THE VIKING ORBITER UPLINK COMMAND GENERATION
AND VALIDATION VIA SIMULATION*

Maurice B. McFvoy
Jet Propulsion Laboratorv, Pasadena, CA.

ABSTRACT

The Viking Orbiter spacecraft and its pred-
ecessor Mariner spacecraft are increasingly complex
vehicles that are automatically comtrolled by on-
board computers. These on-board computers are
flexibly programmed, and periodically re-programmed
during flight, to execute complex sequences of
science and engineering events. Validation of
these remotely controlled updates to the four
Orbiter on-board memories is a difficult task that
relies heavily on simulation of the effects of the
updates prior to transmission. This paper
describes the Orbiter uplink command-generation
and validation process that is currently being

simulated in Viking mission operations, and the Figure 1. Viking Spacecraft

simulator program design considerations, design

features, level of detail, language selection, on—-board data storage, ground-based sequencing

resource constraints, implementation, testing, software, and the spacecraft size and weight have

calibration, performance, and experience to date. been upgraded significantly.

INTRODUCTION The orbital nature of Viking and the associ-
ated long periods of intensive operations and data

The Viking Project is the latest step in the acquisition present unusual development and mission-
National Aeronautics and Space Administration's operations organization problems. Design of the
continuing program to explore the planet Mars. sequencing software was strongly affected by the
Two Viking spacecraft, each consisting of an need to rapidly adapt to changes or failures of
Orbiter and a Lander, are currently en route to on-board equipment during the eleven-month cruise
Mars. Viking 1 was launched on 20 August 1975 and and five months of planned orbital operations. The
will arrive at Mars on 19 June 1976. Viking 2 was mission design must also be adaptable to unexpected
launched on 9 September 1975 and will arrive at changes in the externmal environment, such as the
Mars on 7 August 1976. Both spacecraft are oper- planet-wide dust storm that was present when
ating normally in a cruise configuration, with Mariner 9 reached Mars. The Orbiter sequence-
their programmed sequences being updated once per generation procedure evolved from and is largely
week. Once in Mars orbit, activity will increase, patterned after the Mariner 9 operational mode
with each Orbiter being updated on alternate days. (Ref. 1).

Navigation, command, and control of Viking are Verification of complex systems is difficult
performed from the Space Flight Operations Facility at best, but is increasingly difficult for systems
at the Jet Propulsion Laboratory (JPL) in Pasadena, whose operation is dependent on changeable software.
California. Uplink commands are generated at JPL System adaptability is constrained by available
and are routed to the spacecraft through one of the operational support capabilities; and the extent
Deep Space Net (DSN) stations in Goldstone, of subsequent re-verification, prior to its opera-
California; Madrid, Spain; or Canberra, Australia. tional use, determines the associated risk. Sim-
Downlink telemetry, tracking, ranging, and doppler ulation of uplink commands prior to their
data from both spacecraft are received by the DSN, transmission can help detect and analyze erroneous
which routes it to JPL where it is processed, or harmful memory loads.

displayed, and monitored by on-line analysts.
This paper presents the Orbiter simulator's

The design of the Viking Orbiter (Fig. 1) is capabilities and considerations made during its
derived from the Mariner 9 spacecraft that photo- design, implementation, testing, and use in support-
graphically mapped Mars between 14 November 1971 ing real-time, high-risk decision making in actual
and 27 October 1972. The on-board computers, mission operations. The features of the simulation

*This paper presents the results of one phase of research carried out at the Jet Propulgion Laboratory,
California Institute of Technology, under Contract No. NAS 7-100, sponsored by the Natlonal‘A?ronaut%cs
and Space Administration. The Langley Research Center is Project Manager for the ?verall Viking Project
and is responsible for Flight Operations; JPL is responsible for the Orbiter; MMA is responsible for the

Lander.

409

software described in this paper result from the
mission that it is designed to support, its planned
operational use, its intcraction with other pro-
grams, and the cxperience gained from previous JPL
flight projects.

Viking mission requirements, hardware,
software, and sequence-implementation techniques
that affect the simulator's design and usc as a
validation tool are alse described. A similar,
but separate, set of software that supports the
Viking Lander is not discussed.

REQUIRED ORBITER SEQUENCING

After separating from their Centaur launch
vehicles, each Orbiter opened its solar panels
and performed a controlled search for the Sun,
using its inertial refercnce unit for spacecraft
attitude refcrence. Once Sun-acquired, they
performed a roll search for the star Canopus.
Deep Space Net (DSN) tracking ranging and doppler
data were used to determine required trajectory
corrections. Each Orbiter was then maneuvered to
align its rocket engine with the desired velocity
to be gained, and its engine was fired until the
desired velocity was achieved.

During early interplanetary cruise, the
Orbiter's science instruments were checked out and
calibrated, and the high gain antennas and the scan
platforms were calibrated to improve their pointing
accuracy. Calibration of the Visual Imaging Sub-
system (VIS) began by recording and playing back
star/star and Earth/star picture pairs. Six photo-
pairs of the Pleiades are planned for additional
geometric calibration. An engineering test was
run on one Computer Command Subsystem processor
in an attempt to diagnose the cause of an anom-
alous memory checksum error that was observed
shortly after the spacecraft separated from its
Centaur launch vehicle. A pre-encounter science
sequence will obtain global distributions of tem-
perature and water vapor. Beginning about five
days before Mars arrival, the Orbiter will provide
video images of the plaret and optical navigation
images of the Martian moon Deimos in preparation
for the Mars orbit-insertion maneuver.

As the spacecraft nears Mars, the Orbiter will
maneuver to point its engine for the approximately
40-minute burn that will insert the spacecraft
into orbit around Mars. Inopportune approach-
trajectory tracking geometry may necessitate a
late update to previously loaded orbit-insertion
parametcrs within hours of the automatic maneu-
ver execution. The planned orbit has a Mars
synchronous period of 24.6 hours, a periapsis
altitude of 1500 km, and an apoapsis altitude of
about 32,600 km. Once in orbit, each Orbiter will
perform reconnaissance of preselected primary and
secondary landing sites, using its scan platform-
mounted science instruments. Approximately ten
orbit trim maneuvers will achieve the desired
synchronous orbit geometry for Lander separation,
station-keeping to maintain Lander support, and
period-trims for conducting Mars observations.

The Orbiter will continue to orbit Mars throughout
the primary mission, which ends at Earth-Mars con-
junction in November 1976. During this time,
atmospheric experiments and surface observations
will be conducted along with radio science
experiments.

Within 50 days after Mars orbit insertion,
cach Lander will be separated from its Orbiter and
will begin its deorbit and landing. Each Lander
will examine the structure and composition of the
Martian atmosphere during descent and will begin a
60-day surface investigation following landing.

The Orbiters will continue to use their instruments
to acquire science data on the landing sites and
their surroundings and to survey other areas of
Mars to study the physical and dynamic character-
istics of the planet's surface and atmosphere. Sun
and Earth occultations may occur during the mission,
depending on the gcometry of the selected orbit.
Orbital operations will be restricted for orbits
with Sun occultations in order to avoid excessive
battery discharge.

Flexible pairing of spacecraft and communica-
tion links and the large-scale redundancy of space-
craft components yield a high probability of success
for the Viking mission as a whole. This flexibility
will be valuable should trouble develop with any
of the spacecraft. Use of this flexibility, how-
ever, requires adaptable ground-based sequence
design, implementation, and validation software.

Science Instrument Sequencing

Three types of optical instruments will view
the surface of Mars from a two-axis scan platform
(Fig. 2), with their fields-of-view (Fig. 3)
aligned along a common axis to facilitate correla-
tion of observations. These are a pair of high-
resolution television cameras, an infrared
atmospheric water detector, and an infrared radi-
ometer for atmospheric and surface thermal mapping.
Together, the instruments will scan a swath on the
surface below as the Orbiter swings around Mars.
The infrared instruments will pinpoint warm, wet
places which can then be checked visually (using
photographs) for geological interest and suitability
for landing.

The scan platform is used to point the instru-
ments to permit the Orbiter to remain locked on
celestial references, whenever possible; however,
when the scan platform pointing range is insuffi-
cient, Orbiter turns are executed to achieve the
required pointing. For low-altitude observations,
single or multiple swaths of contiguous imaging
photopairs are acquired, using Orbiter ground track
motion to produce area coverage with any one swath

VIS-
LATCHES vis-8
J— _— IRTM
N7 MAWD
LOUVERS
) PLATFORM
OUTRIGGER—=
ACTUATOR
T
SOLAR PANEL SCALE. In
0 10 20 30 40 50
Figure 2. Scan Platform Mounted Science

Instruments

T

3.07

VIS A VIS B

IRTM

MAWD

O 1(2]|3|4]|5]6f /7|89 0111213141s©

Figure 3. Science Instrument
Fields-of-View

and using the scan platform to slew between each
photopair to increase the coverage. At an alti-
tude of 1500 kilometers, the cameras can photo-
graph contiguous, non-overlapping squares (80
kilometers on a side) in swaths about 500 kilom-
eters long, with resolution of about 40 meters.
Once the Landers are on the surface, large-scale
observations from the Orbiters may be correlated
with fine-scale measurements obtained by the
Landers.

The Visual Imaging Subsystem (VIS) consists
of two identical 475-mm focal length telescopes,
each with a 1.5-inch magnetically focused, slow-
scan vidicon camera, mechanical shutter, and
filter wheel. The cameras are operated alternately,
with the capability to shutter one camera every
4.48 seconds.

When its shutter is open, an electrostatic
image of the scene below is formed photoelec-
trically on its vidicon. The image is scanned by
an electron beam, and the resulting image inten-
sity is sampled and digitized into 1056 lines of
1182 7-bit "pixel" elements. These digital data
are transferred to the Flight Data Subsystem (FDS),
where it is multiplexed with appropriate identifi-
cation, synchronization, engineering data, and
other science data to form a composite data stream.
This composite data stream is then transferred to
the Data Storage Subsystem (DSS) and stored on
magnetic tape for subsequent playback at a rate
commensurate with communications link performance.

During actual operation, each camera takes
one picture every 4.48 seconds. The cameras
operate in response to 11-bit digital control
words that are loaded into the FDS memories by
uplink command. They specify exposure durations
between 3.182 msec and 2.66 seconds, stepping of
the filter wheel, light flood, amplifier gain
state, and dc video offset. A zero-exposure dur-
ation indicates that no picture is to be recorded
and can prepare the sensor for a low residual
image.

The Mars Atmospheric Water Detector (MAWD) is
an infrared spectrometer that will map the dis-
tribution of water vapor over the planet for landing
site certification and will provide data on lati-
tudinal and diurnal variations of water vapor.

Fifteen instantaneous fields-of-view (Fig. 3)
are sampled sequentially during a 4.48-second
interval. The samples measure radiation at five
wavelengths in the 1.38-micrometer water vapor

absorption band. Radiation from the planet is
focused by a small (2.5 cm, f/5) input telescope
which views the surface via an external scanning
mirror.

Transitions between states can be made by
means of Discrete Commands (DC) directly to the
MAWD or by a Coded Command (CC) which resets a
control word in the FDS memory.

The Infrared Thermal Mapper (IRTM) is a
28-channel infrared radiometer that will aid in
landing-site selection, monitor the regions sur-
rounding the Lander, and provide spatial and
temporal distribution of surface and upper atmos-
pheric temperatures and thermal balance. Some
IRTM measurements will be taken at the same time
and over the same region covered by VIS, while
others will be independent of VIS.

Each of the four IRTM telescopes contains a
field stop which defines seven separate fields-of-
view, each with its own detector. Each telescope
is aligned such that the seven fields-of-view are
superimposed as shown in Fig. 3.

Infrared radiation from Mars, from deep space,
or from the IRTM internal reference surface, is
selected by positioning the scan mirror to one of
its three discrete positions. The radiation is
reflected from the selected source by the mirror
into the cluster of four cassegrain reflecting
telescopes. Three of the telescopes are f/4,
2.3-inch diameter, and the fourth is a f/5.3,
1l.5-inch diameter. Optical elements within each
of the telescopes select the spectral bands 6-8,
0-9.5, 9.5-13, and 18-24 micrometers, and measure
atmospheric temperature at 16 micrometers and
reflected radiation (albedo) at 0.3-3 micrometers.

ORBITER COMMAND AND CONTROL

Orbiter sequences are implemented by loading
the Computer Command Subsystem's (CCS) memories
via uplink commands (Fig. 4). The CCS flight soft-
ware controls the hardware necessary to decode the
four-bit-per-second uplink data into 50-word buf-
fers (Fig. 5), perform single-bit error correction,
and reject commands having more than one error.
Discrete commands (DC's) and l4-bit coded commands
(CC's) are issued to control Orbiter subsystems

DSN-ORBITER LINK:

© UPLINK COMMANDS
© LANDER RELAY DATA
* ORBITER SCIENCE DATA
© DOPPLER AND RANGING
® ENGINEERING TELEMETRY

DEEP SPACE NET:

® 64 METER
® 26 METER

42 MINUTE ROUND
TRIP LIGHT TIME

XRBIT{RA
ORBITER BX\

DSN-LANDER LINK:

© UPLINK COMMANDS

® LANDER SCIENCE DATA
© DOPPLER AND RANGING
© ENGINEERING TELEMETRY

LANDER-ORBITER LINK:

@ LANDER SCIENCE
© ENGINEERING TELEMETRY

LANDER A
MARS

Figure 4. Communication Links

411

COMPUTER COMMAND
SUBSYSTEM (CCS)
MEMORY A
HIGH
GAIN NNTAR
ANTENNA
RECEIVER AND) -
COMMAND PROCESSOR A ouTPUT1
DETECTOR A 3 UNIT
UPLINK SPACECRAFT CONTROL
COMMANDS L= | © CODED COMMANDS
@ BPS) 0 ® DISCRETE COMMANDS
RECEIVER AND 3 Lo
L COMMAND PROCESSOR B Quiputz N
DETECTOR B
Low :
GAIN >
ANTENNA N WN
MEMORY B
Figure 5. Orbiter Uplink Command Processing
under CCS program timed control (Fig. 6). Tables TIME ABSOLUTE HOUR No. N ADDRY, TIME WORD
(Fig. 7) drive CCS routines to execute Orbiter EVENT 0C2A MULT EVENT WORD
sequences. Real-time uplink commands can also be EVENT 2
used for emergency situations or for convenience. Time ABSOLUTE HOUR No. N + 1 EVENT 3
EVENT TABLE INITIATE WORD :
Automatic CCS routines are provided to cor- TINE ABSOLUTE HOUR Na. N +2 -1
rect problems that may exist without requiring
intervention from the ground. These routines are MULTIPLE EVENT WORD
initiated by interrupts and are selectively enabled EVENT No, 2 ADDR? TIME WORD
and disabled during different phases of the mission EVENTS< [EVENT No. 3+ TABLE INITIATE WORD) MULT EVENTS WORD
by modifying their entry linkages. EVENT 2
EVENT No. 4 TABLE INITIATE H
Single or block immediate commands are exe- ; :
cuted directly from the command buffer in CCS TIME ABSOLUTE HOUR N + 6 ""ICO?ECH‘NGE
memory. Programmed blocks are used to load new EVENT T :
sequences into CCS and FDS memories. Conditional : 1

execute blocks are used to activate previously
loaded sequences if, and only if, all flight-
software validity checks were satisfied during the

update.

link to notify the command team that at least one
block requires re-transmission.

The CCS can operate in individual, parallel,

Otherwise, a telemetry word is sent down-

or tandem modes. In the individual mode, the
GUIDANCE & CONTROL |-~ ORBITER POWER
POWER I —= LANDER POWER
ATTITUDE CONTROL
ARTICULATION CONTROL
PROPULSION
PROPULSION
rb PYROTECHNIC
ASTRIONICS TE! ICATIONS
COMPUTER COMMAND ! RELAY TELEMETRY WHE)
= suesvsrem ccs) [ROM LANDER RELAY RADIO [, From
\ RELAY ANTENNA ANDER
| [om sonac sussvsem s a0
O =1 moouL ATION |5
| [10 unoir (. e 10 EARTH
| uon onme sussvsm [—onBieacion RADIO FREQUENCY RECEIVER [x-9AND
|| fees L ormimemancinegring| (]S BAND ANTENKA PROM EARTH
| LANDER HARDLINE : S-X BAND TRANSMITTER S-oMk0
|
| SPACE SCIENCE | CONTROL COMMANDS
| VISUAL IMAGING W1S) I ~— — UPLINK COMMANDS
| INFRARED THERMAL MAPPER (IRTM) | DATA
| MARS ATMOSPHERIC WATER |
DETECTOR YAAWD) \
L - ————__ o
Figure 6. Orbiter Functional Block Diagram

412

Figure 7. Computer Command Subsystem

Sequencing Tables

processors operate independently, using available
output units for command executions. The parallel
mode is used when redundancy is required to insure
that a command output occurs. Parallel operation
in essentially the same sequence as that for the
individual mode; however, both processors perform
the same software routine, each accessing a dif-
ferent output unit. The tandem mode is used when
redundancy is required to insure that a correct
command output occurs only at the required time.
Both processors and one output unit are required to
execute a tandem event.

ON-BOARD DATA HANDLING

Figure 4 depicts possible telemetry links
between the spacecraft and the Deep Space Net.
Lander telemetry can be transmitted directly to
Earth by the Lander, recorded by an Orbiter's Data
Storage Subsystem (DSS) and subsequently relayed,
or relayed via an Orbiter in real time. The Orbiter
relay link is the primary method of transmitting
Lander data back to Earth. Orbiters can record
or relay data from the Landers whenever the planet's
rotation carries the Landers to the side of Mars
away from Earth. Data can be recorded on either of

two identical and independent Digital Tape
Recorders (DTR's) on each Orbiter. Each DTR is
capable of storing 5.6 x 108 bits of Orbiter visual
imaging data and 8 - 107 bits of IR, enpincering,
and/or Lander data. Viking scicence data return is
limited by the usable downlink data rates. Bit
error rates, when at Mars distance, limit the
Orbiter's high-rate telemetry channel to 8 kbps

for expected telecommunications pcrformance and

4 kbps under worst-case conditions.

The Flight Data Subsystem (FDS) sclects and
samples engineering inputs (Fig. 8) in accordance
with flexibly reprogrammable measurement identi-
fiers in its memories. These engineering data
are required to monitor the status and performance
of the Orbiter and is continuously transmitted on
the low-rate channel at either 8-1/3 or 33-1/3 bps.
Engineering data can also be telemetered on the
high-rate channel and/or recorded on the DDS at
1 kbps.

Orbiter science data and Lander relay data
are sent downlink on the Orbiter's high-rate chan-
nel. Visual imaging data are recorded simultan-
eously on seven tracks of one of the digital tape
recorders for later playback, one track at a time.
About 40 minutes of playback time are required
to return a single imaging frame at the 4-kbps data
rate. Infrared science data are normally acquired
whenever VIS data are obtained with the lower rate
(1 kbps) IR data being multiplexed with the VIS
stream. Interleaved 1 kbps IR data and 1 kbps
engineering data can also be placed on the high-
rate channel. IR science data constitutes the
usual FDS high-rate output.

CCS memory readouts can be obtained by
replacing engineering data with readout data; and
FDS memories are continuously being read out when-

SEQUENCING STRATEGY

Viking opcrational complexity is due both to
its ambitious mission and to the many operational
modes of each of its subsystems. The numerous
operational modes are required to insure adequate
work-arounds for possible failures during its
17-month primary mission. In fact, Viking Project
Dircective 6 states: '"No single malfunction shall
cause the loss of data return from more than one
scientific investigation,... and no single malfunc-
tion shall cause the loss of all engineering telem-
etry data." This flexibility increases the
resources required to operationally adapt to
changes in a near real-time environment. In prac-
tice, command-file generation and validation are
limited by available personnel, computer time,
on-board memory space, and time required for vali-

dation. The Viking 75 Project Mission Rules
(Ref. 2) and the Viking 75 Orbiter Block Dictionary
(Ref. 3) documents were specifically written to

describe constraints on the flight use and opera-
tion of the Orbiters.

The Project Mission Rules define and govern
operational activity of ground and spacecraft sys-
tems. The rules were derived from analysis of
mission equipment configuration, flight team pro-
cedures, operational strategies, critical periods
analysis, tests, and Viking Project objectives.
They are limited to those rules where a choice of
action is possible and include responses to non-
nominal operations. The rules include hardware,
software and procedural constraints, or rules which
limit the operation of the Viking spacecraft. The
rules aid the Viking Flight Team in the complex
decision-making process required to conduct Viking
Flight Operations.

The mission design and all subsequent updates

ever the high-rate telemetry channel is on. are implemented, using Orbiter Blocks. Except in
_—— 1, 2,4, 16 KBPS
r' }
| LANDER |
| 8-1/3 OR 33-153 BPS
A ENGRG
Vo ANALOG X ADC | DIGITAL MPXR 8-1/3 OR 33-13 BPS HIGH-RATE
SUBSYSTEMS IKPBS IRAE | | CHANNEL
DIGITAL DATA >1 BUFFER | 8-1/3 BPS |
|
— N
o
IRTM IL NPW " :
ALL "1"s
MAWD APW j SCENCE GENERATOR o811 2KBPS, BLOCK l\» LOW-RATE
AIPW L 5 INTER- CODER | o CHANNEL
LEAVER
[q—] 1,2,4,8
I A OR 16 KBPS
7 LINES, 301-5/7 KBPS '} TRACKS 1-7
vIs A _2.12meps | VIS m&: 8
"B oui\o———» MPXR (
a TRACKS 1-7
FLIGHT DATA SUBSYSTEM 4 o DIR-B
OO TRACK 8
16 KBPS -
RTS TKBPS DATA STORAGE SUBSYSTEM
4 KBPS
Figure 8. On-board Data Handling

413

Spacecraft/Orbiter emergencivs, all

flight-

operational sequences are implemented, using vali-

dated Orbiter Blocks. Each Orbiter
subsequent modifications are tested
Block/Algorithm/Macro runs that are
using the simulator, prior Lo their

An Orbiter Block (Fig. 9) is a

Block and all
in a series of
validated,

use in flight.

group of

Orbiter commands and/or events, with a well defined
time interrelationship, that perform a single

system-level function.

Each Orbiter Block catalogs

a tested Orbiter system capability that is available
for performing a required mission function. Orbiter
Block options are sequence or functional variations
allowable within an Orbiter Block. Options may be
selected for use with an Orbiter Block within
specified constraints, which are the rules govern-
ing the implementation or application of an Orbiter
Block. Subsystem states that are required prior

to initiation of an Orbiter Block sequence of
events are specified as required initial conditions.
The Orbiter Block final conditions are the resulting

Interface Timing
Step .
No Option ocs Event
. Destination Relative Cumulative
Command
1 g DC3A MDS Cruise telemetry mode 3m 0.0
2 f DC3C MDS FDS high-rate data select 3m 0.0
3 f CC6C002 FDS No change; no change; 2 kbps play- 3m 0.0
back rate
4 f, g CC6BX0 FDS Engineering data rate; no change 2m 1.0m
5 c ccs Enable the ACS accelerometer 1m 2.0m
calibration within CCS and place
pulse counter data in CCS output
register
6 a CC7B1210 ACS IRU 1 on; IRU 2 off; IRU 1 enable; 3.0 m
no change
7 b CC7B2120 ACS TIRU 1 off; IRU 2 on; IRU 2 enable; 3.0 m
no change
8 b cCs Change CC7B2212 to CC7B2222 in CCS 3.0m
ACE power changeover routine
9 c Monitor CCS pulse counter data in
the engineering telemetry meas-
urements E-125/E-126
10 d CC7A1222 ACS Inertial mode; stop roll turn: AT AT + 3.0 m
stop yaw turn; negative turn 0 0
direction
11 e €C7C2021 ACS Gyro rate; no change; TVC inhibit; AT AT + 3.0m
roll inertial 0 0
12 d CC7A2222 ACS Rate mode; stop roll turn; stop AT+ AT AT+ AT
yaw turn; negative turn direction 0 ! 0 !
+3.0m
13 e CC7C2022 ACS Gyro rate; no change; TVC inhibit; AT+ AT AT+ AT
roll rate 0 1 0 L
+3.0m
14 CC7B2212 ACS IRU 1 off; IRU 2 off; IRU 1 AT + AT, + 1lm | AT, + AT
3 0 1 0 1
enabled; IRU auto control enabled
+ 4 m
15 b ccs Change CC7B2222 to CC7B2212 in AT + AT, + 1m | AT, + AT
. 0 1 0 1
CCS ACE power changeover routine
+ 4 m
16 c CCS Disable the ACS accelerometer ATy + AT, + 2m AT + AT
calibration within the CCS 1 !
+ 5m
Figure 9. Sample Orbiter Block: Gyro Drift/Accelerometer Bias Calibration

414

subsystem states that have been modified by the
Block sequence of events or selected per the
required initial conditions. One continuous
sequence of events is obtained by linking two or
more Blocks together by providing single commands,
as required, to insure that the final conditions of
each Block are compatible with the required initial
conditions of the following Block. The resulting
merged-time event pairs and tables are normally
loaded into and issued from the CCS Near Term
Activity Table.

Orbiter Blocks were developed to implement
all anticipated Orbiter flight sequences (exclud-
ing single event/commands). New and modified
Blocks are developed (as required) to satisfy
changing mission and operational needs. The
detailed content of Orbiter Blocks is specified in
Ref. 3. All changes and revisions of the Block
Dictionary are under Orbiter change control.

Orbiter Block final conditions are designed
to allow convenient linking to those other Blocks
that will most frequently follow. For example,

a Block involving the use of a Digital Tape
Recorder (DTR) and/or scan platform ends with the
scan platform post-positioned to the starting
position of its next anticipated use. Similarly,
the DTR in use is post-positioned to the location
of its next anticipated use. This results in the
platform and DTR final conditions of a science
Block having the required initial conditions for
the next science Block.

SEQUENCE DESIGN AND IMPLEMENTATION

Orbiter sequence design and implementation
are divided into areas of technical specialties.
Navigation, science instrument targeting, and
maneuver design are performed first. Engineering
functions, such as battery charging, temperature
control, antenna and scan-platform pointing, and
tape-recorder management are specified next. The
sequence is then implemented by determining
memory updates to the four on-board memories that,
when loaded into the Orbiter's memories and acti-
vated, will cause the Orbiter computers to clock
out the desired sequence of on-board inter-
subsystem control commands. These desired memory
updates are then formatted into an uplink command
file. The modularity of this process isolates
and uncouples many areas such that technical
specialists can analyze the impact of their spec-
ialty on the sequence, while suppressing extran-—
eous data.

Mission Planning transposes project science
requirements into valid Orbiter Mission Profile
Events and associated profile specification param-
eters. Specific sequence of these events is input
on a Mission Profile file. Examples are: tape
playback, gyro calibration, propulsive maneuver,
Earth occultation, and periapsis. Figure 10
depicts the sequence design and implementation
processing that follows.

The Sequence Generator Program (SEQGEN) (6)

SEQGEN merges the Mission Profile with other
files containing supporting engineering data. The
resulting Sequence Development file is then proc-
essed by maneuver and science programs to produce
the Maneuver and Engineering file and the Scan

415

612-21
BLOCK

DICTIONARY

612-28
® ENGINEERING T

© MANEUVER I ccs !
e _ o SCIENCE 1 FLIGHT sw |
N ® RELAY =
N o PLAYBACK T
AR N o LANDER o |
re
N 612-29voL | 612-29VOL 11
SEQGEN 0STRAN ® CONTROL MACROS
ALGORITHM MACRO | © BLOCK MACROS
BLOCK LIBRARY LIBRARY \ ® SUPPORT MACROS
LINKING o FLIGHT MACROS
AN
-
ORBITER
SEQUENCE
MISSION GEﬁERATOR SEQUENCE DESIRED
DESIRED CCSIFDS
PROFILE PROGRAM TRANSLATOR
SEQUENCE MEMORY
EVENTS (SEQGEN) PROGRAM
MACRO CALLS) (0STRAN) HORDS
Figure 10. Sequence Design and

Implementation

Specification Parameter file. This additional
processing refines parameter values from approxi-
mate Mission Profile values into best-estimate
values derived by considering telemetry feedback
data and from checkpoint files from earlier runms.
The final step in sequence generation is SEQGEN's
processing of the Maneuver and Engineering file
and the Scan Specification file to generate the
Viking Orbiter Sequence (VOSEQ) file. This file
contains the complete Orbiter sequence in the form
of OSTRAN macro calls for Orbiter Blocks and single
commands. Another file containing expected, time
ordered, on-board commands is later compared with
the simulator results.

As SEQGEN processes each event, selected con-
straints are checked to insure that no violations
of hardware limits or procedural constraints have
occurred. A library of SEQGEN Algorithms, which
implement Orbiter Blocks, is maintained. These
algorithms are driven by the Mission Profile
Events, their associated profile specification
parameters, and manual SEQGEN input to produce
OSTRAN macro calls as output.

The set of OSTRAN macro calls, generated by
SEQGEN, comprises the desired Orbiter sequence.
This sequence description is at the system level;
however, its detailed definition is controlled by
the Orbiter Block Dictionary and the corresponding
SEQGEN-Algorithms and OSTRAN-Macro implementations
of each Block.

The Orbiter Sequence Translator Program (OSTRAN)(7)

OSTRAN processes the set of assembly language
macro calls, with their associated parameters,
from the VOSEQ file produced by SEQGEN. Manual
inputs can be merged with the VOSEQ file input to
override or supplement parameters generated by
SEQGEN. OSTRAN processes the VOSEQ file input by
expanding the macro calls as directed by pseudo-
operations in the macro definitions and the argu-
ments specified in the macro call. The Macro
Definitions provide a standard implementation that
will be used each time its corresponding Macro Call
is encountered. Additional pseudo-operations direct
the output to one or more of the four on-board
memories, thus providing the link between Orbiter
Blocks and the CCS and FDS Memories. The allocation

of tables within both CCS and FDS memoricvs is
managed by the macros. CCS time/event tablcs
and/or temporary routines are loaded into either
current, c¢ven or odd overlap, or even or odd long-
term event regions, depending on thcir completion
time. Current events cover the period from the
most recent update to the next update, overlap
events arc completce before the end of the follow-
ing update period, and long-tcrm events extend

over two or more update periods. VIS parameters
are loaded sequentially into dedicated table loca-
tions in alternating FDS memories. A Master or
Absolute Hours Tables can initiate regions, in the
event table regions, at specilied times. SET
symbols, such as those used to indicate table
boundaries for memory management, are checkpointed
at the end of each run to permit reinitialization
for the next run. The results of the macro expan-
sion are a series of 18-bit CCS memory words and
8-bit FDS memory words which are required to imple-
ment the sequence. The 18-bit CCS words include
CCS pseudo-event words, time words, CCS instructions
and data. The FDS memory updates typically consist
of parameters to control the filter and exposure
settings of the TV cameras and engineering meas-
urement identifiers when changing an engineering
telemetry commutation format.

The CCS Assembly language source-code output
from the macro processor is then assembled and the
Linkage Editor assigns memory addresses, and the
CCS and FDS memory words are output onto the
Desired Memory Words File (DMWF) which represents
the memory contents (at a specific time) required
to execute the specified sequence. The completed
DMWF is then transmitted across an electrical inter-
face between the Univac 1108 being used and the
IBM 360/75 that will be used for the following
simulator run.

Additional automation of the sequence design
process is not without pitfalls. When program-
ming general sequences, it is extremely difficult
to program computers to recognize what you '"meant"
to say. Imperfect computer automation can propa-
gate errors at very high rates.

SEQUENCE VALIDATION

The process of designing, implementing, and
verifying sequences is complex and involves con-
siderable manual interaction and control of the
software. Specialists in attitude control, tem-
perature control, power, science instruments,
telecommunication performance, and science objec-
tives provide input during sequence design and
must review and concur with the final implementa-
tion. This process is strewn with potential
pitfalls.

Orbiter sequences generally consist of one or
more Orbiter Blocks which have been linked together.
Each Block and its corresponding SEQGEN-Algorithm
and OSTRAN-Macro implementations are validated,
using the OCOMSM simulator, prior to their opera-
tional use. Validation of individual Blocks is
necessary, but is not sufficient to guarantee a
valid sequence of Blocks. This is largely due to
the required overlapping of playback Blocks with
other Blocks and the possible interaction that
could result. In addition, it is desirable to
check the on-board memory management, long-term
events loaded previously, effects of possible

416

manual editing of predecessor files, sequence=
software errors, and human-input or control errors.

Sequence validation is accomplished in two
stages. The sequence design phase (SEQGEN) auto-
matically checks as many constraints as possible in
an intceractive manner with the SEQGEN operator. The
final SEQGEN output is then manually verified to
assure that, if implemented properly, it will accom-
plish the desired results. The validated design is
then implemented and simulated with the resulting
best-e¢stimate control commands issued by CCS and
FDS being automatically compared with SEQGEN's
functionally generated control commands. The sim-
ulator's output products are designed to facilitate
the remaining manual verification. Thus, the
sequence is validated by first validating its
design and then validating its implementation.

The Orbiters are controlled by the CCS, with
FDS providing additional control of the science
instruments as directed by CCS (Fig. 6). Specific
sequences are defined by sequence tables (Fig. 7)
in CCS memories, VIS control words in FDS memories,
and CCS flight software routines that process the
tables. The CCS closed-loop control of DSS defines
when data is recorded and played back. Simulation
of CCS, FDS, DSS, their relevant environment, and
interactions between subsystems can provide best-
estimates of all Orbiter control events.

A simulator of the on-board computers and data
system provides additional visibility into on-board
activity. The Orbiter's receipt, processing, and
resulting control of other spacecraft subsystems
is simulated for each sequence. The simulator out-
put products are used to validate each sequence
prior to its transmission, and also provides the
on-line analysts with best-estimate predictions of
on-board activity. On-line analysts compare actual
telemetry data with the simulator predictions in
order to rapidly detect and diagnose anomalous
Orbiter operation. Visibility into status and
activity on board the spacecraft is limited to
those measurements that are observable via telem-
etry, but the simulator provides additional details
that simplify the interpretation of actual telem-
etry. The simulator is also used to test various
hypotheses as to how certain unplanned-for events
would affect Orbiter operation.

ORBITER COMMAND SIMULATION (8)

The Orbiter Command and Simulation Program
(OCOMSM) (Fig. 11) formats desired CCS/FDS memory
words into an Uplink Command file, and simulates
the transmission, receipt, and on-board processing
of these commands; it also provides the detailed
CCS hardware/software control response and their
affect on FDS and DSS hardware. These control com-
mands are automatically compared with the 'planned”
commands. Discrepancies in commands and/or timing
are examined as a major validation tool. This file
is also compared against real-time telemetry indi-
cations as an aid in detecting and understanding
anomalous Orbiter activity. The simulator state is
generally initialized from a previously check-
pointed state, and simulation commences from the
point at which it was previously suspended. Simu-
lation continues until a specified END time is
reached.

DESIRED
CCS/FDS 0COMSM ORBITER
MEMORY — —
WORDS © s imuLation - I
CONTROL | |
TABLE
SIMULATION = , |
& OUTPUT ccs | |
CONTROL : SIMULATOR
1] INITIALIZATION |
RETRIEVE CONTROLLER | | *SIMULATION
PREVIOUS
Y | HISTORY
STATE DSS | 2 #DSS HISTORY
2] S \muaTion | a— | SIMULATOR L EVENT COMPARES
CONTROLLER 2 | o TELEMETRY
|2 PREDICTIONS
= e CCSIFDS
! MEMORY DU/P
Bl post F0S | | 11PS
T CONTROLLER SIMULATOR
IMING ™ | CCSIFDS
0SCILLATOR) MEMORY
DRIFT | | MASK
RAW UPLINK e |
SIMULATION SIMULATOR | |
D
ESIRED HISTORY GOTHERS |—= | SmEWOR
STATE

Figure 11. Simulator Functional Block Diagram

The main purpose of the simulator is to aid
users in detecting erroneous, faulty, undesirable,
or catastrophic problems in a sequence. The pro-
gram must also be understandable, usable, flexible,
adaptable, testable, maintainable, reliable, and
tolerate user imperfections. Program development
effort must fit within rigid resource constraints,
such as available man-hours, computer time, and
calendar time. The final program characteristics
must be compatible with the available computer
memory size and CPU time required per run and rhe
anticipated number of runs per day (including
necessary reruns), and must allow time for sequence
validation. These factors are quite important,
since the life-cycle costs of this program are
about 20 man-years and about 1000 hours of IBM
360-75 CPU time.

The Orbiter hardware and flight software, that
is simulated, was specially designed for the long-
life and fail-soft requirements of the 15 month
Viking mission.

One difficulty in modeling digital hardware
is the different languages used in the hardware
and software disciplines. Hardware description
languages that describe hardware at the logic-gate
bit-time register-transfer level provide a commonly
understandable detailed definition that can bridge
the gap. The APL language itself provides an
excellent basis for describing digital hardware.
Power-on-reset states and hardware idiosyncracies,
that could affect a sequence, must be considered
in the modeling stage. Any of these that could
affect operation of the hardware, software, timing,
or other subsystems should be modeled.

417

The level at which the hardware, and possibly
the software, is modeled strongly affects the exe-
cution speed and ability to detect unexpected or
anomalous timing relationships. The faithfulness
(or fidelity) of the simulation must minimize the
frequency with which the user has to disregard
simulator predictions due to simulator simplifica-
tion or shortcomings.

Users need the control to activate only those
portions of the simulator that are needed to satisfy
the purpose of their runs. Control should be pro-
vided to gain selective visibility into the
detailed subsystem environment, work load, and
response to selected important events. The simu-
lator's usefulness to a user is affected by the
precision with which they can request visibility
into questionable simulator activity while suppres-
sing unwanted output.

The design features of the simulator were
tailored to support sequence validation during
Viking flight operations. In general, the design
is consistent with a Simscript implementation; how-
ever, some features required special tailoring in
order to stay within the allocated computer
resources and throughput times required for timely
sequence validation.

Major portions of the simulator were imple-
mented, using 360 Basic Assembler Language, in an
effort to minimize execution time and the amount
of memory used. The high-frequency bit manipula-
tion associated with instruction decoding and
modeling hardware flip-flops and registers required
efficient use of the host computer's capabilities.

The program dusign is separated into three
phases in an attempt to modularizce the code and
minimize the memory requirced for any one phasc.

Simulation Phase

The event-scheduler design deviates slightly
from a Simscript implementation due to the very high
efficiency requirement. In this particular model,
the internally generated (endogenous) events are
orders of magnitude more frequent than the cxter-
nally scheduled (exogenous) events. As a result,
testing of e¢ndogenous/exopgenous queues for the
next event was collapsed to one endogeneous queue
which contained a pointer to the nuxt exogenous
cvent being scheduled.

Doublc-precision, floating-point time vari-
ables were used to span thc required nanosecond to
two-vear time range. The time unit of nanoseconds
was chosen to avoid problems associated with
machine representation of irrational numbers.
sign bit of time words is used to de-schedule
obsolete events.

The

The Computer Command Subsystem (CCS) simu-
lator (Fig. 12) accurately models the Block redun-
dant CCS processors, output units, and memories at
the instruction and register transfer level. The
accuracy with which software programs (in the mem-
ories) are simulated is dependent primarily on
the accuracy with which the bit-time clocks can be
calibrated during flight and the timing accuracies
of the 32 priority interrupts and 24 level indi-
cators. Output simulation consisting of discrete
commands (relay closures), coded commands, and
telemetrv data can be routed through either or
both output units. A hardware and software self-
test must be satisfied before access can be
obtained to an output unit.

"ﬂl SIMCON —=
= ok U~ |
| z HENE \ \\\ |
k3 b=} ey ~
| 3 Bl | @ \ OVERRIDES ™ |
E3 Inl] \ ~
| 3 \ -
| |

S

JLO Jtﬁ
< i
INTERFACE TABLE

i

————
—————
L

Figure 12.

Computer Command Subsystem
Simulator

The Data Storage Subsystem (DSS) simulator
(Fig. 13) models the two digital tape recorders
(DTRs) that can record and store one billion bits
of Orbiter science and engineering data and data
relayed from the Lander. The recorders have a wide
dynamic range, with a 45-inches-per-second record
speed and playback speeds as slow as 0.15 inches
per second. DSS SIM receives and decodes l4-bit
coded commands from CCS SIM and provides CCS SIM
with increment/decrement interrupts for each
three-inch movement of the tape and interrupts,
signaling beginning and ending of the tape.

L18

1 r
-~
: \\ovmmozs ~~__ |
\
| . h
BOTREOT

T
)

INTERNAL PROCESSING:

|
| © MODEL TAPE DYNAMICS

® MAINTAIN TAPE MAPS
| o OUTPUT DSS HISTORY FILE
I

TIC's

OTR STATUS

<
©w
-
g
w

INTERFACE TABLE

INTERFACE TABLE

2

® MODEL TAPE COUNTS, EOT, & BOT
© MAINTAIN DTR USAGE STATISTICS
© MAINTAIN "'BAD'* TAPE BOUNDARIES

INPUT PROCESSING

STATE VARIABLES AND PARAMETERS
DTR-A | OTR-8
|

———=
| I —

r__‘—
I

Figure 13. Data Storage Subsystem

Simulator

The DTR discrete event model describes the tape
dynamics for each possible state transition. The
acceleration for each transition is a function of
position or the tape and is calibrated separately
for each DTR. The model maintains histograms that
show frequency of tape passes as a function of tape
position; a tape map is maintained, indicating what
data have been recorded at each position on the
tape; summary statistics indicate total usage and
duty cycle; and a DTR history print shows all
activicy separately for each DTR.

The Flight Data Subsystem (FDS) simulator
(Fig. 14) models the hardwired memory controller
and two independent memories, each containing 1024
8-bit words. The memories are used to rate-buffer
data, store control words for the TV cameras, and
contain identifiers that specify which engineering
measurement are to appear at each position in the
engineering telemetry data stream. FDS SIM receives
and decodes 1l4-bit coded commands from CCS SIM.
These commands can modify FDS memory, direct FDS
as to how it should control the science instruments,
and control the data rates and routing of science
and engineering telemetry.

r SIMCON A
” © ~
o
2 OVERRIDES ~ ~_
| | E £z |z - | :
‘ u }CC‘—. FOSSIM VIS AB anﬁ "
' -2 I—— : INTERNAL PROCES SING: ETT 2 |
= | TIMING © SCIENCE INSTRUMENT CONTROL =
2 I——’ © | eTELEMETRY QUTPUT. HRIMCONTROL . &5 |
| g 2| - LOW-RATE ENGINEERING MAWD CONTROL _| &
Z [power £ ~ HI-RATE SCIENCE V1S CONTROL 3 |
s - MEMORY READOUT = =
| | & | oFDS CONSTRAINT CHECKS ENG. TLM |
5F— — — JSCL. M
7 VT
E | m-ga/— MEMORY '} MASTER TIMING
- T J_| STATE
— A/ 4 — B~ | VARIABLES
L I N Lo
| [S
Figure 14. Flight Data Subsystem

Simulator

Simulator Execution Time

Figure 15 illustrates the large effect of
uplink command activity, CCS hardware and software
self-test activity, engineering telemetry rates
and formats, and CCS processors executing a maneuver
in the tandem mode.

w
L Sp | |
e w 43 : |
9 3n |
a2 58 |
a0 = g :
@ 0 py | | |
E & 288 |
2 g £33 |
E = =z¥
5 g '
: I | p—-rlavBack —|
2 8 8
2 & &
£ | g 3
3 l s 3
E =3
g ‘ =
8 | |
I | | 8OTH CCS
PROCESSORS
BOTH CCS PROCESSORS' EXECUTING IN
DECODING UPLINK | TANDEM MODE
COMMAND
1 1 1 L 1 1 | 1] 1 1
3 4 5 6 7 10 11 12 13 14 15 16 17
TINE SIMULATED (HOURS)
Figure 15. Simulator Execution Time

The lower curve reflects expected operations,
while the higher curves illustrate the effect of
different FDS data rates in a failure mode, where
the FDS memories were lost and its fixed format
backup had to be used. Degraded, but faster than
the lowest curve, simulator performance could be
obtained by de-configuring FDSSIM, with one input,
and providing its frame timing and telemetry inter-
rupt signals to CCSSIM by several repetitive over-
ride inputs which could provide the missing
FDSSIM-CCSSIM interface signals. These overrides,
however, would need to be modified whenever CCS
altered FDS's engineering telemetry rate.

The large amount of time used to simulate
uplink command decoding is due primarily to the
CCS hardware and software self-test activity, which
in turn is affected by the FDS engineering telem-
etry rate and format. The different slopes to the
curves immediately following the uplink are due
to the FDS simulator. The large amount of CPU
time required to simulate the propulsive maneuver
is due to the high activity in both CCS processors
and output units.

During the simulation phase, real-time activ-
ity takes from 3% to 12% of the 360 CPU time, and
the simulator uses all of the remaining time.
Optional output products and file maintenance
require little 360 CPU time, but can easily double
the throughput time required due to their affect
on initialization and post processing.

The portions of the sequence that occurs after
completion of the propulsive maneuver (Fig. 15) are
representative of orbital operations activity and
represent an upper bound on cruise activity. The
time used when simulating propulsive maneuvers is
large, but amortizing approximately 10 of them
over approximately 400 days of the mission does not
bias the average run time very much.

CONCLUSIONS

The usefulness of the simulator described in
this paper is in the visibility and insight it pro-
vides users into the internal operation, timing,
and accuracy with which a given sequence implemen-
tation accomplishes its desired goals. Few fea-
tures in the simulator itself are unique; however

419

the design process, critical design decisions,
implementation decisions, anticipation of most of
the major pitfalls, and its operational use resulted
in a computer program that satisfies its require-
ments, was developed on time, within its original
budget estimate, executes within the time allotted,
and almost fits within the desired memory size.

Murphy was right: ''Things do go wrong, and
often, and at the worst possible time." Complex
software-controlled systems can be manageable and
adaptable only if the operation software system
provides for controlled adaptation, system reverifi-
cation, and there are built-in checks to detect
human or procedural imperfections that Christiansen
(Ref. 9) aptly coined "Mushware." Operational soft-
ware must provide for manual intervention and it
must be overridable. Simulation of systems that
are designed to tolerate hardware failures and be
usable even in degraded operational modes requires:
easy access to change the simulator's data base,
the ability to enable and disable portions of the
simulator, and the ability to provide unplanned-for
signals on subsystem interfaces. A system simulator
that faithfully models the portions of a system that
a user can control can: provide a useful tool to
train users, provide users with detailed visibility
into selected portions of the system while suppres-
sing unwanted or irrelevant data, provide a means
of testing and verifying changes, and can help
detect human errors and procedural problems.

Care must be taken during the simulator design
stage to assess the affect on the simulator design
and code of possible changes to the hardware and
software being simulated. Functional simulators
can easily be rendered useless by minor system
changes; and it should be noted that hardware
failures can look like hardware changes, even in
"frozen" systems.

System designers must recognize the operational
impact of designing systems whose operational
appearance to a system user can be radically altered
by late changes to its software. Flexibility and
adaptability are not free and can totally invali-
date prior system testing.

The Orbiter Block concept, the block implemen-
tation software, the management control it provides,
and the organization it provides to validity-
testing should be useful in a variety of other
situations. The Blocks define system usage, while
the detailed implementation is '"soft" coded as
sequence algorithms and assembly language macros.

The hard segmentation of simulator modules
corresponding with hardware subsystems and their
dedicated interface tables were identifiable with
the hardware wiring interconnections. This seg-
mentation facilitated engineer/programmer communi-
cation and reduced the coordination required
between programmers who were implementing modules
that had intercommunications.

Simulator credibility was enhanced by provid-
ing user access to all subsystem registers and
inter subsytem interfaces. The ability to rum each
subsystem simulator in a stand-alone mode permitted
staggered testing of modules, which also increased
the need for early availability of initialization
and input-processing portions of the program.

The usefulness of a simulator is dependent on
the precision with which a user can request visl-
bility into selected internal operation, while
suppressing unnecessary or unwanted output.

Operating procedures, f[ile-naming conventions,

and standard output specification should be stan-
dardized and automated, but readily changeable.

The software described in this paper is being
used daily in support of the two Viking Orbiters
currently en route to Mars. It provides an excel-
lent tool for analysts to examine and analyze
what is going on inside a complex spacecraft, and
to detect potential problem areas during sequence
design and implementation; provides best-estimate
telemetry predictions that permit rapid detection
of real-time anomalies; aids in the diagnosis
of their cause; and provides a tool to examine the
affect of alternate hypotheses that attempt to
explain anomalies.

Constraint checking that can be done must be
done as early as possible during sequence develop-
ment. The later problems are discovered, the more

time that is lost and the more software that has to

be rerun.

The recent dramatic increase in the
performance/cost ratio of mini and micro computers
and their associated peripherals suggest very dif-
ferent implementations of simulators, such as the
one described in this paper. As an example, a
network of micro computers could be used with at
least one micro dedicated to the scheduling func-
tion, to each of the major simulator modules, and
to parallel output processing. Modules such as
the CCS simulator might have four micros, one for
each processor and each output unit. Bipolar
micro processors might be used where extra speed
is needed. Parallel processing, where possible,
could increase throughput. High level simulation
languages, if available for a variety of micro
computers, might simplify and speed the develop-

ment process, while retaining acceptable speed with

low additional memory cost. A standardized net-

work communications protocol could simplify required

input/output interfaces with other computers and
data bases.

420

REFERENCES

Mariner Mars 1971 Project Final Report:

Vol. ITI. Mission Operations System Implemen-
tation and Standard Mission Flight Operations,
Technical Report 32-1550, Jet Propulsion
Laboratory, Pasadena, California, July 1973.

Young, A. T., Viking 75 Project Mission Rules,
Martin Marietta Aerospace Document PL-3720472,
March 1975.

Stuart, J. R., Viking 75 Orbiter Block Diction-
ary, JPL Document 612-27, Rev. A, Jan. 1975
(JPL internal document).

Viking 75 Orbiter Computer Command Subsystem
Flight Software Design Description, JPL Docu-
ment 612-28, Rev. B, Nov. 1974 (JPL internal
document) .

Viking 75 Orbiter Performance Analysis Group
Sequence Software Macros, JPL Document 612-29,
Rev. C, Oct. 1975 (JPL internal document)

Page, D., Viking 75 Project Software Require-
ments Document for the VO Sequence Generator
Program (SEQGEN), JPL Document 620-30,

Sept. 1973 (JPL internal document).

McEvoy, M. B., Viking 75 Project Software
Requirements Document for the Orbiter Sequence
Translator Program (OSTRAN), JPL Document
620-17, Rev. A, Sept. 1973 (JPL internal
document).

McEvoy, M. B., Viking 75 Project Software
Requirements Document for the Orbiter Command
and Simulation Program (OCOMSM), JPL Document
620-15, Rev. A, Sept. 1973 (JPL internal
document) .

Christiansen, D., 'Hardware, Software, and
Mushware," I1EEE Spectrum, p. 37, Oct. 1975.

