A LANGUAGE ORIENTATION FOR THE DISCRETE EVENT MODELING

19)3 APPLICATICN PROGRAMS AND _OPERATING _SYSTEMS

»

FORWORD

Discrete event simulation of com-
puter programs, particularly overating
system programs, has until recently
been an elusive objective of computer
performance simulation. However, out
of my own experience and my observations
of the efforts of others, I have come to
believe that the most direc¢t approach to
achieving such a simulation capability
is essentially linquistic.

By itself, a lanquage description
for program modeling makes little sense
if it is presented outside of the con-
text of suitable techniques for creating
the simulation environment. That is,
an intimate relationship must exist be-
tween the simulation language necessary
for the precision representation of '
application and operating system programs,
and certain fundamental properties that
simulators of computer systems must have.
For this reason my discussion begins with
a distinctive characterization of jobs
and programs,. showing that these are not
only separate entities in the real compu-
ter but must be represented as such in .
the simulated system as well. Furthers
more, the lanquage requirements can only
be appreciated in the context of simula-
tor operations, and therefore these gen-
eral techniques, under the headings
"Executions”, "Interrupts", and "Creating
Simulated Time", are presented.

I consider these subjects to be
basic to any appreciation of the neces
sary aspects of a linquistic capability,
and with these concepts in hand, I then
turn to discussion of an explicit lan-
guage orientation. This is broken down
into two major categories, the first for
representing the logic¢ of a program and
the second for representing the loads

~that this logic imposes on the system,

The detailed simulation of applica-
tion and operating system programs can be
made precise in both the logic and the
load dimensions if capability for manipu-
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lation of actual data by the simulation
models is provided. This requires memory
storage for actual data on the part of
the model and is a major subject addres-
sed. Then, as a natural consequence of
both the linguistic orientation and mem-
ory capability, I am able to extend the
basic concepts to allow for the precise
representation of both reentrant and
recursive functions.

BASIC CONCEPTS

Jobs

In the descrete event environment we
must identify activities which, when actu-
ated or operated by a transaction create
an explicit event in time. In simulating
the performance of computing systems, and
particularly the execution of programs,
one such activity is the execution of in-
structions. The event created is, of
course, the load produced on the CPU me-
chanism of the computer. In the real
machine jobs produce such loads. We
therefore will define the "job transw
action', saying that a simulated event is
created when a job transaction passes
through a simulated instruction activity.

As a simple example of a job/event

.combination consider the following simu-

lated instruction activity:
A COMPUTE 1000.

When operated by a job transaction this
instruction produces a time delay in the
progress of the simulated job that is
equal to the execution time required for
1000 instructions in the simulated compu-
ter. This is equivalent to advancing

-simulated time by this interval as well.

In an actual computing system the
job has an identity and represents a col-
lection of data. For example, in an .
OS/MFT environment a job that has been
allocated core memory is identified by its
task control block number, and the task
control block and all appended data make
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up the data entity for the job. A more
general treatment and broad discussion
of the job as an identifiable data entl—
ty within the computing system is con= -
tained in (1). For the present discus-
sion we may assume that each job is
uniquely identifiable and is associated
with a set of fields in which data may
be stored and from which such data may
be retrieved. In this sense, then, the
job transaction under consideration is
virtuallv identical to the GPSS trans-
action. That is, the job transaction
may be thought of as an identification
plus a set of fields which together form
a record that then moves over the flow-~
chart of our model, where each entry in
the flowchart represents an activity.

As such a job transaction crosses an ac~
tivity a corresponding event is created.

Program Models

A computer program has a flowchart,
which we may think of as a progression
of detail from the highest level of pro-
cess description down to a collection of
encoded statements. That is, a flow-
chart may be atomic in varying degrees.
Every flowchart, no matter what its de-
tail, represents the collection of acti-
vities which may create events in a com-
puter, with the possibility of event
creation expressed by the logic of the
flowchart. 7To put this somewhat differ-
ently, the flowchart, like the program,
is a potential for creating load in a -
computing system. Furthermore, nothing
happens in the real computer until a job
is present in the system for the execu-,
tion of that program.

For simulation purposes we would:.
like to be able to express the flowchart
of a real program in a linguistically
equivalent way so that by passing a job
transaction through that flowchart we
might recreate the loads in the sequence
in which they were imposed on the real
system. This raises the issue, then, of
being able to represent the flowchart
logic of programs. That is, some ine -
struction activity must be available in
the simulation language repertoire that
provides a means for logical expression.
We shall refer to such instruction actis
vities as the "zero time instructions", °
as opposed to the "simulated time in-
structions" which produce time-associated
events.

Executions

The notion of a program model flow-
chart, each node of which is representa~
tive of one or several simulation in-
struction activities, suggests that the
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simulation process may be thought of as
the movement of the data entity represent-
ed by a job transaction from node to node,
either in zero time or as delayed by the
associated simulated time of certain
events. Thus, the zero time instructions
will be employed to create the logic of
the movement, and the simulated time in-
structions to express the time reality of
the movement. The "execution' of a pro-
gram in the simulation sense, therefore,
is the passing of .a job transaction
through its model flowchart from an en-
trance point to an exit point. Function-
ally speaking, then, we require a simula-
tion instruction repertoire by means of
which such model flowcharts may be en-
coded.

Applicatioh and Operating System Models

Let us suppose for the moment that
we have such a simulation instruction
repertoire, and that from it we have de-
rived a collection of program models with
which to simulate job executions in our
real system environment. Let us further
suppose that we have a cdollection of job
transactions which are created adcording
to some specified timing rules. The
timing rules for creation of a job trans-
action will be referred to as a '"creation
set". It is these creation sets that
cause jobs to enter our simulation system.
Thus we have separated job models from
program models and the effective perfor-
mance of a given job is directly dependent
on which 6f thé program models it passes
through, and what instruction activities
have been represented in those models.

Although we may make a distinction
between operating system program models
and application program models, aside
from the repertoire of instruction acti-
vities that are useful to the creation
of an operating system model, there should
be little difference in conceptual sub-
stance between the two. To express this
in more concrete terms, let us say that
our simulation system, via a creation set,
will make available a job transaction de-
signed explicitly for the purpose of exe-
cuting the operating system program model.
This means that our job transactions now
divide into two classes, namely applica-
tion and operating system. When an appli-
cation job makes reference to the operat-
ing systen, then in transaction terms its
job fransaction crosses an "entrance boun-
dary" of the operating system (2), and
thus activates the operating system jOb
transaction. Events are then created in
the operating system model by this trans-
action, up to the point where it reaches
an "exit boundary" of the operating system.
It is from this point that some specified
application job transaction (usually



selected by the logic of the operating
system model) continues the simulation by
moving further through its current pro-
gram model.

The operating system entrance and
exit boundaries can be given an explicit
linguistic expression that reflects this
change of execution state, or mode, in
the real system (3). For simulation,
however, this concept has the further
advantage of clearly identifying when a
simulated execution in the form of a job
transaction, has left the confines of an
application program model and entered the
operating system model. This means that
whenever the operating system job trans-
action is "executing" during the simula-
tion we must be accumulating performance
figures that are associated with the simu-
lated operating system and not with any
of the simulated application programs.

Forced Entries

Interrupts in a computing systenm
generally mean that the current execution
of a program is intervened so that the
CPU can be assigned to execution of a dif-
ferent, higher priority function that is
usually associated with the operating
system. In the context of the present
discussion, however, we may say that the
job leaves its present execution and is
forced to enter the operating system.

We will see that these interrupts fall
into the two general categories, syn-

chronous and asynchronous, and that it
is useful to refer to them jointly as

"forced entries".

The synchronous forced entries are
those associated with cextain application
program instructions, such as READ, and
with service request instructions. Each
of these instructions forces an entry to
an associated point in the operating sys-
tem, and may be thought of as interrupts
that are synchronized with the execution
of the application program. As opposed
to this, the asynchronous forced entries
are derived from I/O termination intexr-
rupts, clock interrupts, and general alert
interrupts from sources external to the
system. When any of these interrupts oc-
cur, the particular forced entry action
is realized by taking the next instruction
for execution from the associated inter-~
rupt location within the operating system.

In simulation terms we will say that
forced entries move the application job
transaction currently associated with the
simulated CPU out of its program model
and to an operating system model entrance
boundary. Here the operating system job
transaction takes over. By this means,
then, .the application job transaction is
forced to enter the operating system.model.

Creating Simulated Time

The zero time instructions create no
simulated .time, and therefore occur instan=-
taneously with respect to the simulated
time of the model. When the operating sys-
tem model has given control of the simula-
ted CPU to a particular job transaction,
it is allowed to continue unobstructed in
its application model through all zero
time instructions until it encounters a
simulated time instruction.
computations are made by the simulator
system to determine the amount of simula-
ted time involved, and then a "future
event" is established for that much time
in the simulated future. It is at this
time that the associated computation will
be complete. Such future events are stored
in a "future events chain" in chronological
order. Also included in this chain are
future events related to I/0 terminations,
future creation set events bringing new
job transactions into the model, and, in
fact, events for all of the interrupt con-
ditions currently present in the simulation
model.

Suppose, then, that a CPU event has
been established for completion at, say,
25 milliseconds in the future. However,
due to prior activity in the model, as of
this simulated moment a data transfer
activity is to terminate within 14 milli-
seconds. This creates an interrupt event
that will be higher in the chain of future
events and will therefore occur earlier
in future simulated time. The simulator
steps, or increments the simulated time
clock by 14 milliseconds to this next
future event, thus making the present time
equal to that of this next future event.
The I/0 interrupt event is then inter-
preted, and in general will cause a simu~
lated interrupt of the CPU event which
still has 11 milliseconds to go. In an
actual computing system the interruption
will cause the operating system to take
control away from the currently operating
job in order to use the CPU for processing
the interrupt. In simulation terms this
interruption appears as a forced entry of
the application job transaction currently
simulating 25 milliseconds of CPU activitw
Thus, the operating system job transaction
is assigned to the CPU and then passes
through that portion of the operating sys-
tem model designed to represent the logi-
cal actions to be taken as a consequence
of the occurrence of this particular
interrupt. The simulator system also ob-.
serves the amount of the CPU event left
‘to go for the interrupted job and when the
operating system model, as a consequence
of its logical determinations, later de-
cides to return to the continuation of the
interrupted job transaction, it will do
so as if a compute instruction requiring
14 milliseconds rather than 25 milliseconds
had been executed by the job transaction.
That is, a future CPU event representing 11
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milliseconds is established fof the
application job transaction.

A simulation therefore proceeds as
follows: .Beginning at simulated time
zero, an operating system job transaction
is introduced to the model. The operat-
ing system job transaction then usually
goes into an idle state, where it awaits
the first creation set introduction of
an application job transaction. Simu-
lated time, of course, advances while
in the idle state until the first job
transaction appears. When it does,
there is an interrupt that brings the
operation system job transaction out ¢f
its idle state and takes it to that por-
tion of the operating system model where
acceptance activities for a new job are
simulated. In this fashion, job trans-
actions are brought into the simulated
system according to the logic of the
operating system model, and are ulti-
mately allocated simulated core memory
space and set to execution of their re-
spective program models. These job trans-
transactions execute zero time instruc-
tions in their own application models.
They also execute instructions that
create forced entries and lead to the
operating system model and its execution
by the associated operating system job
transaction. Here, appropriate actions
will be taken, leading ultimately to the
selection of application job transactions
and their continuation in program models.
It is in this fashion that the simulation
progresses, with the simulated time in-
structions moving the simulated time for-
ward, thereby creating the loads in the
system. In this way, also, simulated
time moves from simulated time zero to
the final time specified by the user for
his simulation run.

ZERO TIME INSTRUCTIONS

The zero time instructions of a
simulation language provide the mechanism
for implementing the logic of the program
model. Wheh- such. z@apability exists in
a simulation system we may think of the
programs to be modeled as flowcharts, and
then may consider their simulation to be
equivalent to the implementation and exe-
cution of the flowcharts by the simulator
itself. Thus, given a flowchart of some
particular programming function, that
flowchart has logical structure, and with
the zero time instructions we should be
able to implement that logic with a suit-
able degree of approximation. We are
then able to simulate the loads 1mposed by
that program via the simulated time in-~
structions, mentioned earlier and dis-
cussed below, where these loads are cre-
ated within the logical framework expres-
sed by the zero time instructions.

January 14-16, 1974

It is convenient to break the zero
time instructions down into four broad
categories, These are, the Application
group, the Operating System group, the
Interrupt group, and the Common group.
Each of these groups are discussed in
some detail in what follows. In order to
glve substan¢e to this discussion, however,
it is necessary to refer to a simulator
system that implements the orientation
suggested in this paper. The Systems
Analysis Machine (SAM) is such a system
(4). In the instruction repertoire exam-
ples that follow, the linguistic forms
employed are taken from SAM, and the sev-
eral figures of SAM instructions that are
shown represent a sampling from the com-
plete instruction repertoire. Furthermore,
there are other instruction classes and
types which represent expanded SAM capa-
bilities that are beyond the general
interests of this presentation, and there-
fore have not been included.

The Application Group (Figure 1)

The set of zero time instructions
associated with the Application group com~
prise the synchronous forced entry instruc-
tions. That is, on their execution in a
program model by a job transaction, an
entry to the simulated operating system is
made. For example, consider the I1I/0 ref-
erence instructions in the Application
group. In the actual computer the execu-
tion of READ in an application program
is an indication of a function to be car-
ried out, not the ipitiation of the func-
tion itself. This lattér action is usual-
ly resexved to some centralized program
that is often; described as being within
the operating system. The simulation
function parallels this exactly. When a
Jjob transaction passes over an I/0 in-
struction in an application program model,
an entry is forced to the simulated opera-
ting system where the logic associated
with record deblocklng, data transfer,
queuelng, waiting, and so on is simulated.
This is acc¢omplished by an operatlng Sys~-
tem job transaction. Then, under circum-
stances dictatated by the partlcular oper-
ating system model, control is returned at
some later time to the application job
transaction to continue its simulated
execution in the application program model.

The instruction
READ PAYROLL
is a Sam functlon, which when executed by
a job transaction causes the actions de-
scribed above. The reference is to the
simulated file PAYROLL.

The memory reference instructions of



the Application group allow the program
model to simulate calls for the expansion
or release of working storage. These
instructions take a number of forms and
may be related to either contiguous or
non-contiguous storage that may be assoc-
iated with either the simulated job space
of the job executing the program, or with
the program itself. Again, these are
forced entry instructions, indicating
that the activity involved is to be car-
ried out under the auspicies of the con-
trol software of the system.

Application Group (SAM sample)

I/0 Reference

CLOSE~IN
CLOSE-OUT
OPEN-IN
OPEN-OQUT
READ
WRITE
SEEK

Program Reference Memory Reference¥

CALL-PGM GET-CJS
OPEN-PGM GET-NCPS
CLOSE-PGM RET-CPS |
EXIT RET~-NCJS
*¥CJS = contiguous job space

CPS, = contiguous program . .space
NCPS = non~contiguous program space
NCJS = non-contiguous job space

FIGURE 1

Similarly, the Program Reference in-
structions of the application group force
entries to the operating system in order
to complete sub-program calls, to return
from a sub-program to the calling program
to preload and overlay programs, and so
on. In the following example,

CALL-PGM XEMPT,

the job transaction enters and passes
through the operating system model. In
the course of its passage, the logic of
the operating system model may determine
if the program XEMPT is currently allo-
cated, seized by some other job, etc.
That is, the operating system model must
execute zero time instructions that rep-
resent the actual operations necessary to
completing a sub-program call. As a fin-
al step, the application job tramsaction
will be passed on to the execution of the
program model XEMPT. -

The Operating System Group (Figure 2)

Corresponding to each of the forced
entries, both synchronous and asynchronous
is a sub-progroup of instructions that is
associated with operating system modelling.

The I/0 control instructions of the
Operating System group are used to test
the availability of the various elements
in the data transfer chain between core
and peripheral device. Files can be test-
ed for availability as well, and can be
seized, released and se on. Thus, this
set of instructions is used to build mod-

.els of programs within the operating sys-

tem that implement the I/0 reference re-
quirements of the application program
models. The first of the examples below
tests for the availability of all elements
in the data transfer chain.

IO~-READY XACTION, NOT-READY
TST-CHAN XACTION, NOT-READY

The reference is to a file transaction
which is the global name for the file ref-
erenced in the application group instruc-
tion. If the conditions for data transfer
initiation (channel, .device, controller
and file ready) are not met at the simu-
lated time of execution of this instruc-
tion, than the dperating system job trans-
action making this test is.sent to the
operating system program model location
NOT-READY for its next instruction.

The function of the second instruc-
tion example is similar, but with respect
to the channel that connects to the global
file referenced. That is, a capability
exists for testing the several I/0 ele-
ments individually.

There are 42 memory allocation con-
trol instructions in the SAM repertoire.
The purpose of these instructions is to
allocate and deallocate core memory for
contiguous and non-contiguous require-
ments, or for both types of requirements
simultaneously., If the allocation algorithm
creates holes in the memory, certain of
the instructions provide for management of
the core memory fragments that result.

0/S Group (SAM Sample)

Program Control

PCI-CR¥
RETURN
TR-PGM

I/0 Control Allocation Control

IO~READY EXP-CJS
FLSZE~TST ALOC-NCJS
FILE-SZE ALOC-CIS*
FILE~REL DEAL-IS¥*
DEV-SZE PACK
TEST~BUFF HOLE-SIZE
TST-~-CHAN SPACE
TST-MOUNT

¥CIS = contiguous instruction space

IS = instruction space

PCI-CR = program control item -
create

FIGURE 2
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Program control instructions are
used to implement the policy of the sim~
ulated system for managing inter-program
relationships. They are generally employ-
ed in response to a CALL-PGM forced entrw
These instructions determine the availa-
bility of a called program in the core
memory, return control to a calling pro-
gram, and function to manage the utiliza-
tion of programs that are reentrant or
recursive. For example, the instruction

TR-PGM JOB, XEMPT
sends the application transaction in the
operating system model location JOB to
continue its execution in the application
program model XEMPT.

The Interrupt Group (Figure 3)

The interrupt instruction syntax is
organized so that each interrupt can be
associated with &n intexrupt code and a
set of four interrupt operands. The in-
terrupt code is a means for distinguish-
ing between interrupts of the same type.
For example, the interrupt codes associ-
ated with the I/0 termination interrupt
distinguish between the devices creating
these interrupts. The interrupt operands
allow data to be transmitted from the
initiating source of the interrupt to the
program receiving the interrupt. For
instance, one of the application program
instructions allows the creatiom of an
interrupt at a later time in either the
present CPU or some other specified CPU
of the system: By using the interrupt
operands, data given at the time of in-
terrupt specification can be delivered
to the interruypted program at the simu-
lated moment when the interrupt occurs.
The interrupt instructions are designed
to employ this data in the analysis and
simulation of the model's interrupt acti-
It should be noted that the en-
trance boundary function also belongs to
this group.

Interrupt Group
(SAM Sample)

Interrupt Control

ENABLE
DISABLE
GET-OPRND*
TR-XCODE*
OPR~SYS¥

*OPRND = interrupt operand
XCODE interrupt code
OPR-SYS = 0/S entrance boundary

I

FIGURE 3
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The Common Instructions (Figure 4)

-

There are three sub-groups of in-
structions designed for use in modelling
both application and control software.
These sub-groups contain arithmetic, trans-
fer and queue instructions, and they also
form the most direct example of operations
on real data. The instructions in this
group allow for addition, subtraction,
multiplication, and division of integer
nunmbers, and for sign changing and modulo
operations. This means that the course of
a simulation can be made to be dynamically
dependent on computed data. This subject
is discussed further in the next section.

It was pointed out earliex that a
program model is in effect an implemen~
tation of a flowchart by means of the in-
struction repertoire. Such flowcharts
imply conditional and unconditional trans-
fers of control. In order that the logi-
cal representation of these flowcharts
may be complete, a collection of transfer
instructions is included in the group.
These instructions may determine transfers
that are dependent either on actual data
within the simulation model or on simula-
ted data. . In the first case, conditional
transfer may be based on data equality, or
on the several conditions of inequality.
For the second case, transfer may be based
on various situations that are given pro-
babilistic expression. For example

TR-PROB VALUE, NEXT

samples from a random distribution whose
mean is 500. If the sampled value is less
than the value stored in the location
VALUE, then the next simulation instruction
executed by the job transaction is at
location NEXT within the program model.
Also included in this instruction sub-
group are several forms of loop control,
and an end of file test that is related

to simulated data transfer activities.
Finally, there is an equivalent of the
FORTRAN assigned GO TO, so that a program
model may contain within it other program
models that are executed as sub~-routines.

Common Group
QSAM SamEle!
Arithmetic Transfer Queue -
ADD TR-EQ TRQ~-EMPTY
SUB TR~GE TRQ-FULL
MULT TR-PROB QMERG-TST
DIV ' INCR~TTR Q~RESET
CH-SIGN 1.OOP Q-STEP
' TST~-EOR QE~-PLC
TR-INDIR QE~-SEL
QE-~MOVE
QE-FIND
FIGURE 4




Accurate representation of the logic
of a program model, particularly for a
model of control software, requires that
the organizational and operational logic
of quenes be capable of representation.
The queue ‘sub-group is designed for this
purpose and is perhaps the most extensive
of all of the instruction sub-groups in
the repertoire. Queues are actual within
SAM models and may be multidimensional.
They hold real data of the simulation
model and may have FIFO, LIFO or priority
ordering. The queue instruetions allow
for the placement of entries, their re-
trieval, stepping through the queue, scan-
ning the queue, and so on. In fact, all
the usual operations of an extensive queue
processing language are provided. For
example, the instruction

QE-PLC TCBQ, VALUE
places the value in the storage location
VALUE into the queue TCBQ according to the

ordering rule for that queue.

SIMULATED TIME INSTRUCTIONS

The zero time instructions desc®ibed
above are intended to provide a capability
for precision representation of a program
flowchart. That is, the zero time instruc-
“tions are used to represent the logic of
what the program does, while the simulated
time instructions are designed to represent
the loads created by that logic. The in-
structions in this category therefore use
up simulated time, and do this by moving
the simulated time clock forward. In gen-
eral, these instructions fall into three
classes that are related to explicit data
processing actions. These thiee classes
of instructions are mathématical, string,
and queue, and a seléction from the SAM
repertoire are shown in Figure 5

Simulated Time Instructions
Mathematical String Queue
COMPUTE EDIT Q-COMPUTE
MATH MOVE
MATRIX SCAN
FIGURE 5

Mathematical Instructions

There are several types of instruc-
tions for simulating CPU load. The first
of these is the COMPUTE instruction. It
is used when no more precise information
concerning the execution activities being
simulated is available. For example,
suppose that a housekeeping operating
associated with program initiation is to
be presented. In lieu of better informa-
tion on the operations involved, it might
be estimated that 20 statements are to be
executed. Then when COMPUTE 20 is execut-
ed by a job transaction within a program
model, the execution time for 20 state-

ments is calculated with respect to the exe-
cution time capabilities of the CPU assigned
to the job transaction.

If a statistical estimate of the num-
ber of statements .to be executed is known,
it may be expressed in several different
probabalistic. forms. For example, suppose
that the number of statements whose execu-
tdion is to be simulated is distributed in
Gaussian form around a megan of 200 with a
standard deviation of 25, from

COMPUTE 200, CHI, 25

will produce the desired, sampled simulated
time.

When a mathematical calculation is
known to involve a number of additions and
subtractions, multiplications and divisions,
the MATH instruction may be employed. For
example, if a set of equations whose execu-
tion is simulated within the program model
is known to contain 30 additions and sub-
tractions, 7 multiplies and 4 divides, then

MATH 30, 7, 4, FLOAT

is used to express this computation, where
the data type is specified as floating
decimal.

The simulation of matrix computations
is accomplished by the MATRIX instructioms,
where the size of the matrix is a parameter
along with the data type. The inversion of
a matrix of size 50 x 50 is an example:

MATRIX INVERT, 50, FLOAT.

The computational operations are to be sim-
ulated as floating decimal operations.
Using this and estimates of the number of
adds, multiplies and divides based on the
matrix size parameter, this instruction is
then executed in simulation as if it werxe
a MATH instruction., Furthermore, the in-
struction assumes that the real matrix is
completely contained within the real core
memory. For matrices too large to it in
core, a more extensive simulation model
involving data transfer activities is
required.

The string processing instructions
are used to represent the scanning, moving
and editing of simulated data strings.
The parameter specification for these in-
structions imcludes- the number of data
units in the simulated data in terms of
characters, bytes or words. The instruction

STRING SCAN, 350

creates an amount of simulated time equiva-
lent to the time requixed to scan 350 bytes
The performance is specified as the number
of time units per thousand bytes, and is
part of the CPU description.
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The Q-COMPUTE instruction is used to
represent the load created by queue pro-
cessing. Each queue in a complete model
is given a symbolic, or global, name.

As zero time instructions for storing,
retrieving or stepping through a speci-
fied queue are executed in the course of
simulation, the number of each such oper-
ation is accumulated relative to the
specified queue.

For example, suppose that a queue
named TCB has been defined in the opera-
ting system model. If, on a particular
call on the operating system, the various
logical operations as expressed by zero
time activities has caused this queue to
be stepped 6 times, with 6 retrievals
and 5 replacements made, then the execu-~
tion of

Q-COMPUTE ICB, 6, 6, 5

will cause the performance specification
for stepping, retrieving and storing for
this queue to be employed in determining
an amount of simulated CPU time required.

DYNAMIC DATA

If the model of a computer program
is going to be able to make computations
and data dependent decisions during the
course of the execution of that model,
then it is necessary that the data values
on which such computations are based be
stored in memory locations. The simplest
and most obvious approach is of course to
make locations available for this purpose
in the host computer of the simulation.
However, this would be operationally
limited and linguistically stilted. A
much better method is to associate actual
storage locations with the elements of
the simulation model itself.

Job and Program Memory

One obvious element of the simula~
tion model with which storage locations
may be associated is the program model.
In fact, we have already implied such
storage locations in the several examples
of the application of the SAM instruction
repertoire to the creation of program
models. Another, perhaps not so obvious
simulation element to which storage might
be attached is the job transaction. That
is, we may assign to ea¢h job transaction
moving through the system a set of loca-
tions for data storage, and make these
locations and the data that they contain
available for operation by the various
simulation model instructions through
which the job transaction passes.

Again, using SAM as an émbodiment of
the approach, we associate with each job
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transaction some specified number of '"job
value" locations. These may be thought of
as traveling with the job transaction and
are individually referred to by number.

In SAM the syntax of the reference is

JV/n where JV signifies a job value ref-
erence, and n specifies the number of the
particular job value location. As an

example:
ADD JV/1,JV/2,JV/3

When a job transaction executes this
instruction the result of the operation
is the addition of the contents of its
first job value location, JV/1, to the
contents of its second job value location,
JV/2. The result of the addition is stored

‘in its third job value location, JV/3.

Now suppose that our program model contains
a data location called ABS-VAL. Then the
execution of the instruction

ABS JV/1,ABS-VAL

would operate on the number found in the
first job wvalue location of the job trans-
action executing this instruction, and
place its absolute value in the program
storage location ABS-VAL.

Thus these two memories, one of them
fixed with the program model and the other
moving along with the particular job trans-
action, may interact with one another via
the instructions of the program model it-
self. In fact, in SAM a number of inter-
esting programming niceties have been in-
cluded such as indirect addressing. As
an-example, suppose that there is a loca-
tion for data storage that is agsociated
with the program model. In this location
we will hold a positive integer number
whose value has been computed during the
course of the simulation. This numeric
value will be used to designate which of
the job value locations of a current job
transaction is to be employed in a partic-
ular computation. Thus for example,

ABS JV/POS,ABS-VAL

will cause the absolute value of the num-
ber stored in a certain job value loca-
tion to be moved to ABS-VAL. The parti-
culax job value location employed is
specified indirectly by reference to the
value carried in the program storage loca-
tion POS. If this location has the numeric
value 3 in it, then the execution of the
instruction would utilize the location
JV/3 of the job transaction. OFf course
just such cemputatiohs, or any others may
modify the current value of the location
POS in the program model dynamically as
the simulation proceeds.



Universal Memory

In computing systems it is useful to
have a set of data locations that all jobs

can reference. This is also a valuable
convenience in the simulation of systems
of programs and can be accomplished by
what we shall refer to as "universal"
memory. In its simplest description this
universal memory is a set of locations
that are designed for storing data during
the simulation so that references to these
locations can be made from all program
models in the simulation. In the SAM
‘embodiment, the universal locations con-
sist of a number of data storage positions
that are referred to by ordinal number.
The syntactical method for designating
such a location is UV/n where UV desig-
nates the universal value reference, and
n specifies the particular universal data
location. When, for example,

COMPUTE UV/6

is executed by a job transaction, there
will be imposed a simulated CPU load that
is based on the numeric value found at
the time of its execution in the sixth
universal location. Indirect referencing,
as illustrated above for JV locations,
may also be employed with respect to UV
locations. Furthermore, since data can
be communicated between job transactions
and the program models that they execute,
and between program models and universal
memory, it follows that data can be com-
municated between independent job trans-
actions. This is an extremely powerful
tool for the creation of precision models
of systems that must synchronize the
activities of independent jobs.~

Reentrant and Recursive Program Models

Since every job transaction entering
the simulated system may be associated
with a specified number of data locations
independent of any of the program models
which it may execute, it follows that
the simulation system will have an immedi-
ate capability for simulating the execu-
tion of reentrant programs. To see this,
suppose that each job transaction passing
through a particular program model brings
to that model certain real data. In the
course of the simulated execution compu-
tations are made in the program model on
this data. If it is then desired that
this program model represent a reentrant
program, we will associate all computa-
tional storage locations with -JV locations
of the job transaction. Now as the job
transactian passes through a program
model, it may encounter certain of the
zero time instructions by means of which
various actual computations are carried
out. The results of these computations
are then placed into JV locations of the
job transaction. Hence, if the job trans-
action should execute a simulated time

instruction within the program model, and
if interruption should occur, then the
resultant forced entry will carry the job
transaction, with the currently computed
actual values in its JV locations, to the
operating system entrance boundary where
the operating system job transaction then
takes over, passing through the operating
system model to carry out the simulation
of all activities implied by the interrupt
that has occurred. On completion, suppose
that the CPU is turned to a second, dif-
ferent application job transaction. Evi-
dently this new job transaction was earlier
intervened from the course of its execu-
tion and is now returned to continue that
execution. If, in our example, this exe-
cution is within the same program model,
and this represents a reentrant program,
then the events created by this second job
transaction will have no effect on the
computational results earlier carriéd out
with respect to the first job transaction,
since those results have moved out of the
program model with this job transaction,
at the time of its forced entry to the
operating system.

This, of course, is the general na-~
ture of operations in a computing system
with the capability for execution of re-
entrant programs. But what of the recur-
sive execution programs? In this case the
computing system has been organized so
that a program may contain program refer-
ences to itself. That is, a job may exe-
cute a CALL type of instruction in a pro-
gram which calls for the execution of that
same program. To generalize this, we may
think of the logical sequence of program
calls as forming a tree, each node of which
is a program in the possible calling se-
quence. Then in tree structure terms, a
node at a lower level may make a recursive
reference to a node at a higher level.
That is, some program in the calling se-
quence calls on an earlier program in that
sequence.

For a real computing system to accom-
plish recursive executions it is necessary
to have a storage management capability
that can uniquely assign storage space for
execution of a program to each different
execution of that program by a particular
job. Thus, if a job has entered a program
for its third recursion, then there are
two storage areas assigned to the first
and second recursions respectively, and a
new one to the third. . These storage areas
are furthermore usually.related-in a list-"
ed sequence of_ occurrancé in which the
ordering rule is last-in~first-out. That
is, the recursive storage areas are treated
as a push-down list.

For simulation purposes the mechanisms
already discussed for providing memory-
associated with program models and job
transactions is sufficient for realizing
the needs of recursive function simulation-
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LANGUAGE ORIENTATION .... Continued

Since real recursive storage areas must
be associated with the real recursive -

program execution, then for simulation,

recursive storage areas associated with
the job transaction would provide the
necessary storage mechanism.

In the SAM embodiment of these princi-
ples the technique has been to associate
one and only one set of storage locations
with the job transaction, but to assign
to each execution of a program model one
unique set of storage locations. That
is a set of storage locations is assign-
ed to a program model and a particular
execution by a job transaction. This
allocation of storage space and its as-
sociation with a particular execution
is invoked by the TR-PGM instruction in
the SAM repertoire, When the job trans-
action passes through the TR-~-PGM func-
tion, the SAM simulator allocates the
storage space and attaches that space
to both the program model called and the
job transaction invoking that call. Thus,
if the TR-PGM references the present pro-
gram model, or a program model that is
already in the calling sequence group
for the job transaction, a new set of
storage locations for the program model
which are associated with this particular
job transaction will be created. These
locations will be associated with the
job's execution of the program model in
a pushr~down fashion, by program model.
Thus, a job may execute many program
models recursively.

AFTER WORD

The successful modeling of programs,
whether application or operating systems,
in the discrete event context depends
very much on the language capability of
the modeling system. I have gone a step
further in this paper, however, by sug-
gesting that precision in such models
calls for the separation of job and pro-
gram as elements of the simulation. This

. makes a discrete event "execution" con-
" text meaningful and ‘gives rise to the
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notion of a repertoire of model instruc-
tions which are then executable.

By associating real storage loca-
tions with the model elements (job, pro-~
gram) I .am then able to extend this
approach’ to include the simulation of
both reentrant and recursive functions.,

When a capability for simulation
reaches this level of representation, the
simulator system becomes a microscope with
which we can examine in detail any partic-
ular mote of a system's operational char-
acteristics.
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