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_Abstract S

Tha{basic objectivés 6f thia papér”éze twoifold. 'TherfirSt objective

1 to 1llustrate the use of three multivariable optimi Jation techniques

as they are applied in an interacti se fashion to the'sptimization of

‘ simulation experimanta. The second and»mote impnrtant‘objective'is to

'prasen? the rationale behind the termination criterion for simulation

@zperin@ntm which 1& applicsble to v;rtuaily any uultivariable optimiza-i
tion procedure. The ﬁermination criterion is statisticzlly based and
includes cost factors prevalent for running the simulation ag well &s
the potential savings from continued application of the search. The
optimization techniques to be considered in the paper are »

1. The seqtantial one factoxr-at-a-time technique as proposéd

| by Priedman and Savage,

2. The pattein search mathod of Hooke and Jeeves, and

3. The succéasivé q&adratic approxinmation téchnique of Schmidt

>and Taylor. h

It ia shown that the termination criteria based upon economic and

statistical conslderations is most effective for simulation experiments.




Iatroduction

Digital simulation techniques for discrete
systems have progressed rapidly over the past
decade. The present development in digital
simulation seems to he following two basic
avenues. The first area of development is in
special purpose computer languages for discrete
systems simulation. The second area of develep-
ment is in the statistical methodology related
to the design of simulation experiments and
analysis of results. In this paper we shall
investigate a third possible avernus of develop-
ment for discrete systems simulation, namely
the use of multivariate optimizatioﬁ techniques
for simulation experiments.

Often in performiang the simuiation analysis
of a given system the objective is simply to
obtain a measure of system effectiveness for
some prescribed values of the decision variables.
However, more frequently, the objeétive is to
obtain the specific values of decision variablee
which will optumize the system effectiveness
function. When this is in fact the objective,
the problem can be addressed by a body of
"multivariable optimization techniques". In-~
deed these techniques are not new. They have
been in existence for many years and have been
applied widely to problems of a deterministic
nature {4], [18], [19]. |

The basic objectlves of this paper are two
fold: The first objective iz to illustrate the
application of three of ghese techniques to the

optimization of simulation models. The second
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and more important objective is to present the
rationale behind a termination criterion for
s:mulation experiments which is applicable to
virtually any multivariable optimization proce-
dure., The termination criterion £{s statistically
based and includes the cost %actore prevalent in
conducting the simulation analﬁsis as well as
potential saving from continued application of '
the search. The termination criterion will be
shown to be effective for these stochastic
pioblems.

The optimization techniques are employed in
an intefactive manner with the simulation model.
The opergtion is such that particular values of
the decision variables are specified by the
optimization program to the simulétion program,
A measure gf system effectiveness is determined
through simulation which is returned to the
optimization program., Based upon that value of
the effectiveness function new values of the
decision variables are determined and the process
is repeated. At some point in this process a
termination criterion will be met and the
procedure will terminate., This facet will be
discussed later.

The optimization techniques to be consid-
ered in this paper are:

1. The sequential one-factor-at-a-time

technique as proposed by Friedman and
Savage (7).
2. The pattern search method of Hooke and

Jeeves (10).

3. Successive quadratic approximations of




Schmidt aand Taylor {16).

" Each of these techniques shall be discussed in
detail in a later sectinn of this paper. The
sezarch routines will>be discussed in terme'of‘

a ninimization problem. The model to which the.
techniques were applied is a stochastic inventory
system which shall also be discussed ih some

detaii in later sections.

Multivariate Search Procedures

All multiver iable search procedures have
essentially two bssic objectives; :(i) to obtain .
an improved'veiue of the effectiteneas function;
(2),to’provide informetion useful fo:zlocating
fetﬁfebexpetiﬁents where desirable’valuea are‘

likely to be found;'vThe logical organization of

& search procednre isbsuch as to accomplish the

aforementioned objectives through a three bhase
operetion. The first phase sets the stage by
‘ﬁaking the iritial observation(s) of the effect-
ivenees function. From this initial phase.can

be determined the general direction of the search.
The second phese of the search is characterized

by rapid movement towsrd vhe optimal. During

this phase the effectiveness function is'e;eminedi

through seiective manipulation of the deeiaion
variables. The final phase cf the search is
perhaps the mout important. This is knewn Es
the termination phase and the termination
'‘cxitarion plays a critical part in the overall
procedure.

In general, the first phase of any search

procedure is designed to "gat things underway".

For moet‘precticai examples this phaae:consiste :

of the expetimentet "arbitrarily" establishing

_ the stating point. Many experimentallstatistic31>
designs'have been created to aid in this proeese,' “

- . However, foruthe procedures discussed herein the

stating point is chosen arbitrarily and to some

;'extent the tesulte to be derived from any of -

these procedures are dependent upon a "1ucky

chqice'£0t the beginning point.‘ 1f the*expeti-

menter fortunately chooses initial valdes of

deciaiJn variables which-are cloee to the optimum‘

levele, money will be -saved in achieving a ’

- 'relative optimum. “If, on the other hand, luck

is not with the ekperimenter-and he sélects
initial levels which are far from the optimal

values, then it 1ike1y will cost nim more:te

;achieve a relative op imum.».

Once the initial experiment has been accom-.

piished the infqrmatibn gained from that may be -

used to assist future experiments. Tﬁe proce-
dure of the particular search technique is then :
applied in an algorithmic fashiom. The search
procedures discussed herein all operate . on the

fﬁnctioqbin a syatematic fashion, varying the .

vdocision variables in some prescxibed manner.

This phase of the overall operation is likely to “:ffA‘ L

consume the bulk of the activity of the search,f”:ﬁ:

As a result ofﬁthisﬁphase; tha‘effectivenean |
functian should be significan tly improved.
Later sections of this paper will deacribe in
detail this phase of theuqeeration. |

The fidai phage of the;aeqtch proeedﬁteiis

called the termination phase and specifies the




conditicns under which the search procedure will
t.erminate. This phase is of greet.ihtereat snd
is considered at length iz this paper.

There are several chéiacteristics of gearch
procedures which will be mentioned here for
puiposea of description, They will not be
exploied in depth but should be taken into
qccount"when conéideringrwhat teébnique to apply.
These characteristics are listed below.

1. Total number of simulation replicationé

required to obtain an optimum.

2. Ability to mqvé‘on the response surface

i&‘several directions,

3. Abiiity fo>vafy step length.

4. Ability to deal successfully with a

large number of decision variables.

5. Termination criterion.

The Suquential One-Factor-at~a-Time Method

Sectioning or the one-at-a-time method
proposed by Friedman and Savasge (7) is one of
the simplest optimum seeking techniques avail-

able and may be applied to functions of any

number of decision variables. Suppose

y(xl,xz,...,xn) is a cost function to be mini-
mized, where % i=1,2,...,0n, are the decision
variables. To apply the method of sectioning,
the analyst .Lixes the values of the last n-~1
variableg and varies the first until a mininum,
or at least rear minimum, is found. Let xi be
the minimizing value of Xy with associated coat
y(xi,xz....;xn). The value of 8y ig now fixed

ac xg, and x, ie varied until {ts optimal value
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is determined, x;. This procedure is repeated
for all n decision var;ables. The entire process
is repeated until values of the decigion variables
are found such that further change in any one of
the variables will result in an increase in the
value of the objective function.

The sectioning search may be effécted,in.
several ways. However, the initial step is
always the same. All but ;ne of the decision
variables are given fixed values. Let these
variables be KoyseoeoX o The initial value of
the remaining variable, Xys must now be set and

the measurz of effectiveness, g(xl,...,xn),

evaluated. The initial search over x, usually

involves changing Xy in rather large increwents.

Let Gij be the jth increment chosen for the ith

decision variable and let m be the number of

increments for each variable, j=1,2,....m.
Choosing 611 relatively large allows the search
to rapidly locate the general region of the
optimum value of Ay xI, given the fixed values
of the remaining variables. Let us arbitrarily
assume that in searching over any decision

variable, we first increase the value of the

variable and if this does not prove fruitful we

. then decrease 1its value. Therefore, the first

step in the search moves us to the point
(x1+611,xz,...,xn). If y(x1+511,x2,...,xn) <
y(xl,...,xn), we must continue to increase Xy
next examining the measure of effectiveness at
(xl+2611.x2,....un). This procedure is continued
until a point (xlfﬁﬁll,x2,...,xn) is found such

that y(xl'H‘ﬁll |x2 pe . ’xﬂ) > y(x1+(!4—1)611 ,xz, .«




*

a,xn). If the cbjective function is convex, Xy

lies between x1+(M--2)611 and x1+M611.
If y(x1+611,x2,...,xn) > y(xi,...,xﬂ), a
further increase in xy would not be wairanted if
the objective function is convex. Therefore,
the next point evaluated would be (xl-Gll,xz,..
.,xn). 1f y(xl-éll,xz....,xn) > y(xl.ﬁ..,xn),
1t li’ if

y(xl-sil,xz,...,xn) < y(xl,...,xn), %y is

% *
then % is such that x1«§11 < xy < x

further reduced unﬁil a point (xl-nﬁll,xz,..
.,xn) is found such that y(xl-Méll,xz,...,xn) >
y(xl-(Mrl)Gll,xz.....xn), in which case x: is
such that xl-Méll < 5; < xlw(M—Z)Gll.

Ignoring boundary constraints, the result
of the initial search over X3 is an interval of

width 261 the center of which, xi, is the best

1*
estimate of x; thus far. At this point the
analyst may choose to continue the search over
X; s keeping the remaining decision variables

fixed at their previously established values.
To accomplish this, the analyst chooses a nev
increment for Xy 612, which is less than the
initiel increment. The starting point for this

search is the center point of the interval about
x; which was obtaired in the initial search, xi;
The procedure described for the initial search

of Xy

is derived.

is then repeated until 2 new value of xg
The entire procese is repeated

over and over agsin until xi is bracketed by a
sufficiently small interval. When the search
over x; terminates, the search over x, begins,

fixing Xy at the last value of xi derived and

holdiag Xoser sk, at their initial values. The
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procedure for the search over x, 18 {identiceal to

that for x,. After all n varisbles have been

1

searched over once, the searchk returns to % and

gtarts the whole process over again. The search
terminates when for every i
o o o o
y(xl,xz,...,xftéim,....xn) >
o o o o
y(xl,xz,...,xi,...,xn) 1)

When the initial search over X terminates,
the analyst mey ciioose to search over the rewain-
!ng variables before refining the search over x;.
if this 18 the case, Xy is fixed at the initial
value of xi, and the search over X, is conducted
in increments 621. This process is repeated for
all n variables. Here the search returns to X,,
again searching in increments 611. The search
increment for any variable is not reduced until

a point (xg,xg,...,xg) is found such that for

every 1
o o 0
y(xl’xg"“'xftsil""’xn) >

( o _0 o o)
A S R

(2)

When this conditfon ig achieved, the increments
on all variables are reduced to 612, i=1,2,..
.,n, and the search over all decision variables
is repeated until the termination criterion

given 1is satisfiled.

The Pattern Search Method

The philosophy underlying the pattern
search techniqite ig based upon the hopeful

conjecture that any adjustments of the decision




variables which have improved the effectiveness
function during early experiments will be worth

trying again. The technique beglns from the

starting point by moving in small steps. The
steps grow with repeated success. Failure at

any step length indicates that shorter steps are
in vrder. If a change in direction is required,
the technique will begin over again with a new
pattern. The method is a ridge following tech-
nique and a pattern of moves can succeed only
if it lies along a straight ridge. In the area
of the optimal the steps become very small to
avoid oveilooking any promising direction. As
before y{(x) is the value of the objective func~
tion evaluated at the point x, previously
defined as (xl,xz,...,xn). The technique seeks
an optimal in a series of cycles. One cycle
differs from another basically in the step
.length employed for the deciaion variables.

In visualizing what is meant by a "pattern",
it is helpful to think of an arrow, its base at
one end and its head at the other. A cycle
begins at a base point 21. At the beginning of
a given cycle a step width 51 1s determined for
each decision variable. Let gi be the vector
whose ith component isg 61, the rest being zero.
After evaluating y(gi}, y(hifgi) is evaluated.
1f the new point, pi + 815 18 better than the
base point, this point is called the temporary
head t,,, where the first subscript indicates
the pattern number under construction and the
second subscript indicates the variable number

most recently perturbed. 1If b, 4+ 6, is not as

1
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good as b,, y{b;=§;) 1s evaluated. If this
point is better than the base point it is
denoted as :the temporary head; otherwise 91 is

designated as the temporary head. This process

is repeated for each of the dectsicu variadbles
following the rule that a jth temporary head
(Eij) is obtained from the preceding one,

Ed,j-l’ as follows:

R S (A KN AR AR

§.)

i < y’;i’j_l)

-8, 1f y(t

-1 73 1,1-1 ~

Eija

t if y( ) <

& ,3-1 £1,3-1

min[y(_t,_,.,j_l +_6_j), "(—‘1,3-1 - _é_j)] &)}
Equation 3 covers all variables J@ <3< n) 1if

the convention is adopted that

£ig b -

When all decision variables have been perturbed,
the last temporary head poimt, Ein is designated

as the second base point 9_2, {i.e,,

LT

The original base point in the cycle Ei and the
newly determined base point, 92, establish the
first pattern which is the arrow joining 31 to
by-
At this poi-+ in the procedure an acceler-
ation step is initiated to establiash the next
temporary heading. Under the philosophy that

if a similar exploration 1s conducted from 32




the results are likely to be the same, the loeal
perturbations are ignored and the search is

extended to a new temporary head t,  for the

0
second pattern based at b,+ The initial tempo-

rary head is given by

Ly0 ¥ by + 2(by-b))

= by, +b, - b

= 2!’.2 - P‘l . o Y

In other words, the arrow (representing the
direction of the pattern) is extended from 21 to

b.,, lmmediately doubling its length. 1In line

._2’
with terminology previously used, the double
subscript on the temporary head o indicates
the initiation of the second pattern with no
local explorations yet performed. A local
exploration is nuw carried out about 520 to
correct the tenative second pattern, if neces-
sary. The logical equations governing estab-
lishment of new temporary head 521’522""’52n
will be similar to Equation 3, the only differ-
ence being that the first subscript will be 2
instead of 1, 1f, after all variables have
been perturbed, the last temporary head £2n is
better than b, it is designated as the thixd
base point 23.

As before, a new temporary head 530 is

established by extrapolating from 22 through

23, i.e.,

t

230 " 2p

3 " 92 . (5)

Repeated success in a given direction causes

the paitérn to grow and as long as this proce-
dure iwproves the objective function it is
continued,

If, however, the attempt to establish a
new temporary head is unsuccessful the pattern
is destroyed and perturbation of the independent
variables is begun at the current § values about
the last successful base. If these perturbations
are successful the pattern will again begin to
grow and accelerate. If, on the other hand,
perturbations about the last successful base are
unsuccessful then the cycle 18 complete. A new

" cycle is begun by reducing the step size
(elements of éi)’ and initiating perturbations
about the base with the new step size. The
termination criterion for the pattern search is
normally couched in terms of step size used for
perturbations. When the minimum step size is
reached the technique is terminated.

Figure 1 i1llustrates the operation of the
pattern search technique for a two variatle case.
In this example the search begins by proceeding
in the positive direction for both decision
variables. As the search proceeds successfully
during cycle one the pattern continues to grow.
At temporary heading 540 the search falters and
is unable to make further improvements At the
existing svep width. At this point the step
width is decreased and the second cycle Degins.
Note that during the second cycle (indicated by
primes) the direction of the search completely
changes. At point t!. the search is unable to

=50
find further improvements. In that the step
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Search
terminates

v
at t50

FIGURE 1: Operation of Pattern Search
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width has reached its minimum value the proce-
dure terminates. An excellent discussion of
this technique can be found in Wilde and

Beightler {19).

Sucecesslve Quadratic Approximacion Method

The search by aﬁccessive quadratic approx-
imation 1s based upon the assumption that the
cbjective function can be roughly approximated
by a quadratic equation. The reliability of
the approximation increases as the rqgion of
the optimal to which the approximation applies
is reduced. Let y(xl,xz,...,x“) be the objec-
tive function and (xl,xz,...,xn) the decision

variables. The approximating function,

~

y(xl,xz,...,xn), can be expressed by

- n
y(xl,xz,...,xn) = bo + I bixi +
i=1
2 2
1£1 LWL (6)

Let m be the nurber of coefficients in the

approximating expression. Therefore

a=2n+1.,

The approximating function given in Equstion 6
may be augmented by the addition of terms such
as x

to improve the approximation. However,

1*4
" the authors have found Equation 6 satisfactory
in most cases. The constants, bi, vhich specify
;(xl,xz,...,xn) are developed through the method
of least squares. Therefore, y(xl,xz,....xn)

must be evaluated at k > m points (“13"23"'
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‘further consideration.

. xnj)’ j=1,2,...,k.

paper y(xl,xz;...,xn) is evaluated through

In the context of this

simulation although an appropriate mathematical
model could be used for this purpose if it were
available.

Having fit the approximating functiom tc k
points in the solution space, ;(xl,xz....pxn) is
optimized through the classical methods of

calculus. That is

~

y_ . -
) by k2 0 (N
and
* a ~b,/2b 3
X3 ® 7047040 (®)

The point (xI,x;,...,x:) represents the imitilal
estimate of the optimum for y{xl,xz,...,xn) and
is the next point at which y(xl,xz,...,xn) is
evaluated. Once y(xl’XZ""’xn) has been
evaluated at (xi,xz....,x:), the point

(x ,xzj,...,xnj) for whech y(xl,xz,...,xn)_ia

13
least optimal, j=1,2,...,k, is dropped from

lLet the least optimal
point be denoted by (xi,xé,...,xé). Therefore
the number of points in the analysis le still k,
but (xi,xi,....xé) is replaced by (x:,x;....,x:).
Again applying the method of least squares,
;(xl,xz,...,xn) 1: fit to the new set of k
points and the entire procedure is repeated.

As the search progresses the region of
inrvestigation of the solution space will gener-
ally contréct about the optimal point, although
this general contraction may be accompanied by

periodic expansions. This variation ia




1,000 s
o
900 L.
y = 667.964 - 1.936x + .069x°
x' = 81
x* = 13
800 -
760
1,000L.
900} /
y = 1350,010 - 26.520x + .283x7
o x' =13
-
800} x® = 46
@
700
900}
y = 703.576 - 3.398x + .083x
x' = 72
x* = 20
80Gi.
70 I o | A I} 5 5.
20 40 60 80 100
X
FIGURE 2: Application of Successive Quadratic Approximation
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illustrated in Figure 2 where y is a funciion

of one variable, x, and the objective uvf the
gearch is minimization of y. Three successive
iterations of the search are shown im which the
region of the ssarch varies from 41 < x < 81 to'
13 < x < 72 to 41 < x < 72,

The analyst may adopt a termination
criterion of his own choice in using the search
by succeacive quadratic approrimation. ¥or
example, termination may be effected by specify-
ing & fixed pumber of iteratioms. Another
alternative is to terminate the search whenever
the region of investigation is reduced to a
sufficiently small neighborhood. Howerver,
these criteria are most effective vhen
y(xi,xz,...,xn) can be expresged in mothematicel

form.

Termination of ths Ssarch

When the system model to be optimized is a

mathematical model, the gearch procedure usually
terminates either after a fixed number of
iterations or wien the step size in the explor-
atory segment of the search has been reduced to
a predefined minimum, although other termina~
tion criteria may also be used. The purpose of
the application of a search procedure is to
identify a point at or near the optimum for the
mathematical model. To insure this, the ier-
‘mination criteria is usually defined in such &
manner that the search continues well beyond
the identificstion of an adequate approximation

to the true optimum, Thus, there 1s normally

waested computer time resulting from excessive
iteratfions. However, the cost of these extra
iterationg may not be axpenzive, since many
mathematical rodels can be evaluated repidly on
a digital cemputer.

Whén the system to be optimized i3 modeled
through simulation, the cost of evaluation of
the model can be expensive. Thus excessive
iteration of the séatch procedure may result in
a situvation wﬁere nore is apent identifying the
optimum or near optimum than was saved by find-
ing the optimum. _The cost of simulation arises
from two‘sources. Let (xl,xz,,..,xn) be a

vector of decision varisbles representing a

point at which the system ig to be evaluated in '

the course of the search and let y(xl,tz,.s.,xn)

be tha corresponding expected cost of operation
of the system. - Since y(xl.xz,..,,xn) is to bte
evaluated through aimulation,.the value of
y(xl,xz,...,x“) can only be estimated. Let ;
be the estimate oI y(xl,xz,...,xn) obtained byv

one replication of the simulation. Then
y = y(xl,xz,...,xn) + & (9}

where ¢ is @ random variable representing the
error due to simulation with mean zero and
variance az. One repiicate of:the simulation
at (xl.xz,...,xn) alone may be exﬁeceive. In
addition, depending upon the value of 02, one
replicate may provide a poor éstimate of
y(xl.xz,.,.,xn). To improve the estimate of

y(xl,xz,..,,xn), we may repiicate the simuiation

~ -~ -~
N timeas at (XI‘KZ""'xn)’ Let ¥q4¥p0eesVy be




the simulated values of the cost of operation of

the system for replications 1,2,...,N. Then

V=% Iy, | (10)
ot

has mean y(xl,xz,...,xn) and variance 5

Let Cr be the cost of one replicate of the
gsimulation, k the numbér of iterations of the
search uatil termination, and ry the number of
replicates at the ith point evaluated in the
search., Then the total cost of executing the
search is:

k

Cost of Search = Ct Irx
{=}

4 (11)
Let }i be the eatimsted cost of the system at

the first point evaluated in the gearch and ;;
the minimum estimated cost found in the course

of the gearch. Then the savings in system cost

achieved by the search is ;5 - ;;, and an attempt

should be made to design the search such that

v, -y >C

o S (12)

of cburse, there is 1o guarantee, prior to
execution of the saarch, tha; the expression in
Equation 12 will be satisfied, For example, if
the starting point for the search is close to
the optimum, large savings as a result of the
search may not be possible. Therefore the
termination criterion should be designed such

that a condition of this type will be detected

quickly and the search terminated.
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Let ;&,;é,...,;g be the costs of opevation
of the system as estimated through rl,rz,.°,.rk
replications of the simulation for the first k

points evaluated in the coursc of the simulation.

Let
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and define 22'33""‘2p’ P X k as a subset of

;l,...,;k such that

The definition for the z;s given svove hoids
for all optimization procedures whick have a
single point in solution at any time. In
optimization procgdurea wiere more than one
point is8 in solution at a given time, as in the
sequential quadratic approximation method, 2
elightly differeht definition is necessary. If
m 1s the number of points in solution at a given
time, then define Sivas the set of m pointg i9
solution at the ith iteration. The set S1 will

consiast of the first m points that are evaluated.

Algso define

where £ 1is the smallest index i for which

vy < max [yly e s, ;1




and S, ie tﬁ; set of m points obtained from 53—1

]
by replacing the worst point in Sj_l by zj.
To illustrate consider the sequence of
values of ;; shown below for the first 15
is the
3

value of the objective function, as estimated

iterations of 2 search. As shown, z
through eimulation, at the point in the search
at which the jth improvement in the estimated

value of the objective function was observed.

Simulated

Tteration 3 z
i Cost J
£l
1 1000 1 1000
2 1268
3 1342
4 987 2 987
5 1014
f 824 3 824
7 915
8 927
9 887
10 831
11 897 4 807
12 801 5 801
13 835
14 783 6 763
i5 771

At the jth improvement the loss resulting
from the search up to that point is calculated

and given by

-2, +R

1 (13)

“
where R is the ccst of the search up to and
including the jth improvement. R is given by
Eguation 11 where k is the iteration at which
the jth improvement nccurred. A simple straight

line of the form

L= bo + bl X, (14)

is then fit to the last M < j improveménts by

_mecessary to specify o and determine ¥

254

the method of least squares. If the slope, bl’
of the straight line giveﬁ in Equation 14 is
significantly less than zero them there is
reason to believe that contiauation of the search
way yield further savings. However, if the slope
is greater than or equal to zers, than it is
likely that the search should be discontinued in
the sense that the maximum savings has already
been achieved.

Since 1., is a random variable, the slope,

3

bl, is a random varizlle. " . determine whether
or not the slope is significantly less than zere,

2 t~test 1s conducted each time an improvement,

zj, is detected. - If,
! i |
\-S—-— < td [ T r‘.;j (15)
bl fzmj~M+1
where
r, = the number of replications at the
tth improvement
then, the hypothesis
HO: b>0
13 rejected, and the search continues. Otherwise

the search 1z terminated.

To implement the termination criteria it is
t and M.
After each iteration of the search the number of
replications at the next point is evaluated and
the number of points, M, to which the straight
line will be fit, if the t-test is conducted, are
determined.

However, these calculations require

specification of a breakeven rate of returnm, Py




on investment, a desirable rate of return, Par
and the B error corresponding to the desirable
rate of return. The logic incorporated into the

search rxoutine then calculates tt.and ¥ such

that the equations

P(search continueelbl =0) =ao (16)
P(zearch continues|b1~= ob) = .5 (17)
P(searxch continuealbl = pd) = 1~8 (18)

ave satisfied as neerly as possible. In any case
the ninimum values of M and r, are never less
than 2. However, the user may specify a minimum

or both.

greater than 2 for either M or T,

The Model to Be Optimized

The function whose expected value is to be

ﬁinimizaé is

5 A3, C,x A
y=5. = {-—i—-"!-+§1(1-5~i-)]+e (19)
1a1 % i
where
1 A B € D
1 100 10 1 1000
2 200 20 4 1000
3 306 4 3 1000
4 400 100 5 1000
5 50 50 8 2000

and € is distributed uniformly on the interval
{~25, 25]. The ninimum value of E(y) is

approximately 7300 at (47, 50, 107, 163, 91).
Each procedurs began at (500, 500, 500, 500,
500). The valué of y at this point is
approximately 15820.70. The response surface .

for this model 1g a well behaved surface withk
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FORTRAN IV main line program.

a rather latge "flat" region about the optimal.

A sensitivity analysis peffcrmed about the
optimai shows little responsne to changes in
decision variables for a rather large area.

The response sﬁzface isvflat enough that

random error can easily mask out true differences
in response thereby possibly causing a premature

termination of & search procedure.

Heﬁhod of Opetﬁtion

The modelwdiacuseed in the ﬁfevious para-
graph was coded as a FORTRAN IV subprogramf
Each optimization technique was codeﬁ as a
The macro logic
of the overall solution procedure is shown in
Figure 3. Thé general method'ofvoperation is
that the optiﬁizaticn program specifies values
of the decizion variabies which aré passed to
the simulaiion model. 1he number of replications
required at the nextbpoint is then determined.
This determination is based upon desired confi-
dence levels and the sam?le vériance as diséussed
previously. After the simulation ié complete
the subprogram returns a particular value of qbe
effectiveness function. At this time a statis-

tical test is performed to determine if a

.significant improvement 1n:thé.objective function

haa been a2chieved. Based upon a synthesis of

this information, the search program then

calculates a new set of decision variables which
are passed to the simulation model, and the

entire process is repeated. This procedure
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‘continues until the termination criterion is

achieved at which time the prbcesé terminatgs.

éimulation Results
The simulation results obtained for the
three optimizgtion téch;iquea are summafized in
Tables 1-3. Values of a = 0.10 and 8 = 0.20
were'used for the stétiq;ical'routinea,wﬁTﬁé‘
cost of replication was zssumed to. be éé;oo; ‘The
results show that all thigé,bp;imiiatigﬂrteqp-;

niques came fairly_glose to the actual optimal

‘of’TSOO.v This indicates that searchrprccédgfeé:

éan suécessfuli}mbe empi;yed to bgtimize
simulation expetiﬁénté; Thg‘optiméli?oint,:‘“ o
tota;vnumbe:ipf replicﬁtions and tﬁe‘aiﬁﬁlatedrk
cost for eachvof the oﬁtimizatioﬁ teéhﬁ%qﬁesiis‘
presentediin Table 4. No-attemp; 1a,made‘;pgj‘
compare their relative performancs. .

The fesults also indicate that the‘termina—

tion criterion'based on cost, a and B errors

and:thekrates'of ;gtufn 18 effective. The
number of iterations for the three seérch
procedures ranges from 32 to 275~ind1cating‘£ﬁat
terminaéion based only on the number of iteraﬁions"
would be grossly inadequate. Variatioms in the ‘
evaluation of the objective function are inhereﬁf
in simulation experinments. Depending uﬁoﬁ the
magnitude of this variation, a step in the right
direction may appear_t§ be otﬁerwisa. A termina~
tion based only on the improvewment between |
successive i:erations; when éncquntg:ing the
above situation would terﬁinate the search

prematurely. Te illustrate, tarmination under
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occurred at the 18th improvement
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: Iter Simulated Cumulative Curulative Ivprovement Value Loss
] # Coat # of Repiication Point Number At Inproved L
Replications Cost 1) Point {z j) 3
; 1 19819.45 4 8.00 1 19819.45 -
é 2 20034.90 8 16.00 - - -
. 3 19594.81 12 24.00 2 19594.81 ~200. 64
; & 19369.10 16 32.00 3 19369.10 ~418.35
} 5 19164.61 21 42.00 4 19164.61 ~612.84
? 6 18968.97 25 50.00 5 18968,97 -800.48
f 7 23791.50 28 56.00 - - -
: 8 19750.59 31 62.00 - - -
9 18175.44 34 68.00 6 18175.44 -1576.01
2 ;
29 7633.54 99 198,00 20 7633.54 ~11988.46
42 7601.88 138 276.00 21 ' 7601.88 ~11942.12
45 7391.50 144 288.00 22 7391.50 -12140.50
50 7337.99 169 338.00 23 7337.99 ~12143.46
73 7324.22 238 476.00 24 7324.32 -12019.23
81 7319.56 262 52¢4.00 25 7319.56 ~11975.89

TABLE 1: Simulation Results for One at a Time Search Applied to a Five Variable Inventory Problem




Iter Simulated Cunuiative Cunulative Improvement Value Loss
# Cost # of Replication Point Number At Improved ) L
Replications Coset (1) Point (zj) 3

1 19820.92 5 10.00 1 15820.92 -
2 19635.42 9 18.00 2 16635.42 -167.50
3 19010.94 13 26.00 3 1901C.94 ~783,97
4 18606.25 17 34.00 4 18606.25 -1180.67
5 18089.67 21 42,00 5 18089.67 ~1689.24
; 6 16943.89 26 52.00 6 16943.89 -2825,01
; 7 14138.26 29 58.00 7 14138.26 -5624.6¢
: 8 13948.89 36 72.00 8 13948.89 ~5800,01
: 9 13339.78 38 76.00 9 13319.78 ~6405,13
5 10 12957.38 43 86.00 10 12957.38 ~6777.53
; 11 12546,43 45 90.00 11 12546.43 ~7184,4°
g 12 11436.08 47 $4.00 12 11436.08 -8290.84
13 7911.42 50 190.09 15 79131 .42 -11809.56

; 14 7911.53 533 106.00 - - -

15 8074 .42 56 112,00 - - -
21 7626.95 74 148.00 14 7626.95 -12045.95
35 75%6.78 129 258,00 15 7596,78 ~11566,13

TABLE 2: Simulation Results for Pattern Search Applied to a Five Variable Inventory Problem




1ter Simulated Cumulativae Cuzmlative Improvement Value Loss
# Cost # of Replication Point Number At Improved L
Replications Coat 1 Point (zj) ]
1 19820.00 4 £.00 1 19826.00 v -
2 17372.57 8 16.00 2 17372.57 -2431.43
3 25635.7¢ 12 26,00 - - -
; 16057.61 2¢ 40.00 3 16057.61 =3722.39
223 8193.0% - 456 912.00 10 §193.09 -10714.91
22; 7726.22 456 932.090 11 7726.22 ~11161.78
. 23; 7635.86 479 949.00 12 7635.86 ~11244,14 -
8 23; ' 7566.05 484 968.00 13 7566.05 ~11285.95
26; 7525.02 498 996,00 14 7525.02 ~11298.98
256 7520.51 519 1020.00 15 7520.51 -11279.49%
25i 7377.21 512 1024.00 16 7377.21 ~11418.79
26; 7373.00 540 1088.00 iy 7373.60 . =11367.00
26; 7338.58 548 1696.00 18 | 7338.58 -11385.00
27; 7337.26 560 1120.00 19 . 7337.26 ~11362.74

TABLE 3: Simulation Results for Sequential Quadratic Approximation Method Applied
to a Five Variable Iaventory Problem




Optimal Point Total
# of Simulated
Optimization " Replic. Cost
Technique X, X, xz X, xg
One-at-a-Time 50.00 50.00 100.G0 162.5¢0 87.50 262 7320.11
Pattern Search 100.96 100.00 100.00 180.00 160.00 129 7596.78
Seqaential Quadratic 58.24 47.25 120.99 | 175.19 92.67 560 7337.26
Approximation .
. Theoretiral Values 47 50 107 163 91 7300
A

TABLE 4: Suﬁmary of Simulation Resuits for Thrze Optimization Techniques Applied to a
Five Variable Inventory Problem




this critericn would have occurred at iteration

number 42 in Table 1. The termination criterion
defined in this paper effectively overcomes the

aituation described above, Figure 4 illustrates
the operation of the termination criterion. The
data from the "Losees" columm in Table 3 is

used to plot Figure 4.

Conclusions
the results of this study demonstrate that
search procedures may be effectively used in
the optimization of simulation experiments.

More importantly, a termination criterion based

.on cost of replicatiors, o and B errors, minimum

rate of return and desired vate of return is
proposed. It is found that the termination
sriterion based on these econmomic snd statisti-
cal considerations is effective for simulation
exﬁeriments. This termination criterion may be
used for any search procedure applied to

stochagtic systems.
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