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The need for a mathematical theory of simulation has developed particularly in recent years because the problems
which the mathematical and social sciences are attempting to attack have become increasingly complex and have
acquired an increasingly interdisciplinary character.

In this paper, an initial effort has been made to endow the practice of simulation with more rigorous contents. A
definition of simulation is developed in terms of two central concepts: a model and an experimental inquiry.

The former concept was formalized by the author in earlier papers. The latter is developed here as a fourtuple.
1=<{¥.Q. M, D>,

where WV is a set of experimental objects, Q is a set of questions, M is a sampling plan or experimental design, and
D is a decision strategy.

The essential purpose of this paper is to summarize efforts which have been directed towards the development of
a framework to rigorously unify the important methodological principles underlying the practice of simulation,
and initial results demonstrate the usefulness of the formulation. As an application to the modeling of utility
structures, it is shown that, if we associate continuous utility functions u and u’ with the modeled and the model.
respectively, a weak relation between u’ und u guarantees that the assignment of utilities is consistent.

Finally, the developed simulation framework is used to determine the probability that simulation predictions are
€ - correct for simulation experiments of arbitrary length n.
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Introduction

In this paper we address the experimental issues associated with models. In particular. we
intend to develop a framework within which simulation problems can be discussed. This framework
is an extension of the modeling structure developed in Refs. 1 and 2 and involves one new central
corcept: an experimental inquiry.

An experimental inquiry 1is a 4-tuple (¥, Q, M, D), where ¥ is a set of cxperimental objects,

Q is a set of questions, M is a sampling plan or cxperimental design, and D is a decision strategy.
We shall see that simulation is a particular type of inquiry called a simulation inquiry., SI.

The report is organized as follows. First we summarize our view of ““‘model.”” Then we discuss
in detail what is meant by an inquiry. This is done in Chapters 2 through 5, where experimental
objects W, questions Q, experimental designs A, and decision strategies D are discussed respectively.
Then simulation inquiries are addressed in Chapter 6, where a precise definition of simudlation is
developed which distinguishes simulation activities from modeling activities. This last section also
presents some theorems and an example.

Because much of the work in this paperis definitional, a guiding objective was to present a
reasonably general treatment. For instance, the sampling plan M is quite general and allows the
discussion of stopping rules and other sequential designs. The decision strategy D is equally
flexible, and we show specifically that standard statistical techniques such as sequential hypothesis
testing, estimation, and confidence sets are incorporated in a natural way.

Since thispaper depends upon some of the concepts developed earlier, ! it will be
convenient to summarize these at this time.

The concept of “model” is developed from the following irtgredients:

1. Two sets of objects S and S'. the modeled (prototvpes) and the models (model candidates).

2. Two performance spaces V and V' for S and S', whose elements are values of two
performance criteria chosen by the modeler.

3. Two performance criteria or evaluators & and ', With these criteria the modeler isolates
the prototype and model features of interest and partially characterizes the process of imitation.
For most of the remaining work the objects S and " will be mathematical objects (as opposed to
physical objects, for instance), in which case these criteria are maps ®: S - Vand ¢': §' = V',

4. Aninterpretation relation Hy, C V' X V. This is the object which permits the modeler to
indicate things about the prototype on the basis of properties or observations from the model. For
the remainder of this work. it shall be a function H,,: V' - V.

5. Two topologiesTyyand Ty, ron V and V', which are intended to characterize experimental
or observational errors and the inaccuracies that may or may not be tolerated by the modeler.



These topologies are also intended to capture the process of approximation from our point of view
and to allow the discussion of the relevant convergence and continuity issues.

Let us state our immediate objective: Given two objects s€ S and & € S’ define the conditions
under which s is a model of s.

First we require the following definition:

Definition 1.1: A modcling criterion for two sets of objects S and S' is a 4-tuple;

C=¢. o' T, . Ty
where
S = Viis the protorype performance function into the prototype performance space V.
&' S~ V' is the model performance function into the model performance space V'
T\and T\ are two pcrformance topologics for Vand V', respectively.

Figure 1 illustrates the interrelationship between these various terms and the interpretation
H, : V' — \'. The purpose of the pair(C. H,,) is to summarize the modeler’s view, and we shall
occasionally refer to(C, H,,) itself as *‘the modeler.”

One more concept must be detined before we can proceed with the major definition.

Definition 1.2: Given a topological space (V. Ty)), then v, € Vis T, -close tof v, € Viff 80(v,)

ET Sv, EEO(V ). We write this as v, CL(T,, )v

\'otL that v, CL(T # vy C]JT v, in LC‘I]t.‘I‘d] When this symmetry holds, however, we call
vy and v, T ,-equnalem or T -mdtsfznguzslzable and we write v, I(T )v In other words.
v, eV is T, -equivalent to v, € V iff T, does not separate v, and vy el it (BO(v ) e Ty )

BO(\z)e T\, ) [(v, & O(vy ) A (v, EEO(v Nl

\4

S

Hy (N(@'(s))) =N,

vl

Fig. 1. The relationships between the terms of Definition 1.3,

%Thm definition differs from the original definitions in Refs. 1 and 2 in order to conform more closely with accepted
terminology. O(v) is any open set containing v.
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Let us now briclly describe the substancee ol our definition. We are given two objects s and §'
and the modeler's viewpoint (C /10y where C =<, Ty T Then " is a model of s relative
to(C O and we write SR /I il Ilinterprets the stlel performance &' l(s') of s us

closely as 7'y demands, e il II (¢ I» (\ )) is close to d(s). Given that <l> (% ) 19 known no

better than 7'y allows e, all th modalu knows is that his mcasurcmcnt or calculation

¢ (8" is T r-close to ¢’ »|(\’) we say that s meCo s it (V))CL(T, ) (s) for every
mceas av

vie VvV av CLY T\ ) (). We now state this formally. Let / +(p) bL the 7-neighborhood
system of some point p,and O, (p)a T-open set containing p. (Wlun the topology T is clear from
the context, we do not use it explicithy and write, [ (p) or O(p).)

Definition 1.3: Given two sets S und S'.acriterion C=ab " T, T 0. an interpretation H,,
and two ohch‘E';e Sands' € S'. Then s is a model of s relutive to ¢ and under 11, it and only if,
the inverse image under [, ol every neighborhood N(¢(s)) contains a neighborhood

N(®'(s")) ol @'(s"). A succinet statement of Definition 1.3 is: 8" m(C, [, )s 1T ¥ N((s))

€.y (0esn INGINE LS (N SN@S ) C IR (N ).

The fundamental idea behind Definition 1.3 is that we want the important characteristics
®(s) and d'(s") to agree ““within T\, under a suitable transformation H,, . The ideal situation
1s where HV > ®'(s") = d(s). Given that certain cerrors and approximations t are considered,
we only care to (or are limited to) “end up” in every ncighborhood of @:(s): however, exact
agreement (the equality above) is not required. Furthermore, we cannot in general make explicit
use of @'(s") or #(s), since they are usually not known. All we can use are points which are at
best indistinguishable from &'(s") and ®(s).

In most practical situations, the modeler often cares to get only e-close to the true value
d(s) of s€ S, wheree> 0 is some fixed number. The following definition is intended to
encompass these important cases.

Definition 1.4: Let Ty, and T,,. be generated by metrics d, and dy . respectively, e > 0 be a

fixed number. and ceteris /mnbus Then s’ is an e-model of s relative tol Cunder H,,/
sSm(C.Hy e)s i 35 >0 2 N(D'(5).6)C H! (N(d(s)e)).

In reference to simulation models. we shall employ the notion of an indexed set.

Definition 1.5: An indexed set (indexed class), represented by Sy s €S xe Xs is a map
v X — S from a given set X (the index set) into another set S (the sct of mdc\ud elements).

Since S\ is thus a map, the expression S (x)= s, makes sense. We shall also need the concept of
a structure and a substructure.™*

Dcﬁmtlon 1. 6 A function structurett is an object FS = ;A B; Ff with F = (, te T% Q).

where ~, "[' te Tg is a family of a(t)-ary functions from A to B. wherc a: T — N (the nonnegative
integers) is the arity function of £ The function « determines the “arity™

of elements from F, and

.
We have only considered deterministic errors and approximations thus far. Future work will extend the present framework
to include various types of statistical errors and approximations.

I \Hu.n metrics dy, and dy;. generate Ty, and Ty, we shall also write C = (b, P, dy )

"Here our interpretation of the terms “'structure™ and “‘substructure” is in basic azreement with the meanings used in sct theory
and mathematical logic, 3undin general topology.4

T]‘:The term “function structure” is also used for relations or 4 combination of functions and relati

€ ons, in which case it is simpl
called 4 relational structure or just a structure, respectively. ply
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alt)

vte T, f[: I1 Au - B. A, = AL We thus consider only functions with at most countable arity.
u=1

\ . R

and when a is onc-one it can be omitted. and we shall also write /7= i te Tiin that case. where

each ft Is a t-ary function ltom A to B.

We shall also need the concept of a substruciure

1}

Definition 1.7: A lunction structure (YS) = A B \Ahcre/ <-;l RE

U= T'(‘ a’ylisa
substructure of a function structure FS = A B. < I te T‘ a)% ifr

1 A"C Aund B' C B,
2. T CTand « agrees witha' on T',
In} ! ’ . . . ) ; K !
2 V[GIT.JI.JI‘ dgl oy = A
tl(ul cdy ;10,'“r))= Ilr(ul N TN aa'”')).

2. Experimental Objects

In this section we define the class of objects which will be the subject ol experimentation as
defined in this chapter. These cxperimental objects - also referred to as experimental units in
statistics®  are treated here as mathematical entities, but they actually represent “physically real”
objects such as computers or their programs, chemical plants, economies, etc. This distinction is
here irrelevant, however, as we pointed out in Ref. 1 when models were discussed.

Whereas in Chapter | the sets of prototypes S and model candidates S’ represent arbitrary
objects. we shall assume for the remainder ol this work that experimental objects have a particular
structure. as the following definition indicates.

Definition 2.1: An experimental object (Fig. 2)is an indexed class Sy =7Js @ X € Xswhosc
elements arc relational structures s, = 4§ H. S/ ! ryf} (see Ref. 1). The set> Y/ and A are
called the input and oweput sets. rcsputlvel\ the relation ry < W x 2/ the input-output relation

ol sy - and X is @ set underlying a topological space . A = (X I'). the parameter spuce.

In many cases. for instance when Sy consists of dynamical syvstems for which the concept of
state is defined. the elements s will be function structures and r_ will be a function
A 2/ — A/ In these cases cach input therefore produces only one output and r_ isa function
A, . and this is what we shall assume for the remainder of this work.

A = X.Ty)
/a s, Y

Fig. 2. A general experimental object.
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In the context of statistical experiments, particular interpretations are attached to the sets
2/ and A/ and the space A . us follows.

The set X represents structural variables, environmental conditions, internal parameters,
policy levels (sec example below), starting states, etc., and is quite arbitrary in the sense t/hat it
may contain scalars, vectors, lunctions. matrices, and so on. The particular structure of A asa
topological space was discussed in Ref. 1. .

The output space .7 is the Borel space ﬂﬁT = IIEIT R, 8., T some index set,” and is called

the observation space (sce Rel. 2 for the definition ofﬁT as a cross product th B,)- This space

consists of the observable outcomes Il R, — the set of all real functions on T — and the
observable events Bt 6 teT

The input space #/is called the driving space and represents the conditions under which the
object is “driven”” with random numbers, sequences. or trajectories ( trace-driven). in accordance
with some probability law P. This is particularly the case in simulation experiments where Q/is a
set of numbers called seeds which are used to initiate a sequence of random numbers via some
generating scheme such as the Lehmer scheme, for instance. Accordingly, we represent the input
(driving) space Y as a probability space P =(Q2, &, P), where § is a set of random numbers,
seeds, or traces. If the model structure itself is random, this randomness is often isolated as an
environmental input and P would then also characterize this randomness. Note, however, that
this space is fixed relative to Sy in the sense that each s € Sx is subjected to the same input
conditions Z/or P. We thus obtain the structure of Fig. 3, where V x € X, S, ={Q, Z ;{7\N }}
a function structure.

In a given experimental situation, a statistical experimental object Sy can be viewed as
producing outcomes in R =t lg TR" called samples, in response to stimuli such as seeds, random

numbers, and traces selected from £ in accordance with the probability law P. If P represents all
internal and exogenous randomness of the object, and we take some x € X, then the response of
S, to any stimulus w € Q is a samplei (realization, time series) A (w)= @T w) =
vy, teDeER, of a stochastic process @T‘x with index set T, which we call the output process
of s_. The output of Sy is thus a family @T,X = {@T,x: X € X}ot‘ stochastic processes.
Similarly, if a fixed w € Q is considered, @T,x(f") = %%T,x(‘*’)f X € X} is a family of
realizations or time series, one for each @T’x € G T X If each %T,\ is ergodic, this family
contains all the statistical information of the collection @T,x (see Ref. 2).

.

A =X.Ty

P=. 7. P Y =(IR, ®B) = (R
e v ref‘ LY

Fig. 3. A statistical experimental object.

1LT will usually denote the time scale |0, ©9).

iA]so denoted by y_ (W, ') to reflect the index x € X and the dependence of the sample upon w, which is fixed in this case
and t(w), which is variable (consider y(-,1) similarly). ’
TtAlso written as 2/, when the index set T is evident.

126



In conclusion, the set ¥ of experimental objects in an inquiry 1 = (¥, Q. M, D) constitutes a
family of indexed sets Sy = gsx €S: xe X&, where S is some fixed set of indexed elements
(Definition 1.5) and X is a set underlying the topological parameter space A= (X, Ty). The
essential way in which these indexed sets differ is in their indexing scheme (see Definition 1.5.

where Sy is defined as a map ¢: X - S), and their elements s, are function structures
{2, 2\ }} (Definition 1.6),

Remark 2.1: We have treated the general case where each encounter (x,0.y (w, ")) with the
experimental object produces a time series Yy (w. ). In many cases, the output of the system Sy
is simply a family of random variables Zy ={ Z: Xx€ X}. The observation space is then simply

Hﬁ =(R. M, and each encounter (x,w .Y (w)) then produces a sample y_ (w) of the random
variable Z_ .

Remark 2.2: Sometimes the boundaries of the objects considered for experimentation are not
easily defined. If these objects have random internal structures, or are exposed to environmental
conditions which cannot be isolated in the form of an input space P, then this space is often not
included, as in Fig. 4. In this case, we still assume that each s, produces an output process defined
on a fixed, but not necessarily specified, probability space P =(Q, Z, P).

Example 2.1: A Chemical Production Problem. Consider the production of chemicals by a
process which is sensitive to random environmental conditions such as temperature. Let the
factor space A represent the amount of catalyst introduced in the process, and let /ﬂx be the
yield of the process. Then this physical situation is described by the experimental object of Fig. 4.
Next consider the simulation of the above problem where the environmental conditions are
modeled with a random-number generator P. Then Fig. 3 illustrates the experimental object
(“"model”).

A = X.To

-//// = <RT ) ﬁ‘[’)

Y

Fig. 4. An autonomous experimental object.
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3. The Question Set Q

Let us now define what we shall mean by a “question™ (Section 3.1) and when questions are
well posed in the present context (Seetion 3.2). and then present some examples (Section 3.3).

3.1. DEFINING A QUESTION
Consistent with the linguistic definition” of Harrah.” we define a question as follows.
Definition 3.1: A question is a mapping q: S — Z. where S is the domain of the question

(about which the question is asked), and Z is the response set
An element z € Z is called a response to g and a pair (s, .2, )€ S~ Z is called an answer to q,

which is a correct answer to il ats 1 =12,.

Example 3.1: Consider aset S of random variables and let it be asked, **what is the expected
value of X € S?" Then q: S —~ R! is the expected value operator E(*). and (X.a) is the correct
answer to ¢ if E(X) = a.

2. QUESTIONS IN EXPERIMENTAL INQUIRIES

In the context of experimental inquiries, a more specific interpretation is attached to questions,
as the following definition shows (refer to Ret. 1, where experimental objects and the modeling
of indexed classes are discussed).

Definition 3.2: Consider a set ¥ of experimental objects S\ whose elements are from some
set S, and a pdrametu space A =X T). Then an e\penmental question (Fig. 5) is a function
q: W - Z, the response sct, where \Ifq {S\/X DSy eV, ‘( C \;dnd Sy is treated as a map
from X to S. We shall denote the elements of & bv SI Thus a question usually does not “ask
about™ all parameter levels X but rather about a chosen subset 2 ‘(q c X.

i =Ty

Vplw) =ty

1 ~'\’n

Fig. 5. Asking general questions.

"Wherc a question is a statement ot a particular form: the disjunction of all its possible answers.
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Example 3.2: Consider the chemical production problem of Example 2.1. Let the analyst
be interested in the sensitivity of yield to changes in factor level x about a given operating level
Xog € X. If T is generated by a metric d on X, he may wish to vary x over a tinite subset X0 of
N(x,,, €), an e-neighborhood of x;;. He would then phrase his experimental question g about the
class of objects W :{Sq: Sy = Sx/xq*sx €V.X, = Xo}-

Our approach to experimentation is similar to that used in response-surface studies® 8 where,
in response to a question q: \Ifq — Z, experiments are usually conducted in stages. as follows.

First. “local™ questions g, : S — Z, are asked about individual elements S_(x) of S_ € ¥ |
X E Xq. Thus a local question is one where the parameter level x is held fixed. Then a collective
question q : \Ifq — Z, is asked about V¥ that “collects’ the responses (S, (X)) x € Xq,
mto a response (, S ) =Xy S (x)): xeX zfor S € \lfq Finally, a global question
Qy: Z, = Zis asked about the COllekthC responses (, (S ). Clearly, when such
a decomposition of q into component questions 4g-a, q, is possible, the combined
result of asking the component questions must be the same as asking q directly. Hence
q=q, <q, . whereq;: ¥ —~ I1 (Z,) =2, isdefined by ( VS, €V ) (g, (S)=

\EXq

3(x. qQ, ° Sq (X)) X€ XqC X)g. and q,: S~ Z is a (local) question about the elements S.

Example 3.3: A Global Question about Indexed Classes. Consider Example 3.1. Let ¥ consist
of indexed sets S, of random variables Y, x € X. Thus ( Vx € X) (Sy (x) = Y, ). Let q be,
“What is the value x* e Xq of the parametcr at which the expected value E(Y,) is a maximum?”
Then gy (s) = a4y + S, (x) = E(Y ).a,(5.) = JE(Y,): x€ X, and ay is sup {E(Y,): x € X, f

Remark 3.1: Example 3.1 may be discussed as a parameter-estimation problem (to simplify
the discussion, a controlled parameter x is not included), where S is an indexed set of
distributions Fg = %FB: €O % and q: Fg — 0 is the parameter operator, in this case the expected
value operator E("), i.e., q(Fp)=90.

3.3. RELATIONSHIP BETWEEN QUESTIONS AND THE PERFORMANCES OF CHAPTER 1

We shall make no mathematical distinction between questions and performances. Thus, exactly

as in Chapter | (see also Ref. 1). q may be considered as a function from \If to a topological
space Z=@. T,), where T, represents the various inaccuracies assoc1ated with q, as in the case
of performances.

In this topological situation, an answer (Sq 7)€ (‘l/q X Z)to q is correct (T, -correct) if z is
T, -close to q(S ). i.e. 7z CL(T, )q(Sq) see Definition 1.2). If the decomposmon gintoq, - q, is
us:d 4, may be considered as a function from ¥  to the space Z =(Z,.T; ), where
Z = Ie'[X (Zy), . and T, isthe Tyuhonoffprodu«,t H (Ty X T ) and g, is a map from

N q (-]

S to a topological space ,Z =(Z,. T, >. Next, the “global™ question (performance) g, is a

mapping from .Zl to the space Z-= <Z, T,). Regardless of the accuracy of g, , the inaccuracies
embodied in T, are partially determined by Tzl . and we assume consistency in T, in the sense

that g, ! (T,)Cc T, . i.e., q, is continuous.
2 . 2

: § .
TEach Sqe\l’q is of the form )sXES. xEXq :
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To conclude, in an experimental inquiry 1=, Q, M, D). the set of questions Q about ¥ consists
ol questions ¢ about \Ifq. Thus Q = q;: \lfq =<2, T )€ J some index set , where (Vj€ )
: j

(v, =1s,: S Sy SyE X C xh.

j g

4. The Experimental Design M

In a statistical inquiry. the essential purpose of an experimental object is to produce samples of
the output processes. The purpose of an experimental design or sampling plan M is to state
precisely how this sampling is to be accomplished by specifying how many samples (not necessarily
independent) are to be collected for each controlled parameter setting, and in what order. There
are two essential sampling methods: fixed sampling and sequential sampling. With the former
method, the number of samples to be taken at each parameter setting is specified in advance of
experimentation. With the latter, every time a new observation is made, the sampling plan specifies
whether sampling is to be continued or stopped with that observation. If M is part of a sequential
decision procedure SEQ = M, Dy, where D is a decision strategy (see Chapter 5), M would then
also specify at which observation times a decision is to be made. Clearly, fixed sampling is a special
case of sequential sampling.

In the present context of experimental inquiries, sequential sampling in turn can be executed in
two distinct ways: ordered sampling, where the parameter settings are stated in advance, and
mixed sampling, where the next parameter setting depends upon observations already taken. In the
mixed case, therefore, the design may require that additional samples be taken for another
parameter value at which observations were already taken earlier in the experiment.

In this chapter, we shall first present the general (mixed) case. Then an important special case
will be discussed, and we conclude with an example.

4.1. DEFINING A GENERAL SAMPLING PLAN M

Consider an experimental object, such as in Fig. 3, whose output for a parameter level
sequence <x] Xy X3 ) is a process (Y1 (xl ), Y2(x2 ),...), let Iy = o(TX ), the Borel® sets
on X generated by Ty . and let F(Y,.Y,..)=0(U Yil (B)), the g-algebra generated by
U Y;I (8)), then we define M as follows.

Definition 4.1: A sampling plan or experimental design M(¥) for a class of experimental
objects ¥ is a measure-valued function u on the probability space (2, Py with the following
properties:

(1) YVweQR, ulw)e M(X, Zy ), the measures on (X, ).
(21 Joru) =o€ MX, 20f € FOY (6, Y5000 Y ()0 Yy (Xy(x, )} where?

#Y, () x € Al=v(A) Az,

L
"These are generalized Borel setsg'l 1

; and are not necessarily the same as the standard Borel sets $ on the real line Rl.
“H# A) is the cardinality of a set A.
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The interpretation of u as a generalized stopping variable! 2 is evident. Indeed, let X be a
singleton 3x0$ and let M(X, = Iy)= M X,z x ), the interger-valued measures on (X, = %+ Thus
each vy € M (X. = Ty ) satisfies the LO]]dlthI‘l (VAe Y x ) (wy (A) € N), where N are the natural

numbers. Since X = g ()2 in this case, we only necd to COl’lS]de] the event 3 f and each v is

specified by its value atzxos and equals an integer n, there.
UN

Expressing this special case in our framework, M(¥ ) is a random variable uon(Q. 7 P) with
the following properties:

() Yw€Q ulw)EN

(b) ;u;: plw)=mée N% S F(Yl(xl)),Yz(.\O),”..Ym (X)), where #)Yk(xo): Xy = xof
=m. obviously.

Clearly. u is a stopping variable (time).' 2 Our generalization is thus an extension of this stopping
concept to the case where, instead of having a single process /& = (Y1 (XO)""‘Yk(XO)"")’ we
have & family of indexed processes /// ;//\ X € X%. In the £eneral case, therefore, for any
A€, andanvw € Q. u(w) (A) bp€C1flt‘S how many samples are to be taken at a parameter level
i AL and utw) (N) is the total number of samples taken for that particular w € .13

An important special case in practice is where the parameter levels constitute an at most
countable partition PAR(X) = 3\' S IsofX the number of samples taken at some level
X, € X arc independent of the number taken at any other level X; # Xy, and the experiment is

cuted by samipling sequentially over all the values of%x i€ I&-— X in accordance with a

pdrtlmlar order X| X5 X3 ... In this case. the output process is Y1 (x, ),Yz(x] e ,Ykl (xl ),

Yl (x50 .Ykl(x[ ). and condition (2) of Definition 4.1 may be rewritten as
() vy € X) Mot mw) (x) = k€ FIY, (), Yy (), Y, (3],
] ] ] 137 27 kj ]

Now that we have stated what is meant by a design M(¥) for a class ¥ of objects, let us bring
this in the context of an experimental inquiry I. Considering a set of questions Q for the inquiry I,
we now define a sampling plan or experimental design M tfor the inquiry.

Definition 4.2: A sampling plan or experimental design M for an inquiry [ with question set Q
is a set of designs M = ;M(\If ): q € Q. where each M(\I/ ) is a design for \Ia (i.e., to answer q).
Expressing this defimtlon in terms of generalized stopplnz variables, M = ; ot Q—>M(X Zx )%.

2. EXAMPLE

Although the merits of sequential sampling techniques are most apparent in a decision
theoretic setting where losses and risks are considered, let us cite a simple example of a scheme
which illustrates some aspects of sequential sampling and which is used in simulation practice
where the modeler intends to sample until he believes that system transients have decayed below
a certain level.

Consider the system of Fig. 3, where the analyst is faced with a class ¥ of experimental
objects Sy whose elements s, generate an output process j and the assumptions underlying
part (2') of Definition 4.2 are satisfied. If the analyst is interested in the expected value of j
and believes that these processes are stationary in the mean beyond a certain finite but unknown
“‘transient time’’ 7, then he might consider the following sampling scheme.



For cach X € X, stop sampling at ij(,\l) it Max %| ij(xj)— ij_nj(xj) [: n= l,2,...,nj < ki
< e> 0, where ? ) (X ) = —l ( f Y.(,\'.)). and n is some fixed number for each Xj-
m =
In other words, the sampling process at level X; stops at k when the last n estimates Y (x ) for
the mean E( f///\‘ ) do not fluctuate about Y (x ) by more thdn e > 0. Of course, if he has some

estimate n_ =7 for 7, the analyst may want to reject all samples up to n_ by subtracting
Yn(xj) fromall Y (Xi)‘ m>n_.

5. The Decision Strategy D

Now that the experimenter has stated his questions Q about ¥ and he has an experimental
sampling plan M, he must consider how he will answer or estimatc the answers to Q by
executing experiments’ upon elements of ¥ in accordance with the design M. These experiments
are usually finite and rarely provide the correct answer (see Definition 3.1). He must therefore
“‘estimate’” or “‘decide’” what the correct answers are from the (finite) body of collected data.

In this section we show that this process of “‘guessing’ the correct answer can be satisfactorily
discussed within the framework of statistical decision theory.!4-16 Specifically, we first discuss what
is meant by a decision strategy (Section 5.1): then we show in Sections 5-2 through 5-4 that the
techniques of sequential hypothesis testing, parameter estimation, and confidence sets can be
expressed in this framework very naturally. Finally, we define what is meant by a decision
strategy D for an inquiry 1 (Section 5.5), and we present an example in Section 5.6.

1. DECISION STRATEGIES

A sequential statistical decision problem!” is a 4-tuple ( /4 AL, 4/) where .4 and A are
topological spaces (X, Ty} and (4, T ) called the parameter space (states of nature) and the
action space, respectively.!® The function L: XX 4 — R! is called the loss function, and 4 is
a stochastic process on a probability space P=(Q2. 7. P), called the obserration process.

Coupled with such a decision problem is a sequential decision strategy D = ;d : R = A4,
n= lj,...% where each dn isa measurable mapping called a decision rule, and a family of
representation probability spaces * %(R ﬁN. -2t x € X which contains the space induced
by 4/ and P. When X is a set of *‘possible states of nature.” it is the purpose of the decision
strategy to determine or estimate which x € X is the true “'state of nature.” as follows.

The statistician observes a sample (Yy:Yy e .Y, )€ R" from the random variables
(Y,.Y,,..Y )of “ then he makes the decision d 2 (YY) € A and incurs a loss
L(x d (yl ,yz, Y )) where x € X is the (usually unknown) state of nature. Since (Y Y )
are random vanables d (Y,.Y,,.Y )isalso a random variable. Consequently, the experlmenter S
objective is to select or compute d, such that the expected value of the loss
(l)il;t[;(]j(ncglna(zl]nctl\o(; )l)al*.(iz;lffdxt.he risk function R(xd_ ) of d__is “minimized” in some sense,

In the context of experimental inquiries as we view them. this decision-theoretic framework
applies in a slightly modified form. The parameter set X includes two types of parameters: state

'&See Section 6.1 for a precise definition of experiments.
N are the natural numbers (also see Section 4.1).
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of nature © and controlled parameters Xc (the familiar index set). This is expressed by setting X
equal to the cross-product X, X ©. A typical decision problem is then simply to estimate the true
state of nature for expe rnmental objects, for a set of parameter levels X C X, . in response to a
question q and consistent with an experimental design Moy ) (see Chapter 4)

In this report. we do not address ourselves to the general dcusmn theoretic issues related to
the selection ol decision rules and loss functions. Rather, we shall limit the discussion of inquiries
to the case where sequential decision strategies have been determined and will leave the issues
associated with the selection of such strategies in the background. In addition. we shall assume
that the decision strategy D consists of fixed? and nonrandomized (simple) decision rules.

Let us now show that the important sequential statistical techniques can be expressed in this
framework quite naturally. In this discussion the controlled parameter set X, is not included
because it is not important to the validity of the arguments and would merely complicate the
discussion. We thus assume that X = 0.

5.2. TESTS OF HYPOTHESES

Consider a family ot spaces Pg = 3(9 7 Pg): 6 € @\ and a random variable Y: © - RN.
Take PGO € Pg. where 6, is unknown, and set up the hypothesis (nu/l hypothesis) H, that

6, € A C O against another hypothesis (the alternative) H, that b, € A'=0-A.Thena
simple test of Hy is a 2-tuple T =(T_,B ). n fixed, where T : R" - R! and B C R!. and H,
is rejected on the (critical) reglon C = ;w T,-Y(w)eB { C Q or its representation region
C, 3\—(yl y,)€R": T(y)eB %CR"

Under the same condmons as above a sequential test of HO is a sequence T = ((Tn ,Bn):
n=12.) where, ¥n=12.T R" - R!, B, C R! and H0 is rejected on the regions
'V=(_\'l Y )E R" T (y)E B .n= ].2,...$ and HO is accepted 0n§§7= (yl v ¥ ) € R":

T () €B, =B l.n=12_ g

As a decision problem, T defines a strategy D =4Jd @ n=1.2.. i as follows: vné&€ N, d (yyyy)
=a, EAIffT (y,...y )EB .and vneEN.d (v ..y )=a, € Aiff T (v ...y )€ B

If an indifference region is defined, i.c.. B U B'n # R!, then the sampling rule (Chapter 4)
would call for sampling to continue until a sample falls in some B_ or B’ . me N.

—

5.3. ESTIMATION PROBLEMS

A sequential estimation strategy (statistic) is a family of statistics E = 3Tn: R" > (0,Tg),
n=1,2.3. ! where ©.Tg isa topological parameter space and each T is a function of n
observation random variables. Clearly, by setting Tn = dn ,® = A (the action space), we obtain the
familiar decision-theoretic setting.

5.4. CONFIDENCE SETS AND INTERVALS

Let Pg = 3(9. 77 Py 6 € G)$ be a family of probability spaces, each specified by a particular
value of § € ©. Let Y'") be a random variable from © to R". and T  a function from R" to 29,
Then T (y,....y, y=B C 0 isa (] -a)-confidence set estimator for § € © iff (V6 € ©)

(Ppdw: 6 €T, <YM (W) =B(w)C O =1-a). Then a confidence set test CT for 6 is a statistic
CT = Tn R" - 2@ such that P TS ; Y. ,yn): 9 € Tn(yl,myn)$= k, where PY‘"’ o is the

TThe rules are not selected at random. )
A randomized rule produces probability measures on the action space A.
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probability induced upon R™ by Y and Py Finally.a \Ct]llt‘l](l’lll C()I]'}ldk‘l]\.‘v set .tc.\‘l SCT for g
AR - The interpretation of SCT as 4

) . no. -»U —
is a family of conlidence tests SCT =4 (. R" - n=1.2
sequential decision structure is now clear,

Remark 5.1 Usuallv, when @ = R tor instance, estimators I, are induced by simpler vector

T . L o .
I'unctions[, M RY - @ - @i an obvious way hydelinimg Ty ooy o = (L, v sy
n.2

T (y,...v )] C o =R Inthis more tamiliar case. the contidence sets are called confidence
Al n

intervals

5.5. THE SEQUENTIAL DECISION STRATEGY D),

In this section, we discuss how a decision strategy D is expressed as a decision strutegy Dl for
the inquiry 1.

Recall that a decision rule is a function from the sample space R" to the action space 4.7 ).
and that a question q is a mapping from * Yy to(Z,T,). These decision functions d - are usuallv

considered as “‘estimators™' ® of the parameter (state of nature) 8 € @ in which case the sets 4
and © are assumed to be the same.

Similarly. in an inquiry as formulated above, the purpose of actions is to inform the statistician
about the correct answers to . These actions must therefore by interpreted in terms of possible
responses z € Z to q. Accordingly we assume that A = Z. We shall also not distinguish between the
topologies T, and T, (sce Chapter 1). Thus (4.7 ) =(Z.T ).

Note that. since a sampling plan M is also specified, there is no need to make decisions when W
requires that sampling continue. Therefore, decision rules dn need not really be detined on all of
R" . n=1.2,... However, it is usually simpler and more convenient to make the decision strategy D
independent of the sampling plan M 17! % In fact. this choice is often mandatory because the
experimenter may not know any ol the experimental outcomes in advance. We can now define a
decision strategy D.

Dcfinition 5.1: Given a set of experimental objects W, a set of questions Q = ;qi: \I/q = (2. T,

Then a decision strategy to answer q € Q is a set of decision rules D = /Ll - R" = «(Z. T %
q.n-’
A decision marcg\ Jor the inquiry Tis then a decision strategy to answ 0) Q. and is a family ol

strategies D q L qe Qz.

a strategy can be structured similarly. The strategy D then has two components:
component Dq and a “global™ component D

The local component is defined by D| 1;: dn RT=XHZ xe \ .n=172, : where
cachd,  isa deuslon rule associated with parameter level x € \ and is dchmd bv

dn:\(yl ey ) =X ) € NX Z, Therulesd - estimate the local performance” of experimental
objects Sq at some fixed parameter setting x € Xq

Remark 5.2: Corresponding to the decomposition of a question q into a4, "4, (Section 3.2).

a local”

A set of indexed classes with parameter set X
Recall that every question is also a pcrtormunch function (Section 3.3).
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The global component is cmployed at the (random) conclusion ol the experiment and is then
simply a fixed decision rule Dq , =14d

g2 xle-[X (XX Z)) —~Z % which operates on the results of
the decisions d, .. Corresponding to the special case of Section 4.1, when decisions d,  are the
same for each level x, then Dq‘l is determined by the strategy D = ;dn: RV = Z, . n=1.2_. % and
dn‘\ are defined by dn‘\(yl cnY ) = d (Y ey ).

5.6. EXAMPLE: A GENERAL REGRESSION EXPERIMENT

Consider a family ¥ of experimental objects such as in Fig. 4, where cach s, € Sy generates a
random variable Y . For any S\ € V. let us be interested in the response surface
RS = ;(x‘ E(Y M) x€ Xg. In this case. the question set Q; consists of a single question ;qs which
can be decomposed into (see Section 3.2) q = a, - q,.whereq, is the identity mapping.
In order to develop a decision strategy D, , to answer q, let us assume that RS is behaved
as follows: a
M
E(Y,) =3 0, f.(x). where f;.i=1....\M,is a given set of functions (usually continuous and lincarly
i=1
independent! 3 ). called the regression functions (on x), and 6, are unknown. Then a decision-
theoretic approach is to find “*best™ estimates 9i, i=1.2...,M, ie., those that minimize some risk
M
function R = E(L(E(Y_ ), ¥ f.(x)).
i=1
Consider now the special case of linear regression, where fl (x)=1, f,(x) =x, and fi(x) =0
fori> 2, and where the Y are normally distributed and have a common variance 0. Letus
estimate the answer to q by minimizing the mean of the mican-squared-error loss function
L(E(Y ). I::(Y\ N =HEY )-6,x)- (él + 92(x -x))]?. where X is the arithmetic mean of all the
parameter levels in X and was introduced to simplify later expressions.

Next let a (non-sequential) experiment (see Chapter 6)( <(xj D M = Ij>: 1 € D be exccuted,
. i _ )
where (xJ. y, 1€ IJ) is a local experiment of length’ :(Ij) at parameter level Xjy oS the ith
IN i N
observation at X;. and =(J) is the number of parameter levels used. Let 31)& jE J>$ be fixed before
experimentation. This determines a fixed design M, and the experiment is of length* 1(;[ #(lj) =n.
i€l

Now consider the decision strategy D (independently from the design M). The best estimates for

the above problem!'* are the following:

2 2y, (x-X)

. S. v i i R
él = 2 2 y, .andd, = 2  where 1 Sy =€ ey .
]GJ IGIJ Il 52 H #(1.)
X i€l !
v S #(1)x
jé] X (xj X) - j j
2 = — . X =————"—
#(1.) - x. (x, - I #1)
jgl (1) x; (% = x) i€ )

+:( « ) is the cardinulity of a set &
T #1) is the arithmetic product of the #(lj).
=
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—~
// ~ . - ~

Hence t(/\'\ =0\ =0, N = p:()l | 1)3(,\ — v ). This least-squares estimate 1s unbiased and
has the smallest variance ol all estimators consisting ol lincar combinations ol the observations. '
Finally. the decision functions (rulesy d - produce, M response o question g actions

M

S EII ()= 0o+ 9_,\ €7 ied (v oy )= UGN d, 5 (v, ey X, where

n o\

are defined as above with IT = (Ii) =n.

fay
=

and 0, y

: =1 and 1
n and d”: 0y - and | n

6. Simulation Experiments

The purpose of this final chapter is essentially threctold. First, we shall discuss general experiments
in the context ol inquiries (Section 6.1). In Section 6.2, we shall bring to bear much of the axiomatic
modeling framework developed in this paper and address one of our early objectives: the definition
of simulation. Then. we relate our modeling theory of carlier chapters to simulation experiments by
incorporating it into the more general framework of simwlation inguirics

Although much of this work is definitional and is intended to constitute u framework for further
rescarch. two theorems and one example are developed in the last section (Section 6.3) which
illustrate some of the important modeling issues in simulation.

Expressed in terms of the modeling framework of Chapter 1, the first theorem shows that, under
reasonable conditions, continuous functions on the performunce spaces VO @ (S)and V' D 4’ (§)
preserve modeling relations. The second deals with the “information™ conveyved by a sample taken
from an object known or assumed to be a model and develops an expression for the probability that
decisions made with the model be correct.

6.1. EXPERIMENTS IN INQUIRIES

Given an experimental object. an experimental encounter is a pair (X ). where v s the
outcome fsample, observation) of the encounter at parameter level x.

An cxperiment is a sequence of encounters £ = x.v)r 1€ lix e X, Isome index set. When
the parameter sct X is ordered as -:x] Xy X5 Land sampling is performed in accordance with that

order. £ can be expressed as £ = <<(.\’J.y\. ) i€ IJ): I1€ Doasequence of “local™ experiments at
)1

fixed ']cvcls X, .xz.,, -\X; . where z(l‘b is the number of encounters at level \ (recall our discussion of
experimental designs). ’

Sometimes, in parameter estimation problems for instance. the parameter space A s
@= (©.T¢). aspace of noncontrolled parameters.”™ Then our experiment is a set of observations
L=<y, 1= D.

When the object is driven (Fig. 3) with inputs selected independently® from a set © underlving
a probability space* P =(Q, 7, P)in accordance with a probability law P (when the object is
driven with random numbers, for instance), then a conrrolled encouncer is a triple (X.w.V. (w))

. e 0y L) . : . ' ‘4 - \
where vy (w) is the outcome at\ level x due to input w. Then a conrrolled experiment is a sequence
Ql controlled anom‘itu sk, pINwv () r 1€ T The following definitions place these concepts
in the perspective of an inquiry 1= Q.M Dy,

. Ve

T . /

" The mined case -//= . /L, X O 18 also possible

*Which also represents all the exogenous and endogenous random effects that atfect the object.

136



Definition 6.1: An experiment £ = xy ) ieloxe X € X isan cxperiment E | to answer
€Qiff (3w EQ) (VAE T, )(#3(x.y,)e E:x€ Al =u,(w) (A)). (See Definition 4.1)

The definition simply states thdt the experiment E must be executed consistently with the
design M(¥ )e M forqe Q.

An e\permzentf()) an inquiry 1is then defined as a union of experiments Eq = U lz"q. and
similarly for controlled experiments. 4€Q

6.2. SIMULATION INQUIRIES

The groundwork has now been laid for describing what we mean by a simulation inquiry and
tor defining when an object simulates another.

A typical simulation problem can be informally described as follows. Consider an experimental
object (prototype) S*, which is unknown except for the fact that it belongs to a prototype
class ¥, and a set of questions Q about ¥. Then consider a model candidate S*» which is known
to belong to ¥'. and a corresponding set Q' of questions about ¥'. (See Chapter 1 for an
analogous treatment of performances.) The simulation problem is then typically to obtain answers
to Q from answers to Q'. In terms of inquiries, we approach this situation as follows.

First we require an inquiry I' = (¢’ Q' M',.D") to answer the questions Q', and an interpretation
HZ . Z' — Z (see Definition 3.2 and Section 3.3) with which estimates to Q' can be interpreted as
answers to Q. None of these answers may be correct, of course. Finally. in order that we obtain
a simulation inquiry, we require that S*+ be a model of S* relative to these questions, as follows.

We assume two sets ¥ and V' of experimental objects Sy and Sy with parameter spaces

A =X, T’ and A = (X'.Tx ., respectively. Recall that a question set Q is a set

Q= 3q \I'qj (Z,T;).j€ J some index setg‘ where \lqu = 3qu = SX/Xj: Sy €V, Xj c Xé. and

similarly for Q'.

Definition 6.2: Consider a S-tuple SI=(S*y .S . Q.I'.H,). where
I S*( €WV and S*yre v
Q is a set of questions about V.
' is an inquiry (¥’ Q'. M', D" (with questions Q" about ¥').
H,: Z'— Zis an interpretation map.
Then SI is a simulation inquiry it (v q € Q) (S*y - m(C H,)S8*, . where C =.q.T,.T,nisa
modeling criterion (see Definition 1.1), and ¢’ € Q is the questlon gorresponding toq€ Q.
The relationship (Vg € Q) (S*y m((’q,HZ)S”‘X ), which is required to obtain a simulation
inquiry. is precisely what we shall identify with a simulation model.

L

Definition 6.3: Consider two sets of experimental objects ¥ and ¥', sets of questions Q and Q'.
and an interpretation //,, as in Definition 6.2, and two elements S*, € ¥ and S*+ € V' Then
S*y v simulates S*y relative to he criterion C_=(Q, Q. T,.T,;n and interpretation
HZ iftvge Q) (S*Xm((’ H, 8% ), and (CLH, ). S*¢r d]'ld S* are from a simulation inquiry SI.
When these conditions are s‘mshcd S*‘: is gallcd a sunu/anun mwdel of §* for the inquiry SI,
and we write S* - sim(C ./, )S* or S*xf sim(SD)S, . In any simulation mqtur_v SI. therefore,

S*y . sim( SI)SX.

The essential distinction between modeling and simulation is that simulation can take place only

in an active experimental environment where it is part of a particular inquiry. Thus a modeling
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relationship becomes a simulation relationship once the modeling criterion € = (b .fl)',TV.T\. 1 can
be properly interpreted as part of a simulation inquiry. as in Definition 0.2, This represents
precisely the position that simudation is an experimental activity whereas modeling is not, and
disagrees with views held in specific arcas such as automata theory. as we illustrated in Ref. 1. where
automata simulation was treated purely as a modeling problem.

As a linal comment. a simulation inquiry requires that S*\,' simudare S* - This fact is of course
rarely known in advance. since then there would often be no purpose in simulating at all. However,
it is almost abwavs assumed in practice. and itis the modeler’s responsibility to formulate and
and develop the object S*+ with enough care, and possibly with some verification and
validation.*+® in order that this assumption be reasonable.

6.3. THE PRESERVATION OF MODFLING RELATIONS WITH CONTINUOUS FUNCTIONS
AND THE PROBABILITY THAT MODEL DECISIONS ARI: CORRECT

Recall that, when questions  can be decomposed into ¢, - q, . as inSection 3.3, the global
component ¢, of ¢ was assumed continuous. The following theorem shows that. il S\' 1S a
simulation model of Sy for the questions q, and’ q'] alone (and an interpretation H, ), then

‘ 1

when any continuous 4, is composed with 4, as anew question g (similarly for " ), a natural
condition on H; : Z' = Z assures thut Sy« is also a model of Sy relative toq. q'. and A,
(see Fig. 6).

i
y
! . /: (X T
! g q
—
Sq A !
> i AN, - S x e X!
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Y=L Py t~——
‘\\‘ T
~\\-’ -

Fig. 6. Asking response-surface questions about experimental objects.

T .
SN the model question corresponding 1o qy-



Theorem 6.1

Consider two objects Sx € ¥ and Sx' € V', two questions G, ¥ - /! = (V.TV) and
q,"t ¥'= 7= (V'.T, », and an interpretation H, : V' = V. Then take two continuous questions
4y V- ,Z= (Z.T,) and q'2 SV - £ = (Z',TZ') and another interpretation 4, : Z' — Z, and
letg=4q, =g, andq’ =q', - ¢'|.Then. i ¢y =, q"\.Ty.Ty»and C, =¢4,.9',.T,. T, 7,
(S\r,m(C] H OISO A (q'] (S (G, HyH,, - q’l (Sy'N=Sy m(Cq,HZ )Sy . where Cq =
.q T,. T 0.

Proof: To simplify notation, denote Sy bysand S, by s s m(C, . Hy s = (VN(y(s)))
[(H\,(q'I (s')) € q:‘] (N(q(s))).Jsince q:" maps cach neighborhood N(q(s)) of ((s) to a neighborhood
N(g, (s)) ol'q,(s). ButH\,(q'l(s'))e q2" (N(a(s)) =q, -Hy -q'[(s)€q, - qz'l(N(q(s)))
C N(q(s)). Therefore, q, - Hy - q'l {s") € N(y(s)). Hence every neighborhood of q(s) is a
neighborhood of g, «H «q',(s"). and q'(s") m(C, . H H,. < q,'(s)= (VYN(q, - H, -q';(s)))
(N(Q'(s)N C H, ™' (N(g, - H,, q' (")) = (VYN(q(s))) (IN(q'(s)) € A, (N(q(s))) =
s’ m(Cq,Hz )s. as desired.

The following general conclusion can be drawn from Theorem 6.1. [f's’ m(C1 ,Hv )s and
4,.q',.and H, are chosen such that (vv' € V') (V' m(C,.H, )H,, (v.)), then s" is a model of s for
the overall (composed) questions 4 =g, g, and q'= q'2 . q'l, whatever s’ € S’ and s € S. Hence
continuous functions d, and qz' which are related in the above manner preserve modeling relations.
This choicc is reasonable because the purpose of Hy,; itself is to relate models to their prototy pes.
When q, and ‘1'2 are homomorphic® under (H\,.H,). for instance. this condition is automatically
satistied.

Example 6.1 The modeling of problems in utility theory is often accomplished
in two parts (Figure 6.A): the simulation of the dynamic and stochastic
structure generating the consequences or alternatives (the "technological

aspects of the problem), and the modeling of the utility structure.

If U°: V° —R is a utility function for basic consequences V°, and
the alternatives V are the lotteries (probability distributions) PM(V©®)
on V°, it is reasonablel7 to define the utility function U:PM(V®) — R by
(VPePM(V°))(U(P) = Ep(UO), where Ep(f) is the expected value Ofli Eder
P. When U° is continuous, U is continuous in the weak topology  ’~ ,
where convergence is equivalent to convergence in distribution (measure).
If s' is an alternatives model of s, and q'(s') is a utility model of
H 0q'(s'), s' is a utility model of s (for U9q and U'Oq') and utilities
ogtained from the model can be used to correctly infer utilities of the

modeled.
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Statistical

Consequences
(alternatives)

¥

V' = PM(V°')

Figure 6.A. The Modeling of Problems in Utility Theory.

Let us now turn to another issue.

Ve have stated carlier that experimental objects are often known or assumed to be simulation
modcls of some prototvpe. This assumption in itsell is usually insufficient to answer any questions
about the prototype. however. and that is of course why a simulation inquiry is conlcmblalcd. But
what information does such a model convey about its prototype in the course of such an inquiry?
When does the simulator stop sumpling? What decision rules d'n should be used?

Onc way to consider these “questions” is to ask another: what is the probability Pq g thatany
on

given decision z' = d" (v' ) is correct for u question g de. provides the correct answer to q
(alter suitable interpretation)? The following theorem attacks precisely this question.

Theorem 6.2

Let q(S*() = z, € Z. the correct answer to q about S*, and q(S* =7, el Let? S*g
snn(( H, )§’ X dnd"// T, /(Z nn, [ Q)T /(/ YOI, ! ((// )qand let there c\nst 2
ncv'hborhood ’\ q') € /(z q') \\ lmh Lontdmﬁ an at m0>t (‘Olmtdhlk‘ numbcr ol N(z' ne
", e /(/.q)) \\llh Pz’ e N7 N> 0. Then the probability P ' tlut 2 o=d o | v v )

R

is correct (T-correct) for ¢ is Pq g = inl‘gl’( z’n €. ’/(z’qr)): N(z' g E H, /, )‘.
on -

4 ' - 1 ’ '
fA(v\ 5hY Yy q 2(\-')= 4s - Hy ).
[y are the neshborhoods of 2 €7 from 77

e -
VU Thas will alway s be thie case when St N 1( I 7157 exveptin py dhological sitiation . whneh we shall not discuss here
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Prool: P(Ld'n =P [« VN(xq )E, /(/.q)) (Hy (2’ Ve T\l(zq )] Since S#(+is a model of §*.

q.

Py =P[1‘\1N(zq)€,.‘/(zq))(z'n €, (Nez )N = PLLYNG ,)eh’z" (. /(z 1))
N .

(z'n € N(?’ )] . This probability exists, since \\L assume 3 N, (7 1' /(/ 4 ), which contains

an at most «,ountabln number of N(z', /)C H, //(/ ). wnth Pz’ \(7 ') > 0. Thus

Pq‘d =P(z eﬂ?N(7 neH,"! ( /(/ )))=ml%l’(71CN(Z )): Nz’ 'neH 4’(7.(”')%.
Sincc HZ . / zq NN, /(zqv)=, /(7. )N H i /Z) where '/z are all the neighborhoods

rom T, , we obtain the desired result. and Pq 4 = |nl ?P (7', L EN(Z g ?\‘(z'q')e HZ" (, /Z )E.

n

This theorem indicates that the fact that S* r simulates S*y Isvery informative (for ¢) and
allows the estimation of the statistical “*quality™ of d’n exclusively in terms of neighborhoods of
the model, and regardless of the true value of z,- Clearly, these probabilities or their estimates can
be used as stopping rules. as the following example suggests. Note, however, that the probability
law of d'n and the values of z'qv are usually not known in advance of experimentation: otherwise
there would be no purpose in experimentinz, since Hz(z’q') is then known to be a correct answer
to g. In general, therefore, Pq ’d’n can only be estimated as the experiment proceeds.

Example 6.2 Consider Example 3.3 and let the modeler be interested only in a fixed value
X, € X of the parameter. Thus ¥ can be considered as a family of random variables Y*o (similarly

for ¥'). and q is the question, “What is the expected value E(Y 0) =z, of Y\n € ¥ 7" This

corresponds to question g, in Example 3.3.
Let Zandz be metric spaces (Z, T, and (Z'.T . Let Y', '0 be a model on_\O in the sense

that HZ(E(Y’XI )) = E(Y, ) (Fig. 7). Let the simulator be interested in evaluating the probability
0 X0

Z=@T)

X € X =T,
Y.
X0
H
X, €X z
F =TTy
= (Z.T,»
Y'XIO

Fig. 7. The objects of Example 6.1.



P €= P(Hv(d'n) € N(E(Y ). e =P( Hy(d' ) - E(Y\” )| <€) that the decision d' = Y =

q.d

1
n

M=

Y', be e-correct for ¢ = E(), where [ R B Y' ) isasample from Y'\n’ d’ is unbiased
i=1
forE(Y' + y=2" 1.
Yo

q

,
Further assume that Y’n has distribution f NORM(E(Y'\r ). O—n ) where o2 is the variance of
S0

Y"r (Fig. 8). (This assumption may be based on the fact that the central limit theorem may
-0

be invoked, and the quality of this assumption depends on the degree of independence and the
size of the sample.) Finally. assume that HV'1 maps N(E(Yx0 ). €) to a §-neighborhood

N(E(Y'\:O),é), regardless of the actual value of E(Y,\O) and E(Y'\,O) (as € — O this

assumption is arbitrarily accurate for standard metrics on RY). Then P(d'n is e-correct for q) =
P g =P € H,"! (N(zg. €)= P(d' € N(z' (. 8) =P(d' €[z -6.2 0 +8])=

n
} d -z
<5) =P 8 < n__ 4 <

"< ', A r> L, L - < 4 5 = —
P(d' S 2+ 8) M 27 =8N =P(S S d -7 o/ V1 o/ Vn

)= ( i\/_n_) -9 (M— ), where & is the cumulative distribution function
ag

1)
o/\/ﬁ o
of NORM(O, 1).

So in this case, the analyst can compute Pq g’ exactly, without statistical estimation. If

n.E

this probability is used to determine a sampling plan, by specifying that sampling continue

until Pq PR for instance, a fixed sampling rule is obtained (“‘stop sampling at n(a)’’),
a4’

and the decision strategy D equals 3d'n(a)‘. .

fyr (x)

E(Y' + ) R
c0
Fig. 8. The density function of the rule d 1’1'

TVWI\IORA\—H;;. b) 1s the normal distribution with mean a and variance b.

142



(9]

[9%)

oo

~ O

11.
12.

13.

14.
15.
16.
17.
18.
19.

References

G.C. Corvnen, .t Mathematical Theory of Modeling, Lawrence Livermore Laboratory.
Rept. UCRL-51726 (1975).

G.C. Corynen, The Modeling of Stochastic Objects, Lawrence Livermore Laboratory, Rept.
UCRL-51760 (1975).

J.R. Shoenfield. Mathematical Logic (Addison-Wesley, Reading, Mass., 1967).

J. Dugundji, Topology (Allyn and Bacon, Boston, 1966).

G.A. Mihram, Sinudation: Statistical Foundations and Mcthodology (Academic Press, New
York, 1972).

A. Renyi, Foundations of Probability (Holden-Day, San Francisco. 1970).

D. Harrah, Conumunication: A Logical Model (M.L.T. Press. Cambridge. Mass., 1963).
T.H. Naylor, Computer Simulation Experiments with Modcls of Economic Systems (John
Wiley & Sons, New York, 1971).

J. Neveu, Mathematical Foundations of the Calculus of Probability (Holden-Day. San
Francisco. 1965).

J.W. Gibbs, Elementary Principles in Statistical Mechanisms (Yale University Press, New
Haven, 1902).

H.L. Royden. Real Analysis (Macmillan, New York, 1968).

L. Breiman, Probability (Addison-Wesley, Reading, Mass., 1968).

C.L. Atwood, “*Optimal and Efficient Designs of Experiments.” 4nn Math. Statr. 40 (5).
1570 (1969).

B.W. Lindgren, Statistical Theory (Macmillan, New York, 1968).

T.S. Ferguson, Mathematical Statistics (Academic Press, New York, 1967).

A. Wald, Statistical Decision Functions (Chelsea, New York, 1971).

M.H. DeGroot, Optimal Statistical Decisions (McGraw-Hill, New York, 1971).

J.S. Rustagi, Optimizing Methods in Statistics (Academic Press, New York, 1971).

S.S. Wilks, Mathematical Statistics (John Wiley & Sons, New York, 1962).

143



