ECSS: AN EXTENDABLE COMPUTER SYSTEM SIMULATOR¥*
Norman R. Nielsen
Stanford University and The RAND Corporation

Stanford, California

Santa Monica, California

Abstract

An important aid in the construction of a

a simulation model for analyzing and evaluating various design approaches.

complex computing system or network is
Unfor-

tunately, the programming and debugging effort associated with the development of

such a simulator all too often renders the project impractical.

Accordingly,

ECSS has been designed and specifically tailored to surmount these difficulties.
Purther, it is built as an extension of Simscript II, so that the full power of
a general purpose simulation language is available to the user for unique features

or special requirements.

1. INTRODUCTION

The value of simulation techniques has long been
recognized as a means for investigating the behav-
ior of complex or otherwise incompletely understood
This has been particularly true in the
The de-

signer needs a tool to assist him in evaluating

systems.

case of systems in the design process.

some of the alternative approaches which he might
employ, in evaluating a system's overall perfor-
mence when several new modules are to be integrated
into that system. Each module may be well designed
and well understood, but it is often uncleal in
the case of large systems how well a collection of
All too

often it is a matter of "hope for the best" and

these "good" modules will work together.
"wait and see". Thus, the need for and value of

simulation studies.

The foregoing arguments are particularly true with
respect to computer systems ~ hardware systems,
software systems, communications systems, inter-

* This work has been supported by the RAND
nautics and Space Administration.

114

connected networks of systems, etc. The problems
encountered by designers and developers of such
systems are by now well known to all in the industry.
Hardly a computer related periodical has been pub-
lished in recent years without some mention of
delays in delivering software systems, of diffi-
culties with system performance, etc. Clearly,
this is an ares where simulation could be of great
assistance - both to the designer of the system as
well as to the ultimate user. As mentioned above
the designer needs to test and evaluate his design
without actually having to build the system first.
The user needs to determine how his system will
behave in his particular environment, how it should
be configured to best serve his needs, how changes
in his requirements might affect its performance,

ete.

The aforementioned are areas where simulation could
be of great assistance. A number of simulation

Corporation and by the National Aero-



studies of this nature have been made (1); the
value of the approach has been demonstrated. How-
ever, for the most part such studies reflect
special cases. Many simulations are unable to be
completed adequately within the alloted time and
resource budgets. Many others are not even attem-
All too

often the requirement is for additional information

pted because of projected difficulties.
about a system "now". The designer or user does
not have two years in which to develop a special
simulation model to make the necessary analyses.
In that period of time, for better or worse, the
In other

cases the expenditures required for the develop-

actual system would be constructed.

ment of the necessary simulation model would con-
stitute a significant fraction of the total

project budget.

Thus, although the value of simulation is recog-
nized and although there is often a desire on the
part of the project to make simulation analyses,
the required resources often make the construction
What

is needed, then, is a modeling capability specif-

and use of a simulation model impractical.

ically tailored for the simulation of computer
systems. This would permit system models to be
developed much more rapidly with far fewer re-
It is this need

that led to the development of ECSS.

sources than is possible today.

Now a number of packages or simulators have been
developed to assist users in evaluating the per-
formance of alternative computer systems or con-
figurations under various types of loading. How-
ever, these simulators do not provide the flexi-
bility and capability required for many types of
computer simulation work., This is evidenced by
the number of computer system simulation studies
that have been made with models developed speci-

fically for those investigations.

For example, consider SCERT (Systems and Computers
This

package attempts to provide a very general model

Evaluation and Review Technique) (2).

that can be adapted to a user's requirements.
Parameters are set to reflect the performance

capabilities of the hardware/software systems

115

being studied and to reflect the user's work load.
However, this is the user's only point of contact
with the simuletion. If the model does not con-
taln a parameter to reflect a particular function
or to adjust some activity, there is little or
nothing that the user can do to overcome this
difficulty. Thus, while SCERT can be of value in
analyzing many straight-forward uses of existing
systems, it is of little use in studying more
complex systems or systems which are in the design

stage.

As another example consider S3 (System and Soft-
ware Simulator) (3). This package does not attempt
to adapt a single model to serve each need; rather
it seeks to create a model tailored to each need.
Thus, the user is required to describe the cap-
abilities of the system under investigation, the
manner in which the software operates, and the
behavior of the various Jjobs which will be pro-
cessed by the system. Essentially, there is a
"language" in which to make these descriptions.
83 processes the statements in the language to
form a simulation model. The difficulty lies in
the fact that the user must work within the con-
text of a limited number of statement types. The
statements are fairly specific and limited in
purpose. If the user needs to describe something
for which there is no statement type (e.g. com-
munication between two computers), he is lockede
out. There is no way to use several other state-

ments to gain the same end.

2. [PURPOSE OF ECSS

The purpose or design goal of ECSS is really many
fold. However, to summarize briefly, the intent
is to overcome many of the problems discussed above
with respect to the simulation of computer systems.
This general statement can be broken down into a

number of more specific goals.

Since the overall aim is to improve the ease and
speed with which one can develop a model of a com-
puter system, it is desired that ECSS enable
simple models as well as parts of wmore complex

models to be built merely by requesting the



necessary facilities and by providing appropriate
input data. Now clearly it is impossible to de~
velop a capability which would enable any user to
reflect any type of system in this fashion. How-
ever, a subset of commonly used facilities and
capabilities can be provided in this manner with-
out the necessity of a substantial amount of pro-

gramning on the part of the user.

An important goal stems from the need to reduce
the programming and debugging necessary to reflect
a system with some unique or specialized features.
This need was the motivating factor behind the
development of ECSS, since it is situations such
as this in which simulation can be so valuable

and yet so difficult to perform. Because of the
particular or unique aspects of the system to be
modeled, it is not possible to eliminate com-~
pletely the need for programming on the part of
the user. However, the amount of programming
required can be greatly reduced by providing some
higher level capabilities designed specifically
Further,

facilities can be provided to look after many of

for use in modeling computer systems.

the flag setting, counter checking, and pointer
adjusting types of activities that are found in a
simulation, thereby eliminating some of the te-~
diousness from the programming chore and removing
the source of many of the bugs which are so time-~
consuming to track down. Accordingly, these cap-
abilities and facilities are among the features
of ECSS.

Although the intent is to provide a general frame-
work for modeling computer systems, this frame-
work is not rigid. That is, if the user can not
find the particular capability he needs (which
will often be the case in this type of simulation),
he is able to go outside the framework to the
extent necessary in order to provide for himself

the needed capabilities.

This is true both in the development of a simu-
lation model and in the specification of the data
for that model. That is to say, in specifying
the model itself the user should be able to take

advantage of the higher level constructs available

116

to him. However, this should not preclude him from
using a general purpose programming capability to
accomplish certain functions for which no constructs
are provided. Further, he should.be able to specify
his own constructs which would be advantageous or
useful in the development of a particular model.
Likewise, in specifying the data for his model,

the user should be able to take advantage of the
higher level facilities available. However, he
still needs a general purpose capability to be able
to specify characteristics or job behaviors in terms
other than those provided. Thus, in one sense,
ECSS is a helping hand that can be called upon to

the extent desired, from 0% to 100%.

A further goal of ECSS is somewhat less apparent
on the surface. Although it is desired to provide
a framework for computer modeling, this framework
should not dictate the structure or organization of
the user's model. Much of the value of the assis-
tance provided to the user would be lost if his
model design were thereby forced into a particular
channel. There are many examples of simulation
studies which, although useful, were seriously
hampered in their efficacy by the requirement that
the model be structured along particular lines.
The facilities and capabilities of ECSS are such
that they can be of assistance whether the user
desires to work with a flow oriented model or an
event driven simulation, whether he wishes to take
a gross overall look at a system or to investigate
one particular subsection in minute detail.

3. LANGUAGE SELECTION

The design goals mentioned above for ECSS require
that it provide general purpose capabilities. That
is, it must be a general purpose progremming lan-
guage as well as a language with specific cap-
abilities for the simulation of computer systems.
The most effective way to accomplish this was to
design ECSS as an extension to an existing lan-
guage which had the necessary general purpose cap-
abilities. First, the emphasis of the project was
on the simulation of computer systems, not on the

design of general purpose languages. Since there



are many good languages in existence with general
purpose capabilities, any resources devoted to the
development of such cagpabilities would in a sense
be wasted from the point of view of the project.
Second, the need for a user to learn what would
amount to an entirely new language in order to use

BCSS would be a serious drawback.

Following the same line of reasoning it was also
desirable to build ECSS as an exbension to an
existing simulation language. Although simulations
of computer systems need a number of language
features which are specific to the modeling of
computer systems, such simulations still require
many of the basic features provided by simulation
languages.
as above, it was desirable to avoid having to de-

Thus, using the same type of arguments

velop many of the basic simulation capabilities

that are found in simulation languages.

In essence, then, ECSS was to be developed as an
extension to an existing simulation language which
had fairly powerful general purpose programming
capabilities. Although this reliance upon existing
languages would clearly impact the speed, effi-
ciency, and user interface of ECSS, these con-

The

purpose of the project was to develop a prototype

siderations were of secondary importance.

version of ECSS in order to demonstrate the effec-
tiveness of this approach to the simulation of com-
plex compuber systems. The emphasis was upon the
new conceptual features of ECSS, not upon the re-
implementation of well known language features.
Should ECSS subsequently become popular but the
host language prove to be a poor choice, it would
then be possible to go back and implement a new
version of ECSS which would be suitably inde-

pendent of existing languages.

In keeping with this line of reasoning, the pro-
totype version of ECSS was developed as a trans-
lator. The language extensions are thus translated
into the host language as are any service routines
The

standard system for the host language then takes

that are supplied for a simulation model.
care of compiling, loading, etc.

Not only does

nz

this procedure reduce the effort required to imple-
ment ECSS, but it also preserves the host language
There are thus no ECSS

modifications which have to be installed in any.

system as "standard."

updates or new versions of the host system.

The need for powerful, general purpose programming
capabilities as well as simulation capsbilities
narrowed the host language choice considerably.

In fact the only real contenders were Simula (4) and
Simscript. Both of these languages have most of
the desirable features, and either would have been
Thus,

the selection of Simscript over Simula was made

satisfactory for the implementation of ECSS.

primarily on the basis of availability on the

equipment to which the project had access.

The

was

selection among the various versions of Simscript
Simseript IT (5)

chosen because of a nuwmber of additional features

also fairly straightforward.
was
and improvements which it offers over the other
earlier versions of Simscript. It provides the

user with a much improved method of specifying the
various entities and attributes which are to be

used. Storage allocation is also improved as are
The ability to

make recursive subroutine calls is very helpful.

the general purpose capabilities.

The power of Simscript ITI is sufficient not only
for the user's requirements but also for system's
purposes, permitting the entire system to be
developed and used within the context of the same
language. The user of ECSS can work in Simscript II,
the language features of ECSS are constructed as
extensions to Simscript II, and the translator it-
self is written in Simscript II (with one exception -
there is one capability that Simscript II does not

have, and it was necessary to write a two instruction

assembly language subroutine to remedy this deficiency).

L. DESIGN OVERVIEW

Before discussing some of the key features of ECSS,
a broad overview will be given to illustrate the
A schematic of the

operation of the translator is shown in Figure 1.

design and use of this tool.

The input to ECSS consists of five parts: a



"pinary" summery deck, a definition section, a
system description, a job load description, and
any Simscript routines or data which the user him-

self has developed.

The summary deck is primarily an economy measure,
providing the user with the ability to make cer-

tain types of small changes without the necessity
The

first time that a particular model is input to

of retranslating all of the input again.
ECSS there is, of course, no summary deck. How-
ever, the output of that translation includes,
among other things, a deck indicating the contents
of the summary tables which ECSS uses in construc-~
ting simulabion models. These tables contain such
information as system configuration, device cap-
abilities, ete. Should a user subsequently wish
to make a minor change in his model (e.g. change
the number of disk units or alber the transmission

rate of a channel), he need input only this summary

deck followed by the source statements for the
desired changes. It is not necessary to retrans-
late the entire system description. The making of
more substantive changes, of course, necessitates
the retranslation of the altered routines as well
as the modification of any affected system routines.
(These are provided by ECSS to perform some of the
special capabilities in the object simulation pro-
gram.) However, it would still not be necessary

to retranslate the system descripbtion, since the
summary deck essentially permits the recreation of
the translator's tables as they stood at the com-

pletion of the previous translation.

The second part of the input data permits the user
to define any special terms and units that are
relevant for the particular model being constructed.
Although the translator recognizes the relationship
between such units as seconds and microseconds,

the relationship between words and pages or words

Intermediate
Tnputs Qutputs/Inputs Cutputs
Binary Summary Deck B 2
c
S M
Definition Deseriptions —3 S g
R
System Descriptions -———3 %
- T
Ioad Descriptions ———> —> Simseript IT Routines —> — Object Code
II
> Tailored Service Routines —> > Object Code
(in Simscript II)
User's Own Simseript II - > Simseript II Routines —> —> ObJject Code
Routines With Extensions
1
|
L» Tnitialization Data : +> Data
L
]
s Revised Binary Summary Deck 1| i
: I |
1 i : !
User's Own Data : : i :) Data

Figure 1

Schematic of ECSS Translation
118



and little.pages (or any other term a user might
like to employ) 1s something that can not be fixed
immutably for all users. Hence, the user is given
an opportunity to define any such non~standard
terms that he might wish to employ in developing

a simulation. He might choose, for example, %o
define a spool.buffer as being 100 words in size
and a clock.pulse as being 500 nanoseconds long.
These terms could then be used throughout the
simulation input, permitting a greater degree of

readability and specification convenience.

The definitions can also indicate the names of and
the data for table look-up functions.

abilities of Simscript II are not as comprehensive

The cap-

in this area, and this feature ensbles the user to
gquickly and conveniently set up these frequently
used functions., Finally, additional commands or
operation types may be defined if the user wishes
to supplement the standard ones provided for
describing the job load to be simulated (see

Section 7).

The third part of the input data permits the user
to specify the hardware configuration and cap-
abilities of the system to be modeled. Provision
is made for a modest amount of software description.
In keeping with the Simscript IT philosophy, these
specifications are in free form. There is no
requirement to check boxes or to put certain
information in specific columns on the input card.
Section 6 contains a further discussion of the

specification statements.

The fourth part of the input data permits the user
to describe the behavior or characteristics of the
jobs which will be "executed" on the simulated
system. In addition to a number of statement
types designed specifically for this purpose,

the user may employ as many operations of his own
construction as he wishes. Further, he may employ
the full capabilities of Simscript II as well as
Thus, the

user has a substantial amount of power for de-

the ECSS extensions to that language.
veloping job behavior descriptions. Section 7
contains a further discussion of the capabilities

in this area.

119

The fifth part of the input data consists of
regular Simscript programs which the user has
written. The only action taken on this input is
to translate the ECSS extensions inbo standard
Simscript before passing everything on to the
compiler. The routines in this section can have
a variety of purposes. The user might be pro-
viding capabilities which are not offered by ECSS.
Although one of the goals of the project was to
provide many of the features which are commonly
used in this type of simulation work, there was no
attempt to provide all of the features that might
be required in developing a particular simulation
model, The user might also be modifying some of
the service routines which are provided by ECSS.
Everything that is in the object simulation model
is open for the user to modify as he might see
fit; he is not forced to use existing algorithms,
conventions, etc. This is another of the steps
taken in an attempt to give the user as much
capability as possible without at the same time

locking him into a particular structure.

As an illustration, ECSS provides the mechanisms
for handling the paging operations of some time-
sharing system simulations. However, it is next
to impossible to anticipate how the user might
like to control the paging. Therefore, the user
must write his own control program. ECSS provides
exits to the user's "monitor" at appropriate,
points. The user then need code only the tests
necessary to determine when to initiate a paging
A call
issued to the paging mechanism at the appropriate

time will handle the rest of the details.

operation, which pages to transfer, etc.

The processing of the various inputs by the trans-
lator generates several outputs. The binary
summary deck (mentioned above) is one of the by-
products of the translation. Another important
output is an initialization data deck for use
with the object simulation program. This deck
provides a degree of flexibility similar to that
provided by the summary deck. If the user wishes
to change his configuration or to adjust other

parameters which he has specified, no change is



AN

required in the object program. Only the initial-

ization data need be altered. Thus, just as it is
not necessary to retranslate all of the system
description in order to make this type of change,
it is not necessary to recompile any of the Sim-
script routines. More extensive changes woulds; of
course, necessitatbe recompilation of the affected
routines. The other outputs of the translator
consist of the translated descriptions and rou-
tines, the service routines provided by ECSS, and

the user's own programs and data.

5. DESIGN - KEY FEATURES

One of the desirable features of a simulation pack-
age, and one which unfortunately is missing from
Simscript II, is the ability to handle flow ori-
ented types of problems. There are times when it
is beneficial to be able to reflect things using
this orientation rather than having to convert
everything to an event driven orientation.¥*
Accordingly two extensions were added to Simscript

to handle this type of problem.

The first is the HOLD UNTIL statement which
essentially interrupts processing at that point
in the routine until a specified condition is
satisfied. Processing will then resume with the
succeeding statement. This capability is of par-
ticular importance in the processing (execution)
of the behavior descriptions for the simulated
jobs. Since Simscript II routines are recursive,
there is no problem with a HOLD tieing-up a routine
and preventing other uses of it. Only the specific
instance which caused the HOLD to be executed is
held.
several different places by several different

All values

Thus, a single routine may be suspended in

requests at any given point in time.
of important local variables are preserved for the
duration of the hold.

ables may, of course, change in the interinm.

The values of global vari-

A companion extension is the WHEN TRUE statement.
This delimits a range of immediately following

statements which are to be executed at such time

as an indicated condition is true. The remainder
of the routine containing the WHEN is processed

normally; its execution is not interrupted. How-
ever, as soon as the referenced condition is sat-
isfied, the indicated range of statements will be

executed.

In the case of both the HOLD and the WHEN state-
ments the user is not faced with some predeter~
mined set of conditions from which he must choose.
He is free to write his -own function, incorpor-
ating a test of any type and complexity as approp-
riate. This greatly adds to the user's capabilities,
but it can become somewhat inefficient in terms of
execution time. Accordingly, there is a particular
set of conditions which can be dealt with more
efficiently., However, conceptually there is no
distinction between the user supplied and trans-

lator provided functions.

ECSS was designed to provide the user with as great
a range of prepared capabilities as possible. On
the other hand, flexibility in using these cap-
abilities was also important. Accordingly, if a
user does not need or use a particular capability,
his model is not penalized by the fact that he
could have used that capability. Consider the

following example.

There are capabilities within ECSS for handling
CPU performance degradation due to CPU-I/O'memory
reference interference. However, if a user is
making a fairly high level analysis (e.g. the
allocation of disk storage space over the course
of a day), the necessity to make memory inter-
ference calculations at every step would severely
degrade the performance of the model. Accordingly,
capabilities which are not used are made totally
transparent to the final program. There is no
penalty for having had the opportunity to employ
these unused capabilities. However, if such an
unused capability is subsequently required in the
model, it will be necessary to retranslate a
goodly portion of the program. Flexibility is

never free, but this is a relatively small price

% In other words, one should be able to employ the GPSS type of world view.

120



to pay.

Another design feature along this same line con-
cerns the partial overriding of system default
capabilities by the user. For example, the simu-
lation model generated for & user generally has
certain default gqueue handling procedures for
each device in the simulated system. However,

the user may override these totally, providing his
own queue handling algorithms; or he wmay override
then selectively, providing his own algorithms

only for certain devices.

6. SYSTEM SPECIFICATION

Another key aspect of ECSS is the manner in which
the user can describe the system which he wishes

to simulate. The procedures are fairly powerful,
but they still permit the user a degree of flexi-
bility.

statements which the user can arrange in a con-

The description consists of a number of

venient manner in order to specify the desired

system.

The basic description statement is the SPECIFY
statement, enabling the user to identify the basic
devices to be included in his system. The trans-
lator recognizes such names as processor, channel,
memory, control unit, and device as well as any
other categories which the user might choose to
* employ. In addition, the user indicates whether
the device is to be public (can be assigned for
access or use by all users) or private (must be
assigned exclusively to a single user). There is
also the ability to assign a subclass name to the

unit or units specified (see below). For example,¥

SPECIFY 3 PRIVATE 60kb tape.drives

Tape.drives would be the user defined class name

and 60kb would be the optional subclass name.

Devices can be categorized in four ways for con-
The basic building block is

the individual device or unit.

venient reference.
Each such device

can be referenced specifically by name if the user

has provided one. The next level of aggregation is

the subclass. This consists of all those units
which were specified together and given a subclass
name (e.g. the 3 tape drives specified above). The
next higher level of aggregation is the class,
which consists of all units having the same class

name. Thus, for example,

SPECIFY 3 PRIVATE 60kb tape.drives
SPECIFY 2 PRIVATE 90kb tape.drives

would define a class called tape.drives having 5
devices in it. There would be two subclasses, one

having 3 devices in it, the other having 2 devices.

There is also a SUBCLASS statement so that addi-
tional subclasses can be created. Thus, one could
achieve the same effect as the previous example by

stating

SPECIFY 5 PRIVATE tape.drives
FORM A SUBCLASS CALLED 60kb FROM tape.drives 1-3
FORM A SUBCLASS CALLED 90kb FROM tape.drives 4-5

One could go on to add
FORM A SUBCLASS CALIED 9.track FROM tape.drives 2-4

In other words, a device can belong to only one
class but to any number of subclasses. However,
each subclass must consist of a single series of

sequential units.

The highest level of aggregation is the pool, which
consists of any combination of devices, subclasses,
This

category allows any desired grouping of devices and

and classes that the user wishes to specify.

overcomes the limitation placed upon the membership
of subclasses. Thus, in simulating job behavior on
a system, reference can be made to any of these
categories depending upon the level of specificity
desired. If a transmission is to be made to a
particular terminal, then the device name for that
If on the other hand the

intent is to create a file, then the name of a

terminal can be used.

class of disks or a pool of direct access devices

% In this and succeeding examples, the variables or names which the user provides

are shown in lower case letters

121



could be given, and the system would select a par-
ticular device from the indicatéd group. There is
a POOL statement, similar to the SUBCIASS state-~

ment, for the creation of pools.

In addition to the specification and logical
grouping of the devices forming the system to be
simulated, there are a number of modifying clauses
which may be used to provide additional infor-
mation about the various devices. These clauses
may be appended to the specification statements or
they may be used subsequently in the description,
following the name of the device, subclass, class,
or pool to which they apply. When a group name
(e.g. a pool name) is modified by a clause, the
information is applied to every device in that

group.

There are seven broad categories of clauses avail-
able. One of thess permits specification of the
rate at which a device can transmit information
and the rate at which it can execute instructions.
This latter definition can Be made in arbitrary
terms, Thus it might be said that a processor
executes 500,000 mix.a instructions per second
and 350,000 mix.b instructions per second. The
descriptions of job processing can then be stated
in terms of mix.a and mix.b instructions (or what-
ever) and hence can be developed without reference
to the system on which they are to be processed.
Thus, the performance of a variety of systems
could be simulated using the same job load without

any modification of the job descriptions.

A second type of clause indicates the other devices
to which a device or group of devices is connected.
Thus a disk could be connected to a control unit,
and the control unit could be connected fo'several
disks and a channel, etc. Another clause indi-
cates the other devices for which a éroup has
responsibility in terms of allocation and de-
allocation. Normally one would specify that the
processors have responsibility for allocating the
peripheral units, but this need not be the case.
The user can also specify the time required to
make the allocation (deallocétion) by the respon-

sible device. As with most of the clauses, such

122

parameters can be provided by means of either a
In the latter case, the
performance or requirements can be made to vary
with the state of the device or with the other

activities going on in the system.

constant or a function.

A clause is available which indicates the amount®
of execution and/or transmission time absorbed by
a device in connection with the processing of a
message transmission. Another clause indicates the
other devices whose operation is degraded by the

operation of a particular unit,

Other types of clauses are available to indicate
whether or not the operation of a device is inter-
ruptable and to indicate the capacity of a device

in terms of space, number of users, number of simul-
taneous messages, maximum transmission rate, cumu-
lative transmission rate for all simultaneous
messages, etec. Thus, a substantial amount of
information can be provided about the performance
of the various devices on the system and about the

inter-relationships among these devices.

To specify all of this information about each
device can become rather tedious, even when use is
made of pools and classes. Accordingly, there are
two additional modifiers which can be appended to
the SPECIFY statement. The first is the "TO BE THE
SAME AS name" modifier, where name is sowe device,
class, or pool which has already been specified.
This enables all of the characteristics of the
specified device or group to be set identically

to those of the referenced device or group. The
other modifier is the "TO BE THE SAME AS name
EXCEPT" phrase.

teristics of the specified device or group to be

This also defines all the charac-

1ike those of another device or group except for
the changes indicated by the clauses immediately

following.

In this way the user can indicate the configuration
of the system to be simulated and can describe the
capabilities and inter-relationships of this con-
figuratioﬁ. The input follows the Simscript II
philosophy in that it is free form with a minimum

of punctuation. There are no requirements that



characteristics be indicated in any particular
order, that information be placed in particular

sections of cards, ete.

7. LOAD DESCRIPTION

One of the key factors in any computer system
simulation is the manner in which the "jobs" or
work load for the simulated system are to be rep-
resented. It is important to give the user a
great deal of capability as well as a great deal
He must be able to

reflect adequately whatever characteristics of

of flexibility in this area.

the job load are important for his particular
system model. At the same time the specification

procedure must be easy to use.

This leads to a number of requirements. First,
there must be a number of commands or instructions
for use in specifying the characteristics and be-
havior of the work load. Second, the repertoire
must provide testing, branching, leoping, and
subroutine capabilities. These features are
quite important if one is to bring the size of
job descriptions "under control." Third, refers
ences to other locations in the job description
should be relative rather than absolute so that
changes in the description can readily be made.
Thus, an "assembler" is required for the descrip-

tion "language".

ECSS attempts to meet these requirements in sev-
eral ways. TFirst, there are thirteen special
commands designed to assist in the description of
the work load to be simulated. These commands
break down into three groups. The first group
consists of five resource allocation commands.
ALLOCATE and DEALLOCATE are concerned respectively
with the allocation (reservation, dedication) and
deallocation of devices (e.g. tape drives, prin-
GET and FREE are

concerned with the acquisition and release of

ters, etc.) to particular jobs.

space on devices (e.g. buffer space, disk space,
ete. ).
with the placement of program and data files in

The fifth command, FILE, is concerned

the simulated system. The user may specify spe-

cific devices in using these commands, or he may

use class or pool names. Ih these latber cases,
an appropriate device will be selected from the

group each time the command is executed.

The second group consists of five commands related
to the execution of job load descriptions or
sequences of commands. JOB indicates the beginning
of a distinet new job entity or item of work and
triggers the necessary internal bookkeeping and
LAST indicates the comple-
START

JOB can be used to start a job initially, or it

statistical routines.

tion of all of a job's processing steps.

can be used by an executing job to start a subjob
or subtask. It is possible to specify that par-
ticular types of jobs are to be created at speci-
fied intervals or after the occurrence of certain
STEP and START STEP are analogous to
the JOB and START JOB commands but refer to the

start of a "subroutine" of commaends or instruc-

conditions.

tions.

The third group consists of three commands more
directly concerned with the execution behavior of
SEND is used to initiate the
transmission of information or messages from one
The EXECUTE command

is used to reflect execution requirements on a

a simulated program.
point in a system to another.

device (e.g. CPU, peripheral processor, etc.). The
WAIT command is used in connection with the sus-
pension of the processing of a job's description
commands until certain conditions have been satis-
fied (e.g. all of that job's current I/O operations
have been terminated, all of that job's subjobs
have been completed, ete.).

Most of the commands have a number of options and
parameters associated with them which provide a

The actual form of the
commands follows the Simscript IT philosophy and

wide range of capability.

runs from a simple
ALLOCATE 231%.disk AS output.file
to a more complex

SEND MESSAGE OF LENGTH 58 FROM wain.cpu
TO user.terminal VIA terminal.path AS
A RESPONSE TO terminal.job WITH PRIORITY 3

123-



WATTING HERE for COMPLETION, WAITING AT
checkpoint FOR RESPONSE

In addition there is a facility for the user to
augment these commands with additional ones of his
own choosing which would be of greater assistance
in a parbicular application. This capability was
provided since it would be impossible to foresee
all of the possible commands which a user might

at some time wish to employ.

The requirement for branching, looping, and other
capabilities could well have been met by intro-
ducing still further commands into the description
language. However, these features are already
provided in Simscript IT, so that such an effort
would have been redundant. Accordingly, the whole
of the Simscript II language is permitted to be
used in the load descriptions, providing all of
the required capebilities (and then some). Be-
tween the ECSS commands, the user's own commands,
the general purpose capabilities of Simscript II,
and the ECSS extensions to Simscript II, the user
has quite an array of tools for describing the

work loads to be simulated.

The requirement for a description "assembler" is
met through the use of the Simscript IT compiler.
The description commands are translated into
Simscript II, and then the entire description is
Although this

adds the extra step of translation, it eliminates

processed by the regular compiler.

the need to develop a description "assembler"
which would also handle all of the Simscript IT
statements. Such a trade-off has obvious advan-

tages for a pilot developmental project.

8. AN ILLUSTRATIVE APPLICATION

In order to provide the reader with an indication
of how ECSS can be used to model a compuber sys-
tem, consider the following small information
retrieval system as an example. This system con-
sists of a single CPU, three random access disks,
and 20 inquiry terminals, Users arrive at these
terminals from time to time and query the system.

The system makes reference to the data files on

124

disk, obtains information about the user's identity,
etc., The system then responds with the desired
data and updates a master file with information
about the requestor, the type of information

The model

has deliberately been simplified for illustrative

necessary to satisfy his request, etec.
purposes. Thus, its readily apparent limitations
should not be taken as indicative of ECSS limi-

tations.

Figure 2 shows the ECSS code necessary to describe
the hardware system. The first three sections spe-
cify the hardware in the configuration. For sim~
plicity no caonsideration has been given to I/O
channels, disk control units, etec. However, these
could easily be added in a manner analogous to that
shown. For the same reason a fixed 75 milliseconds
per disk I/O operation is used to reflect seek
times, rotational delays, etc. Since all users
employ the same retrieval program, no explicit men-
tion is made of memory capacity. Rather, a con-
straint of 10 users is employed. Again, memory
capacity, sizes of jobs, etc. could have been taken
into consideration. However, as this example shows,
considerations not required for a particular model

can readily be ignored.

One statement is used to set up a subclass of the
disks called MASTER.DISK.

of a single disk which contains the master file for

This subclass consists

collecting data on the information necessary to
respond to the terminal requests. The last lines
in the system specification section merely indicate
the communication paths in the system which may be

used.

Figure 3 shows the job descriptiouns for the infor-
mation retrieval application. There are two job
types. The first, USER.QUERY, runs on a terminal
and reflects the behavior of the user or requestor
at a terminal. This illustrates the power of the
ECSS job descriptions which can be used to describe
Jobs need
The

second job type, QUERY, runs on the CPU and ac-

the behavior of any part of the system.

not be restricted to execution on CPU's,

tually processes the requests for information.



SYSTEM DESCRIPTION
SPECIFY 1 PUBLIC PROCESSOR, EXECUTES 100 MIX.A.INSTRUCTIONS PER MILLISECOND,
EXECUTES 150000 MIX.B.INSTRUCTIONS PER SECOND,
CONNECTS TO TERMINALS, DISKS,
HAS CAPACITY OF 10 EXECUTION USERS,
IS INTERRUPTABLE WITH THE OPERATION CONTINUING
SPECIFY 20 PUBLIC TERMINATS, EACH CONNECTS TO PROCESSOR,
HAS CAPACITY OF 1 EXECUTION USER,
HAS CAPACITY OF 1 TRANSMISSION USER,
TRANSMITS 4 WORDS PER SECOND
SPECIFY 3 PUBLIC DISKS, EACH TRANSMITS 100000 WORDS PER SECOND,
CONNECTS TO PROCESSOR,
HAS CAPACITY OF 1 TRANSMISSION USER,
ABSORBS 75 MILLISECONDS PER MESSAGE
FORM A SUBCLASS CALLED MASTER.DISK FROM DISKS 1 - 1
PATH REQUEST.PATH IS TERMINALS, FROCESSOR
PATH ANSWER.PATH TS PROCESSOR, TERMINALS
PATH PATH.TO.DISK IS PROCESSOR, DISKS
PATH PATH.FROM.DISK IS DISKS, PROCESSOR

END

Figure 2 Configuration Specification for the Information Retireval System

125




LOAD DESCRIPTION
JOB USER.QUERY
LET REPETITIONS = UNIFORM.F(2,6,1)

START JOB QUERY (THIS.UNIT, JOB, REPETITIONS) CALLED QUERY.JOB ON
PROCESSOR

FOR I = 1 TO REPETITIONS DO

SEND MESSAGE OF LENGTH 14 TO PROCESSOR VIA REQUEST.PATH WITH
RESPONSE FROM QUERY.JOB WITH PRIORITY 6 WAITING HERE FOR RESPONSE

WAIT 10 SECONDS «
LOOP
LAST
JOB QUERY GIVEN UNIT, JOB, REPETITIONS
HOLD UNTIL INPUT.ARRIVES EQ O, THEN CONTINUE
EXECUTE 2500 MIX.A.INSTRUCTIONS
FOR I = 1 TO REPETITIONS - 1 DO
SEND MESSAGE OF LENGTH NORMAL.F(15,3,1) TO UNIT VIA ANSWER.PATH
AS A RESPONSE TO JOB WITH RESPONSE FROM JOB WITH FRIORITY 2
WAITING AT REPLY FOR RESPONSE
EXECUTE 1200 MIX,B.INSTRUCTIONS

RECEIVE MESSAGE OF LENGTH 30 FROM DISKS VIA PATH.FROM.DISK WAITING
HERE FOR COMPLETTON

EXECUTE 3450 MIX.B.INSTRUCTIONS

'REPLY !

EXECUTE NORMAT.F(1500,125,1) MIX.A.INSTRUCTIONS
LOOP

SEND MESSAGE OF LENGTH 50 TO UNIT VIA ANSWER,PATH AS A RESPONSE TO JOB
WITH PRIORITY 2

SEND MESSAGE OF LENGTH 75 TO MASTER.DISK VIA PATH,TO.DISK WAITING HERE
FOR COMPLETION

TAST

INITIALLY START USER.QUERY ON EACH TERMINALS AT EXPONENTTAL.F(60,1) SECONDS
AND EVERY EXPONENTTAL.F(300,1) SECONDS AFTER ARRIVAL

Figure 3 Job Descriptions for the Information Retrieval Systen

126



The description of the USER.QUERY job is fairly
straightforward. The first step calculates the num-
ber of interactions that will take place between
the user and the information retrieval program on
‘the CPU.

distribution between 2 and 6.

This number is generated from a uniform
The next step
starts a subjob, namely the query program on the
Cru.

system.

The user then begins interacting with the

He makes a request, waits for a reply
from the system, and then digests that reply. If
the appropriate number of interactions have not
been completed, the "respond and wait" behavior is
repeated; otherwise the user is finished and

leaves the terminal.

The description of the QUERY job to run on the CPU
is somewhat more complicated. The initiating Job
(i.e. the terminal job) passes three parameters
(UNIT, JOB, REPETITIONS). These indicate respec-
tively the identity of the terminal that is to be
serviced, the identity of the job on that terminal
vhich is to be serviced (since potentially two or

more users could share a terminal), and the number

of interactions that will be required. The HOLD
statement indicates that the job is to wait until
input is received from the terminal. Then 2500

Mix A instructions are to be executed for the pur-
pose of initializing the program and preparing a

query to the terminal user.

The next section of the description indicates the
repetitive behavior for each interaction. The pro-
gram sends a reply to the terminal, pérforms some
further processing, requests some information from
one of the disk files, and then waits for comple-
tion of the disk I/O operation. Upon receipt of
the information from the disk, some additional
processing is done; then the program must wait for
a reply from the terminal user. Upon receipt of
this reply some additional processing is done, and
then the program loops back to respond to the user
again, etc. Upon completion of the appropriate
number of iterations, the program provides the re-
quested information to the user, updates the disk
file with data about the information which was
necessary to satisfy the user's request, and ter-

minates.

Although in most cases the lengths of I/O messages
are indicated by constants and the amounts of pro-
cessing are indicated by constants, these data can
also be supplied by functions. Thus, the query
back to the terminal is specified as a normal dis-
tribution with a mean of 15 words and a standard
Likewise, at the bottom of the

interaction loop the number of Mix A instructions

deviation of 3.

is specified as a normal distribution with a mean
of 1500 and a standard deviation of 125,

The QUERY jobs on the CPU are all initiated by
USER.QUERY jobs on the terminals. The last state-
ment in Figure 3 provides for the generatioun of
the terminal jobs. An exponential distribution
with a mean of 60 seconds is used to determine the
time at which the first job will be started on each
terminal. Thus, each terminal will initially be-
come active at a different time. Further, each

time a job arrives at a terminal, another exponen-
tial distribution will be used to determine when the
next job of that type will arrive at that terminal.
Thus, in this case, the arrival of new users will
not be influenced by the number of users waiting

for a terminal nor by the time taken to service any

given user.

9. CURRENT STATUS AND PLANS

The specification and design of the ECSS package
(Language and service routines) is essentially com-
plete; the implementation of the translator is
currently underway. The service modules required
at execution time to perform the various functions
described above can consist of up to 2000 lines of
Simscript IT code. The actual size of each of the
various routines is, of course, very much a func-
tion of the requirements of the user's simulation.
As was discussed above, only the code for those
facilities actually needed for a particular simu-
lation is included in the service routines for that

simulation.

Also, with regard to computing time resources, the
use of a fairly general package for simulating

computer systems will result in some disadvantage

127



with respect to object time execution efficiency.
However, the resource requirements of ECSS itself
are of secondary importance to the project. The
goal of the project is to reduce the manpower and
time requirements necessary to get a computer sys-
tem simulation up and rumning. Accordingly, it
is measurements in these areas that will indicate
Once ECSS is

operational, two fair size simulation efforts will

the success or failure of ECSS.
be undertaken with it. Unfortunately, the re-
sources availaeble will not permit the duplication
of the construction of these simulation models in
other languages by personnel having equivalent
Thus, the test will not be as

conclusive as might be desired from a statistical

experience, ete,
point of view. However, similar simulations have
been developed previously, so the planned simu-
lations should still provide an interesting com-~
parison of the value of the ECSS approach in

practice.

The present version of ECSS is a pilot effort
designed to test the validity of an approach to
the computer system simulation problem. Like any
prototype it has a number of weaknesses. Probably
the most serious is the overemphasis on hardware
capabilities. That is, there are commands and
facilities in ECSS to assist in modeling many
types of hardware-related actions (e.g. selecting
a path and transmitbting a message to a device
while taking into comsideration device capabili~-
Although

TCSS is not without software related capabilities,

ties and constraints on that path).

the user is generally not provided with the con-
venient means of use as he is with hardware re-
lated functions.

sary - for the user to do some programming in

For the most part it is neces-

order to reflect software features of the simu~

lated system.

Given the organization of ECSS, it is not diffi-
cult to provide additional features or capabili-
ties. The problem lies in determining what types
of software system capabilities and options to

include. For example, one might wish to provide

3 built-in paging capability, so that time-sharing

systems using a page-turﬁing strategy could easily
be modeled.
paging strategies that might be employed is a non-

However, anticipating the variety of |

trivial task. Further researéh in this area is
necessary, so that more of the programming tasks
can be picked up by systems like ECSS rather than

having to be handled by the builder of a simulation

model.,

10. SUMMARY

The building of a simulation model for a computer
system or network is often a very time-consuming
and expensive task., Yet, such an analysis tool is
frequently needed in the design, installation, and
operational phases of these complex systews.
Accordingly, some extensions to an existing simu-
laebion language have been developed to assist in
carrying out some of the activities that are common

to many compuber system simulations.

The resulting package, ECSS, is built around a
translator which converts the special features and
commands into Simscript II for compilation into
object code. Like any general backage designed to
serve more than one purpose,‘there will be execution
inefficiencies stemming from thé use of ECSS.
However, by removing much of the detail work from
‘the haends of the programmer, he can concentrate on
the essential logic of the simulation. By thus
reducing the time and resources required to develop
and debug simulation models, it is hoped that a
greater percentage of the complex computer systems
o be designed would be analyzed prior to their
construction. Not only would some costly failures

be avoided, but some improved systems might result.

L

i




REFERENCES

1. Nielsen, N.R., "Computer Simulation of Computer System Performance,"
Proceedings of the 22nd National Conference, ACM, Thompson Book Company,
Washington, D.C., August 1967, pp. 581-590.

2. "SCERT: Systems and Computers Evaluation and Review Technique,” Comress,

1967,

3. "S3: System and Software Simulator," Defense Document Clearinghouse,
AD 679269, September 19%67.

4, Dahl, O., Myhrhaug, B., and Nygaard, K., "SIMULA 67," Norwegian Computing
Center, Oslo, 1968.

5. Kiviat, P.J., Villanueva, R., and Markowitz, H.M., The SIMSCRIPT TI
Programming Language, Prentice-Hall, Englewood Cliffs, N.J., 19%59.

ABOUT THE AUTHOR

Norman Nielsen has been involved in the simulation of several large scale com-
puting systems and has thus experienced some of the problems associated with
the simulation of these types of systems. The lessons learned in the course
of these investigations are reflected in the design of ECSS. Nielsen is
currently serving as a consultant to the Computer Systems Analysis section of
the RAND Corporation's Computer Sciences Department. At Stanford he holds a
Joint appointment as Assistant Professor of Operations and Systems Analysis

in the Stanford Graduate School of Business and as Deputy Director of the
Stanford Computation Center.

129



