.connections]]
46 source = "ControllerInstance.signal"
47 target = "LightInstance.command"

The simplest variant (see Figure 2), identified as without formal specifier history (or without history
for short), treats every interaction with the Formal Specifier as isolated from all prior prompts and
conversations. This is, each call to this LLM considers only the current user prompt, the fixed system
prompt (that includes the instructions on what it should generate), and the formal grammar (with Python
as the base language). This limits this stage to syntactical understanding only, using the conceptual model
structure provided as input. We will show that this variant makes the same mistakes even when given a
correction in a previous interaction.

The second variant (see the blue cloud in Figure 2), named with formal specifier history (or with
history for short), provides the Formal Specifier with the entire conversational history of formal specs it
has produced. We will show that this variant simplifies and reduces the number of refinement interactions
when trying to refine specifications.

System
prompt

DEVS Copilot

System
prompt

System
description

(initial or
refined)

Conversation
history

User
prompt

User
prompt

DEVS
conceptual

specification

Natural Language
conceptual model

specification

DEVS
formal

specification

Conversation
history

Semi structured
conceptual model

specification

Parsable structured
formal model

specification (DSL)

PythonPDEVS
Simulation

Model

specification validation

Optional variant
with Formal Specifier
history

DEVS
concepts

Python +
Grammar
concepts

LLM-based
Formal Specifier

LLM-based
Concept Specifier

Modeler

DSL
Parser

Figure 2: Copilot pipeline & variants.

2790

Carreira-Munich, Paz-Marcolla, and Castro

3.3 Specification

Our goal is to explore and describe the capabilities of LLMs to understand and use core DEVS concepts
like action-reaction, modularity, extensibility, hierarchies, and time management. Note that the grammar of
formal spec (in BNF form, available in https://git-modsimu.exp.dc.uba.ar/valchulen/devs_copilot/-/blob/
main/ClassicDEVS_BNF.grammar) does not depend on the PythonPDEVS specific simulator but on
Python, the base language for this toolkit, because its data types and the code within DEVS functions used
for simulation must match that of the toolkit. If another target simulation toolkit were to be chosen, these
code fragments should be changed to match the appropriate new language. Therefore, GPT-4 should only
generate Python-specific code (for the DEVS formal specification), a process that has been extensively
tested by the coding community worldwide.

Previously suggested DEVS specifications exist (Blas et al. 2023; Hong and Kim 2006; Kim and Kim
1999) covering various aspects of the modeling process. However, we find them overly complex for the
purposes of this work. The DEVS specification was made intentionally minimal, to streamline potential
corrections and steer the LLM’s focus to each problem at hand.

The grammar describes the specification language used to generate, with a parser program, all the
required code for simulations, and is part of the formal specifier’s system prompt. Here are a few notable
aspects of the language:

• It is restricted to TOML for ease of reading, parsing, and LLM understanding. We don’t need to
explain the TOML rules, which are assumed as already known by GPT-4.

• The functions body are specified as arbitrary Python code. State variables must be referenced by
name. State variable types are currently restricted to string, float, and integer, but could be extended.

• Instead of an atomic model having a time advance function, it has a time advance state variable
(referenced as ta) with initial value (time_advance). It changes via simple variable assignment
whenever a state change should impact the time advance value, and is read by the time advance
function. This is a common practice in DEVS modeling.

• The requirements also mandate the inclusion of a “root” model to ensure a parser can establish a
correct entry point for generating a simulation.

4 CASE STUDY: SWITCHING LIGHTS ON AND OFF TO TEST DEVS CORE FEATURES

We propose a list of example systems under study, which will serve as an overall proof of concept for
the proposed workflow (see Figure 3). These seek to test the main features of DEVS as a modeling and
simulation formalism. We start with a classic and simple case where a light is turned on and off controlled
by an event generator. Then, we make this seed example increasingly complex to exercise modularity,
hierarchy and port mapping, among other DEVS features.

Each case study (except for the first one) is built as an evolution of a previous example chosen by
its suitability as a convenient starting point for the new system, following an iterative-incremental process
expected both for LLM conversations and for simulation model building. Technically, the knowledge about
any previous Base System resides in the conversation history used at each LLM-based specifier.

We propose the following criteria of acceptability to categorize the outcomes of the LLM-based process:
• Acceptable: The specification is accurately parsed into a simulation that executes as expected,

requiring no further intervention from the user.
• Recoverable: While the underlying logic is sound, there is at least one syntax error (unparsable)

that needs manual correction by the user (for example the issue described in Section 5.2).
• Incorrect: This result indicates a logical error, which could stem from various sources, such

as the meta-model (e.g., incorrectly expecting the output_function to be invoked after the
external_transition_function, see Section 5.4), the specification itself (e.g., incorpo-
rating non-Python code within functions), or the system description (e.g., failing to deactivate a
light when required, see Section 5.1). These errors point to fundamental misconceptions within the

2791

https://git-modsimu.exp.dc.uba.ar/valchulen/devs_copilot/-/blob/main/ClassicDEVS_BNF.grammar
https://git-modsimu.exp.dc.uba.ar/valchulen/devs_copilot/-/blob/main/ClassicDEVS_BNF.grammar

Carreira-Munich, Paz-Marcolla, and Castro

Copilot’s operation and require manual user intervention (rather than LLM-driven regeneration).
Formal specs of this type may be unparsable.

After the Copilot generates a specification we look for errors in the results (currently a direct visual
inspection, with no extra checkers involved). If the result was incorrect we interact with the tool again,
explaining in natural language the problem found and suggesting how to fix it. Each of these interactions is
called a refinement. If we find no issues in a result (i.e. the specification is acceptable) it is parsed into a
simulation code ready to run. Otherwise, every other error in the specification is recoverable, so no more
refinements are necessary, but someone has to manually go and fix said issues before the specification is
acceptable and therefore can run.

5 EXPERIMENTAL RESULTS: ANALYSIS OF SYSTEMS, PROMPTS AND REPRESENTATIVE
INTERACTIONS

Table 1 summarises the main features of the experimentation process using DEVS Copilot. Each new
System ID is created from a given System Description User Prompt, uses some previous Base System as a
starting point, employs variants of the Formal Specifier with/without history, and resorts to a certain number
of refinement cycles. For all systems, the final executed simulations produce the correct expected
results (in the form of output logs, not shown here due to space limitation and the simplicity of the systems).

Next, we showcase snippets of results that we found representative of typical interactions with the
Copilot. Each shows a particular type of error found and, when applicable, which extra user prompt
was used to fix it. As a starting point, refer to Listing 2 to see the specification generated for System 1.

5.1 Example Copilot Interaction #1: Semantic Error

In System 3 (with history, 2nd interaction): After clearly stating that f requency is a parameter that should
be set to a random value at the start of the simulation and that it shouldn’t change, the Controller.
internal_transition_function resets it (see Listing 3). With the new user prompt detailed in List-
ing 4 used as subsequent interaction, the issue is fixed and doesn’t show up again, withfrequency=rand()
being removed by the Formal Specifier from the internal transition function.

Controller LightOn/Off

a: System 1.

Controller

Light

On/Off

Light

Light

On/Off

On/Off

b: System 2.

Controller LightOn/Off

Controller LightOn/Off

Controller LightOn/Off

c: System 3.

Controller LightOn/Off

Controller

Controller

On/Off

On/Off

d: System 4.

Controller LightOn/Off SensorOn/Off

e: System 5.

Controller LightOn/Off SensorOn/Off

Stop

f: System 6.

SensorOn/Off

Stop

Controller LightOn/Off

Controller LightOn/Off

Controller LightOn/Off

On/Off

On/Off

g: System 7.

Figure 3: Proposed systems under study.

2792

Carreira-Munich, Paz-Marcolla, and Castro

Table 1: Analysed prompts and systems.

System
ID

System Description User Prompt Base
System ID

Variant Refinement
cycles

1 We have a module named controller that sends on and off
signals to a light. The controller must send these commands

with a parametric frequency with default initial value of
1Hz. The initial state of the light is off and the controller

will auto-start the cycle 10 seconds after the simulation
start. Once started the toggling should never end.

N/A N/A 0

2
Now extend the system so a single controller toggles 5

lights simultaneously. † 1
wo/history 0
w/history 0

3

Now create a controller-light coupled model that can be
used as a single unit. Of this controller-light abstraction,

create 5 pairs. Modify the base controller to have a random
frequency (you can use the “rand()’ python function). †

1
wo/history 1

w/history 0

4
Now extend the system so that there are 5 controllers
sending signals to a single light. Change the controller

model such that the parameterized frequency is random. †
1

wo/history 1

w/history 1

5 Now add a sensor atomic model able to know if the light
is on or off. † 1

wo/history 1
w/history 2

6

Now please modify the models and their relationships so
that the sensor can send a signal to the controller; telling it

to stop toggling the light and simply turn it off. This
should happen after 10 on-off light cycles, the sensor is the
component responsible of knowing when that threshold is

reached. †

5 w/history

wo/history 1

w/history 1

7

Now change the system such that: - “Controller” and
“Light” are coupled in a new model, called

“ControllerLight” - There are 3 different “ControllerLights”
in the system - The controller model has a random

frequency parameter (you can use the “rand” function) -
There is only one “Sensor”, it should sense all lights -

After the “Sensor” has seen 10 total light toggles (does not
matter from which light the signal arrived) it sends a stop

signal to every controller. - A full light cycle happens
when lights go from “on” to “off” states. - After the stop

signal is sent, lights should be turned off. †

6 w/history

wo/history 3

w/history 1

A † represents the addition of the following text: “Do not forget to also specify the internal functions, state variables,
and other variables for all atomic models in the system, even if you have to repeat information.”

Listing 3: Ex. #1 - Formal specification snippet.
1 ...
2 internal_transition_function = """
3 ...
4 frequency = rand()
5 ta = 1 / frequency
6 """
7 ...

Listing 4: Ex. #1 - User prompt.� �
Great response, but the frequency must
be set to a random value when the
simulation begins; then it should stay
fixed.� �

5.2 Example Copilot Interaction #2: Syntactic Error

In System 6 (5th interaction), System 4 (3rd interaction), and System 2 (2nd interaction), all with-
out history: a very frequent error (particularly in without history variants) is that time_advance,
output_function, internal_transition_function and/or
external_transition_function are not located in an atomic model’s main scope, but after its
state variable scope (see Listing 5). This contradicts the grammar and wouldn’t parse, but represents a

2793

Carreira-Munich, Paz-Marcolla, and Castro

simple syntactical error. We consider responses with this type of error as recoverable, so no extra user
prompt was required. Also, a similar error can be found in System 3 (without history, 3rd interaction). Of
course, this error type is undesirable and we favor variants where this is less prone to happening.

Listing 5: Ex. #2 - Formal specification snippet.
1 ...
2 ["Light"]
3 in_ports = ["signal_in"]
4
5 [Light.state.state]
6 type = "string"
7 initial_value = "off"

8 external_transition_function = """
9 if port_name == "signal_in":

10 if message == "on":
11 state = "on"
12 elif message == "off":
13 state = "off"
14 """
15 ...

5.3 Example Copilot Interaction #3: Meta-model Semantic Error 1

In System 6 (with and without history, 5th interaction): the Sensormust notify the Controller that it has
identified 10 total on-off cycles, thus in the formal spec when the threshold is reached, output_function
is triggered by setting ta to 0. But as there is no internal_transition_function, ta is not reset
to a non-instantaneous value so the simulation loops infinitely. See line 9 in Listing 6.

We consider this a misconception of the understanding of the DEVS formalism, but with a user prompt
describing the issue and the “correct it” instruction (Listing 7), an internal_transition_function
is added to the formal spec setting ta = f loat(′in f ′) when the cycling has finished.

Listing 6: Ex. #3 - Formal specification snippet.
1 ...
2 [Sensor]
3 external_transition_function = """
4 if port_name == ’status’:
5 lightStatus = message
6 if lightStatus == ’off’:
7 cycleCount += 1
8 if cycleCount >= 10:
9 ta = 0

10 else:
11 ta = float(’inf’)
12 """
13 ...

Listing 7: Ex. #3 - User prompt.� �
The sensor loops infinitely when
the cycle count is reached.
Correct the ’ta’.� �

5.4 Example Copilot Interaction #4: Meta-model Semantic Error 2

In System 7 (without history, 8th interaction): here the opposite of what is shown in Example interaction
#3 happens, Sensor.output_function is never triggered, because the Sensor never has ta < +∞.
See Sensor.external_transition_function in Listing 8.

This is a conceptual error stemming from a misconception in the understanding of the meta-model,
that is fixed by the user prompt from Listing 9: the conditional ta = 0 is added to the function, and the
infinite looping is avoided by resetting the ta = ∞ in Sensor.internal_transition_function.

Listing 8: Ex. #4 - Formal specification snippet.
1 ...
2 ["Sensor"]
3 external_transition_function = """
4 if port_name == "status" and message == "off":
5 toggleCount += 1
6 """
7 output_function = """
8 if toggleCount == 10:
9 send("control", "stop")

10 """
11 ...

Listing 9: Ex. #4 - User prompt.� �
output_functions are not run after
external_transition_functions,

use the ta = 0 trick accordingly.
Make sure you are not introducing
infinite loops when using this
technique.� �

2794

Carreira-Munich, Paz-Marcolla, and Castro

6 DISCUSSION, CONCLUSIONS AND OUTLOOK

In this paper we have systematically explored the potential of using LLMs to generate formal and correct
DEVS simulation models. The results are very promising and suggest that the Copilot metaphor, together
with the proposed methodology, can play an important role in the modeling discipline.

All user prompts utilized for model refinement and error correction were written in a general conversa-
tional tone, addressing the conceptual problem at hand but without specifying a technical solution. We also
deliberately used prompts with a low/medium level of complexity, compatible with what an undergraduate
student with basic training in systems modeling and simulation would produce, and refrained from using
any advanced type of prompt engineering technique (Xu et al. 2022). These points, combined with the
proven success of DEVS Copilot in correcting issues (if any) in just a few iterations, support the argument
that our LLM-based specifiers accurately interpret the underlying problems. In future studies we will test
the system using a collection of prompts proposed by undergrad students before and after taking a DEVS
simulation course, to draw more insightful conclusions.

Although we deliberately adopted Classic DEVS to keep this first approach as manageable as possible,
it is of interest to broaden the scope using DEVS extensions. Natural candidates are Parallel DEVS (?)
and Emergent Behaviour DEVS (Foguelman et al. 2021), both because of their relevancy to research and
because they are already available in PythonPDEVS. As DEVS Copilot is simulator-agnostic, it is clear
that experiments with other toolkits written in different languages should be conducted.

Through experimentation, we were able to verify a well-known fact: LLMs are currently not reliable
enough to be part of a fully automated tool if correctness and reliability are a must. They are often not able
to respect the requested formats, as we have seen in the examples. For instance, when a modification of a
previous response is requested, the unmodified atomic models are not detailed and instead the response lists
only the differences relative to the previous model. While this would be convenient when communicating
with a human, it makes it difficult to algorithmically extract the full specification from the LLM responses
in a deterministic way.

However, it should be possible to safely automate certain processes in the proposed scheme. The
correction of models that do not conform to the provided grammar is particularly important. By implementing
a parser that generates clear error messages, DEVS Copilot could automatically iterate a specification until
it is generated correctly. Another area that requires research is the automatic verification of simulation
results based on LTS/LTL specifications. These properties may be generated by the same or a different
LLM specifier in the pipeline.

On a more speculative note, we can reflect on the role of simulation models in the field of Artificial
General Intelligence (AGI) (Goertzel 2014). Current AI exhibits narrow or specialised intelligence, capable
of excelling at specific tasks but lacking broad understanding and reasoning. Formal models in general,
and formal simulation models in particular, serve as a means of reasoning about reality in an unambiguous
and structured way. Thus, instead of asking AI to achieve generality, an alternative way might be to guide
AI to think in terms of general-purpose modelling formalisms that humans already know how to interpret
and explain. Of course, the stress would then be put on the modelling formalism of choice. This is where
DEVS can show its full potential, by demonstrating its ability to correctly represent models of a wide
variety, and to express complex hybrid system models built by combining sub-models of heterogeneous
types, thus promoting the desired generality. As we move forward, the pathway of the integration of AI
with formal simulation modelling will unfold over time, revealing its full potential impact and limitations.

REFERENCES
Ali, S., T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral, R. Confalonieri et al. 2023. “Explainable Artificial

Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence”. Information Fusion 99:101805.

2795

Carreira-Munich, Paz-Marcolla, and Castro

Blas, M. J., S. Gonnet, D. Kim, and B. P. Zeigler. 2023. “A Context-Free Grammar for Generating Full Classic DEVS Models”.
In 2023 Winter Simulation Conference (WSC), 2579–2590 https://doi.org/10.1109/WSC60868.2023.10407991.

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan et al. 2021. “Evaluating Large Language Models Trained
on Code”. arXiv preprint arXiv:2107.03374.

Foguelman, D., P. Henning, A. Uhrmacher, and R. Castro. 2021. “EB-DEVS: A formal framework for modeling and simulation
of emergent behavior in dynamic complex systems”. Journal of Computational Science 53:101387.

Gemini Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut et al. 2023. “Gemini: A Family of Highly Capable
Multimodal Models”. arXiv preprint arXiv:2312.11805.

Giabbanelli, P. J. 2023. “GPT-Based Models Meet Simulation: How to Efficiently use Large-Scale Pre-Trained Language Models
Across Simulation Tasks”. In 2023 Winter Simulation Conference (WSC), 2920–2931 https://doi.org/10.1109/WSC60868.
2023.10408017.

Goertzel, B. 2014. “Artificial General Intelligence: Concept, State of the Art, and Future Prospects”. Journal of Artificial
General Intelligence 5(1):1–48.

Guan, L., K. Valmeekam, S. Sreedharan, and S. Kambhampati. 2023. “Leveraging Pre-trained Large Language Models to
Construct and Utilize World Models for Model-based Task Planning”. In Advances in Neural Information Processing
Systems, Volume 36, 79081–79094. Red Hook, United States: Curran Associates Inc.

Hong, K. J. and T. G. Kim. 2006. “DEVSpecL: DEVS specification language for modeling, simulation and analysis of discrete
event systems”. Information and Software Technology 48(4):221–234.

Hou, W. and Z. Ji. 2024. “A systematic evaluation of large language models for generating programming code”. arXiv preprint
arXiv:2403.00894.

Kim, H. and J. Kim. 1999. “An XML-based DEVS Markup Language for Sharing Simulation Models on the Web”. Journal
of the Korea Society for Simulation 8(1):113–138.

Liu, J. X., Z. Yang, B. Schornstein, S. Liang, I. Idrees, S. Tellex et al. 2022. “Lang2LTL: Translating Natural Language
Commands to Temporal Specification with Large Language Models”. In Workshop on Language and Robotics at CoRL
2022. December 14th-18th, Auckland, New Zealand.

Merow, C., J. M. Serra-Diaz, B. J. Enquist, and A. M. Wilson. 2023. “AI chatbots can boost scientific coding”. Nature Ecology
& Evolution 7(7):960–962.

OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya et al. 2023. “GPT-4 Technical Report”. arXiv preprint
arXiv:2303.08774.

Shuttleworth, D. and J. Padilla. 2022. “From Narratives to Conceptual Models via Natural Language Processing”. In 2022
Winter Simulation Conference (WSC), 2222–2233 https://doi.org/10.1109/WSC57314.2022.10015274.

Touvron, H., T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix et al. 2023. “LLaMA: Open and Efficient Foundation
Language Models”. arXiv preprint arXiv:2302.13971.

Van Tendeloo, Y. and H. Vangheluwe. 2014. “The modular architecture of the python(P)DEVS simulation kernel: work in
progress paper”. In Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative, DEVS ’14.
San Diego, United States: Society for Computer Simulation International.

Vaswani, A., Google Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al. 2017. “Attention Is All You Need”. In Advances
in Neural Information Processing Systems, 6000–6010. Red Hook, United States: Curran Associates Inc.

Wang, L., C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang et al. 2023, 8. “A Survey on Large Language Model based Autonomous
Agents”. Frontiers of Computer Science 18(6):1–26.

Xu, F. F., U. Alon, G. Neubig, V. J. Hellendoorn and V. J. Hel. 2022. “A systematic evaluation of large language models of
code”. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, 1–10. New York,
United States: Association for Computing Machinery (ACM).

AUTHOR BIOGRAPHIES
TOBIAS CARREIRA-MUNICH is a PhD candidate in Instituto de Ciencias de la Computación at Universidad de Buenos
Aires. His email address is tcarreira@dc.uba.ar.

VALENTÍN PAZ-MARCOLLA is an advanced bachelor’s thesis student in Computer Science at the Departamento de Com-
putación, Universidad de Buenos Aires. His email address is valentinpazm@gmail.com.

RODRIGO CASTRO is a Professor in the Departamento de Computación, Universidad de Buenos Aires, and Head of the
Laboratory on Discrete Event Simulation at the CONICET Research Institute of Computer Science (ICC). His research interests
include simulation and control of hybrid systems. His email address is rcastro@dc.uba.ar.

2796

https://doi.org/10.1109/WSC60868.2023.10407991
https://doi.org/10.1109/WSC60868.2023.10408017
https://doi.org/10.1109/WSC60868.2023.10408017
https://doi.org/10.1109/WSC57314.2022.10015274
mailto://tcarreira@dc.uba.ar
mailto://valentinpazm@gmail.com
mailto://rcastro@dc.uba.ar

	INTRODUCTION
	BACKGROUND
	Large-scale Pre-trained Language Models (LLMs)
	 The Choice of GPT-4 for LLM-assisted Model Design

	Formal Simulation Modeling with DEVS

	Proposal of the AI-Assisted DEVS Modeling Methodology
	The DEVS-Copilot Component
	Copilot variants: adding memory to the process.
	Specification

	CASE STUDY: Switching lights on and off to test devs core features
	EXPERIMENTAL RESULTS: Analysis of systems, prompts and representative interactions
	Example Copilot Interaction #1: Semantic Error
	Example Copilot Interaction #2: Syntactic Error
	Example Copilot Interaction #3: Meta-model Semantic Error 1
	Example Copilot Interaction #4: Meta-model Semantic Error 2

	DISCUSSION, CONCLUSIONS and outlook

