A TUTORIAL ON THE REGENERATIVE APPROACH AND DISCRETE-EVENT SIMULATIONS

ABSTRACT

The purpose of this paper is to provide an intro-
duction to the regenerative method for simulation
analysis. The simulations we are concerned with
here are simulations of stochastic systems, i.e.,
systems with random elements. The regenerative
approach leads to a statistical methodology for
analyzing the output of those simulations which
have the property of "starting afresh probabil-~
istically" from time to time. The class of such
simulations is very large and very important,
including simulations of a broad variety of
queues and queueing networks, inventory systems,
inspection, maintenance, and repair operations,
and numerous other situations.

I. INTRODUCTION

In simulating systems of a random nature, it is
important that a convincing statistical analysis
be applied to the output of the simulation. In
particular, estimation techniques, e.g., methods
of obtaining confidence intervals, are needed
which permit the simulator to make valid statis-
tical inferences about the model based on simu-
lation output. Such techniques are also essen-
tial so that the simulator may address the
important tradeoffs between simulation run
length and the level of precision in the estimates.

If a stochastic system is simulated with the goal
of estimating some parameter which is indicative
of the behavior of the system under "steady-state"
conditions, then the simulator faces difficult
problems of a "tactical" nature in providing a
convincing statistical analysis of the simulation
output. These difficult problems include how

to start the-simulation, when to begin collecting
data, and what to do about highly correlated out~
put. If, however, the stochastic simulation has
the property of "starting afresh probabilistically"
from time to time, then the above problems can be
overcome in a very simple way using the regenera-
tive approach. Moreover, in these circumstances
the regenerative approach leads to a simple
method of obtaining confidence intervals which

in turn permit the simulator to make valid
statistival inferences about the parameter(s)
being estimated based on simulation output.
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The research efforts which have led to the regen-
erative approach have been based at Control
Analysis Corporation in Palo Alto, California,

and performed under contract to the Office of
Naval Research. The study efforts have now
reached a certain level of maturity. Many results
of practical interest are available, and these
are of sufficient scope to justify an informal
account of the work done thus far. Such an
account is provided in [l] where the basic results
of the regenerative approach are presented in a
manner which can be easily understood by all poten-
tial users. The narrative in [1] is informal but
precise, without inundating the reader in theorems,
propositions, and formalities, and extensive use
is made of examples to motivate and to illustrate
fundamental ideas and results. The background
required for following [l] is not extensive: a
basic introduction to probability and statistics
(including the central limit theorem and the
notion of a confidence interval).

This conference paper provides a brief account of
the regenerative approach and serves as an intro-
duction to the comprehensive tutorial presenta-
tion [l]. Section 2 of this paper presents a
basic example which serves to illustrate the
problems and issues that arise in analyzing the
output of stochastic simulations. The traditional
"tactical" problems of correlation of simulation
output and bias toward intitial conditions are
addressed. The example of Section 2 also serves
to motivate the regenerative approach as a means
of resolving these problems and issues. The
fundamental idea of the regenerative method is
then spelled out in Section 3. Procedures are
given for making valid statistical inferences
about model parameters based on simulation output.
In particular, a method is given for obtaining a
confidence interval for the expected value of an
arbitrary function of the steady-state distribu-
tion of the process being simulated. The method
is based on a random blocking technique which
enables the simulator to group the output data
into independent and identically distributed
blocks.
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REGENERATIVE METHOD ... Continued

2. BASIC EXAMPLE AND MOTIVATION

In this section we present a simple but important
example of a system which occurs frequently in
applications: a single-server queue. The point
of view will be that of a simulator who is given
the task of simulating the system in ordexr to
predict how the system will behave. This example
will dilineate the difficult issues faced by the
simulator in carrying out this.task in a satisfac-
tory manner, and will also serve to motivate the
basic idea of the regenerative method as a simple
approach for resolving these issues.

The standard single-server queue is depicted in
Figure 2.1. <Customers originate from an input
source which generates new customers one at a time.
If an arriving customer finds the server free his
service commences immediately and he departs from
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Figure 2.1 - Single~Server -Queue

the system when his service requirements have been
satisfied. If the arriving customer finds the
server occupied, he enters the waiting room and
waits his turn to be served. Customers are trans-
ferred from the queue into service on a first~
come-first-served basis.

The input source generates customers on a random’
basis in that the elapsed times between successive
customer arrivals are independent random variables
having a common distribution. The service require-
ments of successive customers are independent ran-
dom variables also having a common distribution.

It is assumed that the input source and the sex-
vice mechanism operate independently of one
another.

For the particular queueing system under consider-
ation, suppose that the input source generates
customers by sampling from a uniform distribution
on the range from 5 to 25. Suppose also that
service times are uniformly distributed but on

the range from 0 to 20. Assume the measure of
performance to be used for the system is E{W},

the mean value of the waiting time (exclusive of
service time) experienced by a customer under
steady-state conditions. Since no computationally
tractable analytical results are available for
computing the exact value of E{w} in this particu-
lar system, simulation is a natural reéourse.
Therefore, the task is one of simulating the
system and analyzing the output to provide an
estimate for the value of E{W} . Furthermore,

it would be desirable to cbtain some measure of
the "reliability" of the estimate for E{W}, e.g.,
a 90% confidence intexrval for the true value of
E{W}, so that the simulator can determine whether
more lengthy runs are required to obtain acceptable
precision in the results.

L2 December 6 -~ 8 1976

A reasonable way to proceed would seem to be as
follows. Let Wl denote the waiting time of the
first customer in the simulated system, W, the
waiting time of the sécond customer, and so on.
Then, if the total duration of the simulation run
is for N customers, where N might be 1000, for
example, then the sample average

LRI,

Wy + W
17 N (2.1)

2

N

is a "consistent estimator" for E{W}, since it is
known that the sample average converges to the
true value of E{W} with probability one as N = o,
However, the sample average (2.1) will in general
be a "biased estimator" for the true value of E{w}
due to the initial conditions. For example, since
Wi is zero, the next few waiting times will tend
to be small. Such bias can be eliminated if the
simulator can choose a value for W, by sampling
from the distribution of W itself.™ Unfortunately,
the simulator does not even know the mean of W,
let alone its distribution, so that this “solution"
is not very practical.

The traditional way of dealing with the difficulty
of the initial bias is to run the simulation model
for some time without collecting data until it is
believed that the simulated queueing system has
essentially reached a steady-state condition and
then to collect data from that point on.

For example, we might simulate the system for 2000
customers, discard the waiting times of the first
1000 customers, and use the average

+ . . .
WlOOl s * W2000

1000

as an estimate for E{W}. But, it is by no means

clear just how long this "stabilization" period,

ought to be, so that a great deal of unproductive
computer time can be wasted in the process.

There is also .another difficulty with using the
"seemingly reasonable" estimation procedure which
starts with the sample average in (2.1). Based
on the output of the simulation experiment, we
would like to obtain some measure of the "reliabil-
ity" of the estimate for E{W}, indicating the
likelihood that similar estimates would result if
we were to repeat the simulation. In this spirit,
we might wish to construct a 90% confidence
interval I for the true value of E{w}, such that
in any independent replication of the simulation
experiment, the probability would be 0.90 of
having the computed interval I include the true
value for E{W}. However, in order to comstruct
such confidence intervals using classical statis-
tics, the output data must form a collection of
statistically independent and identically distri-
buted samples from some underlying probability
distribution. The output data from thé queueing
simulatiop is the sequence of waiting times Wl'



Wy, « . . , Wy. Note, however that if W is large,
then the next customer, k + 1, will typically have
a large waiting time also; and conversely, if Wy
is small, then W43 will tend to be small. Thus,
the samples Wy and W, are highly correlated, and
this is true whether or not the simulation is
begun by sampling from the steady-state distribu~
tion of W. Thus, since the waiting times Wl’ W2'
. e e g WN are not' independent, classical statis-
tics appears to be of little use in assessing

the "reliability" of (2.1) as an estimate for

E{w}.

We see, therefore, that the bias due to the initial
conditions and the highly correlated output data
pose serious obstacles to using the proposed esti-
mation procedure based on the sample average of
(2.1). Since the sample average is such a simple
and natural way to estimate E{W}, these "tactical
difficulties” raise doubts about whether or not

the simulation experiment for the gqueueing system
will lead to meaningful results. We must ask,
therefore, if there might be a simple way to over-
come these obstacles which does not require the

use of sophisticated or cumbersome methods of
analysis. Fortunately, the answer to this question
is yes, and we can accomplish this by proceeding
in a very straightforward manner.

Suppose we begin the simulation by setting W.= 0,
that we then run the simulation for a short

while, and that the customer walting times observed
are as in Figure 2.2. We see that customers

1, 4, 5, 10 and 14 are the lucky ones who find

the server idle when they arrive and consequently
experience no waiting in the queue, while custo-
mers 2, 3, 6, 7, 8, 9, 11, 12 and 13 are obliged

to wait before being served. Moreover, the server

is constantly busy from the time of arrival of
customer 1 to the time of departure of customer
3, then constantly idle until customer 4 appears,
busy while serving customer 4, idle from the time
customer 4 leaves until customer 5 arrives, then
constantly busy from the time customer 5 arrives
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Figure 2.2 —~ Sample output of queueing simulation

until customer 9 departs, and so on. Now, had we
run the simulation beyond customer 14 until we had
processed 1000 customers, say, then the simulated
queue would undoubtedly exhibit the same pattern

of the server being busy, then idle, then busy,
then idle, and so on. Suppose we call the opera-
tional span of a "busy period" and its ensuing
"idle period" a "cycle." Then, our short simula-
tion run has 4 complete cycles during which the
following sets of customers are processed by the
system: {1, 2, 3}, {4}, {5, 6, 7, 8, 9}, {10, 11,
12, 13}. A fifth cycle begins with the arrival of
customer 14. Thus, each new cycle is initiated
by a customer who finds the server idle upon
arriving.

Note that the system "begins anew" at the dawn of
each cycle as it did when customer 1 arrived.

That is, at the time when a cycle commences, the
future evolution of the simulated queueing system
is always independent of its past behavior and
always governed by the same probabilistic struc-
ture as when customer 1 arrived to find an idle
server. The same is also true of the correspond-
ing "real world" gueueing system. The start of
each cycle is indistinguishable from the arrival
of the very first customer to the gueue. It seems
natural, therefore, to group the simulation output
data into blocks, the first block consisting of
the waiting times of customers in the first cycle,
the second block consisting of the waiting times
of customers in the second cycle, and so on.

For the short simulation run 1llustrated.above the
blocks are {wW;,. w2, Wy 1, w P Wer Woo W,
w_} and {w o’ W , W ? Thus, glnce each
cycle is 1n1t1ated unaer %ﬁe same conditions, and
the system "starts afresh" at the times when cycles
commence, the blocks of data from successive cycles
are statistically independent, and also possess
the same distribution. So, for example, if we

set Y, equal to the sum of the waiting times of
customers processed in cycle k, and o equal to
the number of customers processed in cycle k, the
pairs (Y_, o_), (Y2, az), (Y3,.a3) and 4Y4, 04) are
independent &nd identically distributed. (Note,
however, that ¥y and oy are highly correlated.)
From Figure 2.1 we have the following:

(Yl’ al) = (5, 3)
(er az) = (OI 1)
(Y3I a3) = (341 5)

Yy, 0y) = (10, 4)

Hence, the highly correlated data {Wy, Wy, . . .,
Wla} has been broken up into statistically indepen-
dent and identically distributed blocks.

Now, at this point the reader might stop and
remark that what we have just observed is all very
good but what does it do towards solving the diffi-
cult problems we face in analyzing the simulation
output, i.e., of obtaining a valid estimate for
E{w}. Suppose we resume the simulation run with
customer 14 and continue until we have observed

n complete cycles of the sort identified above.
As before, let Yk and ¢, denote, respectively, the
sum of the waiting times of those customers pro-
cessed in cycle k and the number of customers
processed in cycle k , for k =1, 2, . . . , n .
Then, if N is the total number of customers pro-
cessed over the n cycles, observe that
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REGENERATIVE METHOD ... Continued

+ ... ..

Wy + Wy + + Wy Y+ + Y

- .0 (2.2)
N o, +. . .+0q
1 n
The right side of (2.2) can be written as
(Y1 L P Yn)/n

. (2.3)

@ +. ..+ uﬁVn

Since each of {¥,, . . ., Y, } and {ul e e .
o_} is a collection of independent and identically
distributed random variables, we know by the law
of large numbers that the numerator in (2.3) con-~
verges to the value of E{¥;} as nm»~ and the
denominator converges to the value of E {a.,} as
n*° , both with probability one. WNote tha% N> n,
and that N#®© as n¥© . Moreover, we have
already observed that the left side of (2.2) con-
verges to the value of E{W} as M¥» , with
probability one. Hence, we have proven that

E{w} = E{Yl}/E{al} . (2.4)

Therefore, the problem of estimating E{w} is the
same as estimating the ratio E{¥;} /E{a;} . BAnd,
since this ratio can be estimated from the inde-
pendent and identically distributed pairs (Y., al),
e e« 4 ¥ , a), classical statistics can be
used to make in?erences about the true value of
E{W} based on the simulation output. In particu-
lar, we can construct a confidence interval for
E{Yl} /E{al} , and a procedure for doing so will
be giyen in Secgtion 3.

Thus, we have arrived at a simple Solution of what
to do about the highly correlated output data from
the simulated queueing system. Moreover, by
taking Wy = 0 we begin the simulation by initia-
ting a cycle, and thus no stabilization period
whatever is required and every piece of output
data generated by the simulation is. useful in
obtaining a statistically sound estimate of elw} .

So, we see that our short simulation run has pro—
vided us with insight on how to resolve the hard
"tactical" problems we faced at the outset of the
proposed simulation experiment; namely, the problem
of how to begin the simulation, the problem of
when to start collecting data, and the problem of
highly correlated output.

At this point it would be well to pause and take
stock of what has been done. We began with the
goal of estimating the expected steady-state
waiting time in a single-server queue by simula-
ting the system and analyzing the output. Before
we could even start the simulation experiment,
however, we found ourselves facing difficult tac-
tical issues which had to be resolved in order for
us to carry out a meaningful statistical analysis
of the simulation output. Not to be dissuaded, we
then observed that the behavior of the simulated
system was characterized by a succession of cycles,
that the system regenerated itself probabilisti-
cally at the dawn of each cycle, and that if the
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simulation output were grouped into blocks, with
each block consisting of output from a particular
cycle, then the blocks were statistically indepen-
dent, identically distributed, and, in view of
(2.4), carried valuable information about the
steady-state parameter to be estimated. Thus,

the difficult tactical issues were resolved, and
we could proceed with our simulation experiment.

Now, if this notion of a stochastic simulation
"regenerating itself" probabilistically can be
applied to simulations other than queueing, then
we have discovered an approach which could be

very helpful in analyzing the output of a large
class of stochastic simulations. This idea does
indeed go well beyond queueing simulations, and

the class of simulations having a "regenerative"
property is very broad (see [l]). We now go on

from here to set down a simple framework in Section
3 for analyzing the output of any stochastic
simulation having a "regenerative" property of

the sort we observed in the example of this section.
Moreover, we will give a simple procedure for
constructing a confidence interval (from the simu-
lation output) for a wide variety of steady-state
parameters of interest in a "regenerative" simula-
tien.

3. THE REGENERATIVE METHOD

The example of Section 2 suggests a unified ap-
proach toward analyzing the output of those simula-
tions of stochastic systems which have the property
of "regeneration" from time to time. That is, if
the simulation output is viewed as a stochastic
process, then these "regenerative processes" have
the.property of always returning to some "regenera-
tive condition" from which the Ffuture evolution of
the process is always independent of its past
behavior and always governed by the same probabil-
ity law. If the simulation output-'is then grouped
into blocks according to successive returns to the
"regenerative condition"” then these blocks are
statistically independent and identically distribu-
ted, and this greatly facilitates statistical
analysis of the output by the sSimulator.

In this section we shall cast all such, "regenera-
tive processes" into a common framework and then
give a simple technique for obtaining a confidence
interval, based on the simulation output, for a
variety of steady-state system parameters of
practical interest. The method covers any discrete-
event simulation that can be modeled as a regenera-
tive process (see [l]). A discrete-event simula-
tion is one in which the state of the system being
simulated only changes at a discrete, but possibly
random, set of time points. The example consider-
ed in Section 2 is of this type.

This section is organized as follows. We first
discuss regenerative processes with a discrete
time parameter, as in the queueing example.
(Regenerative processes with a continuous time
parameter are discussed in [l]). After defining
regenerative processes, we then give a technique
for obtaining confidence intervals for steady-
state parameters of such processes.



A sequence {g , 2;} of random vectors in

X dimensions 1s a regenerative process if there is
an increasing sequence 1< By <B, <. . . of random
discrete times, called regeneration epochs, such
that at each of these epochs the process starts
afresh probabilistically according to the same
probabilistic structure governing it at epoch f..
That is, between any two consecutive regeneratidn
epochs f. and B. 1 sayvy the portion X, B <
n<f; +l}of the prgcess is an independent” and
idehtically distributed replicate of the portion
between any other two consecutive regeneration
epochs. However, the portion of the process
between epoch 1 and epoch B;, while independent
of the rest of the process, is allowed to have a
different distribution. We will refer to the
portion {Xn , B: <n <B, .} of the process as the
jth cycle” J i+l

In the queueing example, ¥ = W_, and the epochs
of regeneration {B8., j >1} “are Phe indices of
those customers who find the server idle upon
their arrival. A typical situation in which the
regenerative assumption is satisfied is when B,
represents the time of the jth entrance to som
fixed state, say s . Upon hitting g , the simu-
lation can proceed without any knowledge of its
past history. Examples of such epochs are the
instants when an arriving customer finds all
servers idle in a multi-server queueing system
and the times when a recurrent irreducible Markov
chain hits a fixed state. Not all regenerative
behavior, however, is characterized by returns

to a fixed state (see [1] ).

Let o B. for j >1. ©Note that the
ogou}n tl%es" {dj 3 >1} between consecutive
epochs of regenergtlon are independent and
identically distributed. (In the queueing
example of Section 2, d. is the number of custo-
mers served in the jth cycle.) We will assume
henceforth that E{a,} <= . This is not a re-
strictive assumptioni. For example, it holds in
almost any qgueueing system of practical interest,
and it certainly holds for the queueing example
of Section 2, as well as for any positive
recurrent irreducible Markov chain.

The regenerative property is an extremely powerful
tool for obtaining analytical results for the
process X s n >1 . Under very mild conditions
the process has a limiting or steady-state dis-
tribution. These conditions are technical in
nature and are discussed in [l] The main point,
however, is that virtually any discrete time
parameter regenerative process of practical
interest to a simulator has a steady-state dis-
tribution in some sense, and most often in the
following familiar sense. There is a random K-
vector X such that the distribution of X , conver-
ges to the distribution of ¥ as n*» , that is,
the 1im P{x _ <x} = P{x <x} for K-vectors x.

3o ¥ n—~ B~

Since we now know that regenerative simulations of
interest have steady-state distributions, we can
turn to the question of estimating characteristics
of those steady-state distributions.

Let £ be a "nice" function in K dimensions having
real values, and suppose the goal of the simulation

is to estimate the value of r= E{£(X)} . (The
nice" functions are the so-called “measurable"
functions, and these include virtually all func-
tions of practical interest.) WNow, by the appro-
priate choice of the function £, the simulator
can estimate a wide variety of steady-state
quantities of interest. To illustrate, suppose
first that X is real-valued, so that we replace

X by X . If £ is defined so that £(x) = x

for all x, then r Z E{£(X)} = E{X} , so that esti-
mating r is equivalent to estimating E{X} . (This
is the function of interest for the queueing exam-
ple of Section 2.) If f(x) = x°, then r = E{x*} ;
if £(x) = 1 for x <a, where a is fixed, and f(x)=0
for x>a, then r = P{X< a} ; and, if £(x) = béx—c)+
where b and ¢ are fixed, then r = b*E{ (X - ¢} } .

More generally, if x, is the jth component of the
K-vector x and x) J is the jth component of X,
then f(x) = Xy glves r=e{x)}, £(x) = xlxj
gives r = E{X (1)x(3)3, ana £(x) —g 1 T2 T+
x 2 gives r ¢qual to the expected Iength in K
dEmenslons of the random vector X .

We now observe those properties of the regenera-
tive structure which will be used to obtain a

confidence interval for r . Let
Bj+l -1
Y, = £(x, ) . (3.1)
J ~1i
i=B,
J
That is, Y. is the sum of the values of £(X, )over

the jth cygle. (In the queueing example ofl
Section 2, ¥y is the sum of the waiting times

of customers in the jth cycle.) Recall that

oy = ~ B, gives the length of the.jth cycle.
Then, %he funaamental propertles of the regenera-
tive process we shall use are given by (3.2) and
(3.3).

The sequence {(Yj, aj), 3 >1}

consists of independent and

(3.2)
identically distributed random

vectors.
1f E{|£(X)|} < = then

r= E {f(§)} =E {yl} /E{o 1} .(3.3)

Note that we demonstrated the validity of (3.2)

and (3.3) in the gueueing example. The same con-
cepts we used in that example can be generalized
to establish (3.2) and (3.3) for regenerative
processes with a discrete time parameter. The
assumption that E{|£(X)|} < « 4is not very restric-
tive, and does not pose an obstacle to application
of the regenerative method.

Let us now turn to the main problem of interest
here, namely that of estimating the value of

E {f(ﬁ)} based on the simulation output. In view
of (3.2) and (3.3) this statistical estimation
problem has been reduced to the following:
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REGENERATIVE METHOD ... Continued

Given the independent and identically where £ = ¥/ &. We cannot, however, produce a
distributed observations confidence interval for r directly from (3.6)
. since the value of 0 is unknown. However, we can
{(Yj, aj), j >1} , estimate r = E{Yl}/E{all(3-43 estimate the value of G as follows. ILet S11r S
and s, 'denote, respectlvely, the sample 22
Moreover, because we now have independent and variafice of the ¥Y.'s, the sample variancé of the
identically distributed observations, we can use 0.'s, and the sample covariance of the (Y, a )'s,
results from classical statistics to estimate 1Je., ]

elv.} /8{e,} . 1In particular, we can obtain
a confidencCe interval for this quantity, and a
method for doing so will now be given.

n n
=1 E: @ -pH2_ 1 2
ST N ILE T

In view of (3.4), we thus have the following task: j= n-1 ¢
given the independent and identically distributed J=1
pairs (Y, o) , (Y, O,) , . . . (¥, d ),
construct a lOO (L = 8)% confidence interval for n 2
E{Yl},/E{a } when n is large. We illustrate 1 2: v
one method for obtaining such a confidence inter- a(n - 1) 3j
val using the central limit theorem. Further j=1
discussion of some alternate confidence intervals
is given in [1].
n _ 2 n
Let V = Y. - r0.. Note that the V.'s are inde- s = 1 E: (o, - d)y = 1 a.z _
pendent ana 1den%1cally distributed”’and that 22 n-1 £ J o= 1 J
E{VJ} E{YJ} - r Ef{o.} = 0, by virtue of (3.2) i= j=1
and” {3.3). "Let ¥, E? and V denote the sample P
means n
: i (L
_ 1 ni{n - 1) J
Y=K Yj, j:l
j=1 and
n
n
G- Y
Y Oy S99 7 S (v, - Yo, =T = 1
n . v
J - 3 3 S—
j=1 i=1
and n n n
L% =i (L) (L
3 . Q.
n : =1 1 hm -1 ¢ J J
J=l j=1
—_ 1
V=g Vj’
Now let
j=1
2 ° A2
o _ 2 2 s"=s, . - 2¥s. _+¥s .
and note that V=Y - r o . Putting g = E{Vj } 11 12 22
and assuming 0 <0“ < ® , the central limit 2
theorem tells us that Then, it can be easily shown that s? 20 © with
probability one as n - « . Thus, (3.6) holds
1/2 with s in place of ¢ , i.e.,
n v '
lim P{ ——— Zx = ¢(x) (3.5)
n - o 1/2,\
: n’ [r-rx]
Jim P < x = O(x) . (3.7)
for each real x, where @ is the standard normal nso (s/a) -
dlstilbutlon function. The assumption that
0 <g© <o is not restrictive for simulation -1 s s
applications. We can rewrite (3.5) as Letting zg =% (1~ 5) , i.e., @(zg) =1-3,
. 172 A , then from (3.7) we have
lim P} n T -r] <x = §(x) (3.6)
n oo -
(a/&)
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o nl/2 [f - r] < .\~ (1l
P "Z6 >~ it Zs =1-§
(s/q)

for large n. This gives the following approxi-
mate “T00(1 ~ 8)% confidence interval for

r = E{g(x)} :
N zgs “ z*g
2= jJr-—0__  rxr+ (3.8)
Ehl/z onl/2

Note that if we let J be the width of T, then

*

2z C
z_ &

/2

1
E{al}n

for large n, with high probability. Thus, in
order to reduce the width of the confidence
interval I by a factor of two (at the same level
of confidence), it is necessary to increase the
number of cycles simulated by a factor of four.

We now summarize the procedure for obtaining an
approximate 100(l - §)% confidence interval
for r = E{f (R} :

1. Observe the simulation for n regeneration
cycles.

2. Compute Yj and dj for each cycle j, where Yj

is the sum of f(xi) over the jth cycle and 05

is the length of the jth cycle.

—_— A

3. Compute the sample statistics ?, o, r, Sqy7

2
S1ov 522, and s”.
4. From the confidence interval

4

*S
s $
T+

- _ 1/2

E

where zg = ¢-1(1 - g) and & is the standard

normal distribution function.

Note that in the case where the first cycle does
not begin immediately at the start of the simu-
lation, the above procedure indicates that the
data prior to the first cycle is to be discarded.

TIn performing these calculations, particularly
those of Sy17s Sqpg¢ and S.., it is wise to use
double-precision arithmetic in order to insure
the desired degree of accuracy in computing the
sums.
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