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ABSTRACT

A nonparametric formulation is set up for selecting the best one of k populations where best is
defined as the one with the smallest inter(w,B)-range; here inter(w,B)-range is a measure of dispersion

defined by the difference of the Bth quantile and the afth quantile. The formuletion is strictly

nonparametric in the sense that the df's are only assumed to be continuous and are not assumed to be
stochastically ordered. The formulation and solution are similar to the solution of the corresponding
"central tendency” problem treated by Sobel in [5], except that tables have not been prepared.

Appendix A gives a second-order correction term for the probability of a correct selection.
Appendix B deals with a related problem of selecting a subset containing the best population and is
similar to the solution of the corresponding '"eentral tendency" problem treated by Rizvi and Sobel in

(L]

1. TINTRODUCTION

There are available k populations with completely unknown (cummlative) distribution functions Fi(x)
(or simply F:‘.) (i =1,...,k); a pair of numbers o,B are also given with 0 <« <—;—‘ < B <1 with
neither @ nor B close to %‘- If xa(Fi) denotes the o percentile of" Fi then
Q’i = oz,B(Fi) = xB(Fi) - xoz(Fi) for t‘rie given pair (o,B) denotes the inter(w,B)-range of Fi; our .
principal interest is in o =1 - B = T in which case this is the familiar interguartile range. Based on

n independent observations from each of the k populations, our goal is to select the "best" population
where '"best" meens that it has the smallest inter(w,B)-range, i.e,, it has the smeliest Q-value. The
df's Fi(x) are each assumed to be continuous in x but are otherwise completely unknown and they need

not belong to a common subfamily nor need they have a common support. If either xa(Fi) .or XB(Fi) is
not unique then we define, say xa(Fi)’ as the midpoint of the set {x: Fi(x) = @} and the theory and
results of this paper still hold. However we assume below that all quantiles used are uniguely defined in
order to avoid cumbersome notation that does not add to the basic ideas.

If we let F[i](x) = F[i] denote the d4f with the i~bh smallest Q-value and use the notation

F[i] > F[j] to mean that Qi = Q’j ,» ‘then the correct ordering of the k distribution is

(1.1) Fo P B > <o »F

(2] [x]

No additional informetion is assumed to be available at the outset concerning the correct pairing of the
Fi with the F[j]’

As a result of the more general setting that we use, and of the fact that each of two spégified

[1]

quantities 6* and d* defined below usually doesn't have a comparsble parameter in other models , it is
difficult to compare our results with the results of other weaker nonparametric formulations. The present
format of posing and solving this nonparametric problem is a natural extension of the problem treated in
[5] where the goal was to select that one of k populations which has the largest o-quantile, for fixed
prespecified o, Thus it is shown by the present paper that (completely) nonparametric ranking procedures
can be derived not only for "ecentral tendency" problems but also for "dispersion" problems.,

In Appendix B we consider the related problem of selecting & subset of the k populations that
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Nonparametric Subset Selection (continued)

veontains the best one, ‘i e the ode with the smallest. Q-value. This. bears the same relation to the main
‘problem of this-paper tha.t “the paper [L] bears 40 the paper [5], namely the.problems are different and
“separate-tables' are 'needéd but ~certain "tectnical details of the andlysis are similar and .can be handled
similtaneously.,

~The-nonparsmetric sdlution“in [5] was ‘alsorused in'[2] o  seldet Tixedssize subsets that contain the
best population.

A more detailed eprsition of the problem treated in [5] is given in & separate expository paper
[Appendix C] written as & companion to the present paper.
. i

2, FORMULATTON OF THE A PROBIEM: REQUIREMENT AND P(Cs)

For any fixed number n of observations let sia/ and Si denote the a'th and Bth sample

quantiles from Fi and ;Let Si = SiB - Sio: denote the sample inter(wc,B)-range. Our procedure will be to
simply select the populaftion thet gives rise to the smallest value of Si'

We now formulate & requirement for this problem so that by imposing & procedure that satisfies this
requirement we can control the confidence we have in the solution obtained. et Fo denote the best

population, i.e., the one with the smallest Q-value. If in some well-defined sense the k - 1 worst
populations (which we call the W-set) are sufficiently more d:.sperse than F then we want the

probability of 8 correct selection P(CS) +to be at least B (preassigned), we now make this more
* * *

precigse. ILet e >0 be specified so that the closed intervals -6, oz+€ ] and [B~e, B+e ] are

disjoint and do not include 0, % or 1, i.e,, sothat 0< e < min(o, -2—-01 1-8, B-—) We use F

0
*
and € to define the two disjoint closed intervals

(2.1) ns [ o Tp= | "s-e*(Fo)’x&e*(Fo)]‘
.To separate the W-set from Fo we suppose that each of the k -~ 1 populations in the W-set is larger
than Fo throughout I and smaller than F throughout IZ' Iet d denote the minimum vertical

distance 'bhroughou'b both 1n'bervals between FO and any member of the W-set, Then our requirement states
thet if 4 = d (the value of a > 0 is preassigned), then we require that P(CS) = P where

* . *
% <P <1. Thus e , 4 and P a:]v.e 81l preassigned and th: pa.ii (o, 8) lg given by the problem; our
principal interest is in o =1-f= I and we usually take € = d in the computations. The problem

remaining is to find the smallest common sample size n from each of the k populations that will
satisfy the above requirement. For the inequalities given on e* d*, P*, o, B suchan n will
always exist.

The above formulation makes use of & nested configuration in the sense that if d > 0 then the
entire interval J (FO) = [x (F ), %g (F Y1 is included in the corresponding intervals for the k - 1 worst

popula.‘bions and hence Q,(F ) = Q,(F ) for all i, If this nested configuration does not hold or if
da < d then our requirement states nothing and hence the P(CS) would have to be evaluated for each such
configuration for which the P(CS) d1is desired; the methods used below would of course be useful.

In carrying -out the procedure based on Si we assume that o is rational and restrict our attention
to n-values for which (n+1)o and (n+1)B are integers, Thus for o =1 - B =% we take n+ 1 1o
be a maltiple of L4, i.e., n =3,7,1L,... .

To derive the P(CS) for the least favorable configuration (LFC), we let X YO denote
respectively the (n+l)x B ang (n+ l)Blbh order statistics from F, and we use X;] and Yj for the

same order statistics from FJ (3 =1,2,...,k-1)., In the LFC we have for each F;j in the W-set

1

*
F(x) =F (x) +4 for each x in I
(2.2) - J 0 . 1

FJV(V) FO(Y) =4 for each x in I,

104 pecember 5-7, 1977



Then the P(CS|LFC) satisfies the inequality

.
(2.3) p(cs|zFe) = PJLXJ. <X, <Y<Y {3 = 1,2,...,k_1)}

0y

p{r,(x) <500, B >FE) G =12,..5-D]

"

P{Fj (%,) < Fy(%) + a, Py (E;) > F(T) - & (G = 1,2,.-....,1:,1)} )

Letting UJ. = F;] (Xj) " and Vj = Fj (Yj) (3 = 0,1,...,k~1) and dropping unnecessary subscripts, we make

use of well-known results about order statistics to obtain

* * * ’
B+E" st+E 1 u.+d :

(2.1) p(cs|1Fe) = e O Ly - W)L o v) P Sauay BT,
| ’rs-e*'Ja-e*L Jvo-d*‘ro * 1 - v aua ]

. Il Ser-1 \in-g
0 (Vg - uo) (1 - vo) du dv,

where r=(n+ 1o, s=(n+1)8 and C is given by

¢ = T(n+1) _ n!
TG -r)T(a-s+1) (r-1)!(s-r-1)!(n-8)}"

(2.5)

3, ASYMPTOTIC EVALUATION OF THE P(CS | IFC)

As defined above (for each j), the chance variables U and V are respectively the r-l.'h and sth

order statistiecs from a uniform distribution U(O,l) and they have the following moments for »r < s

e o eghy s egy non - iy |

(n-s+1) (n-s+1)
Cov(U,V) = -(—i%—)zs(:—w), Corr(U,V) = ,/%(%—f,%fy .

Note that the ordering r <'s is essential and that the results also hold for r=s. Let o =

T
s n+ 1°
B=gv1 Then it is well known (see e.g. [1]) that

(U-a)yn+2 7 = (VaB)/n+2

asymptotically (n - «) have a joint bivariate normal distribution with zero means, unit variances and

correlation p = Jo(l-8)/4/B(L-o). For the special case a =1 - B =% we have r = (n+1)/h4,
s =3(n+1)/4%, o(l-a)=p81-8)= %(15:) and p = %‘ Note thet p is exactly the same for small sample
theory as for the asymptotic theory and does not tend to zero,

(3.2) X =

Let Uj’ VJ. be the U, V random variebles and let X , Y, be the X, Y random variables for
F;] (j =0,1,,..,k-1). Then for each j the paii (X.,Yj) are asymptotically*,join'b bivariate normal
with independence between pairs, If we let ¢ =4 A/n+2/,~/dfl-a5 and ¢’ =4 ,/n+2/,JB(1- B) +then
the limits of integration for the inside integrals in (2.1) are

(3.3) % <X+ e, T, > ¥, - e’ . (5 =1,2,...,k-1).

- Hence we obtain from (2.4)-by letsing S : denote rthemsymptotic (n < ). Limit of the .right hand side of
(2.4)
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Nonparametric Subset Selection (continued)

J
0

(3.4) s=JJIT T ot | paa = otey Lodaxay ,
y-c

where thé.subscripts on Xy yj" (5 = 6,1,...,k~1) have.Been.dropped;.unmarked limits.of.integration.are

v. from- - to =, Land

2 2
(3.5) : o(x,¥|p) = L exp{-— (x - 2pxy +y )3 L (e < x,y < @),

210 2(1-¢°) .

Using the Taylor expansibn of <p(x,y| p) about p = 0 and using cp(d)(x) to denote the ozth derivative
of the standard normal density o(x) (so that cp(o) (x) = o(x)), we have

[--] [-+}
. T (@) (30 (B ol
(3.6) o=ylp) = 20 @ 0 = ox)el) ) B =, F)gr»
a=0 ‘w=0
where Ha(x) is the Hermite polynomial with respect to the (standard) normal density kernel, i.e.,
Ho(x) =1, Hl(x) =x, H (x) = < . 1, etc. Denote the bracketed double integral in (3.4) by B(x,y | p)
and let &(x) denote the standard normal 4f, After replacing y by -~y we obtain from (3.4) and (3.6)

w - .
o
- O -
(3.7) B(x,-y | p)= 8(x + )8y + ') + Zcp(a 1)(1 + c)q>( l)(y + cl)(_dp.')- .
. o=l -
We use si to denote the terms up to and including pl; here we only consider the "linear" result Sl

but- 1f later numerical evalustions show a need we shall also bring in the terms involving p2 and consider
s From (3.4), (3.6) and (3.7) we have for S and 5 respectively,

2'0 l’
w8 - s= [ ] eGre)stred) - pptat ol +¢) E ool - o™ )e™ (v axay,
G 5, =4 [ e+ 08 My + N0 - 0o 0™ (1) laxay

- (x - l)pjj #52(x + )8 E(y + cVolx + é)cp(y + ¢ No(x)o(y)dxdy .

We' ﬂist[l to gxpress these 3 double integrals in terms of A-functions defined with 3 (verying) arguments
kY, p’y, h" by

(5.10) ety = [T 2"+ 1" Yoto)ax |

where p' > 0 is usually the reciprocal of an integer, h' is usually nonnegetive and /=21 is an
integer. A straightforwerd completion of squares and integration-by-parts gives from (3.9)

1 L. k ’ 1 1.
(3.11) Sl = Ak('é.’hl)Ak(f’hl) - (2)pq)(hl)cP(hl)Ak-l(g’hZ)Ak-l(g’hz)’
where h = u! --—CL h2 = S hz'——e-i- For the special case o =1 Ei—i we have ¢ = ¢’
= = = = — =1-8= =c’,
Y E JE J6 ¥
b= h{ (1=1,2), p= -%‘- and  (3.11) reduces to
e a2l v E(E-1) 2. y2 (L
(5.12) 8= Ay ) S o (A (F5hy).

» Note that for. k =2 -this-gives a very simple result, namely

(5.13) s, = £Gn) - 2P a8 G, = F0) - 3970,
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since Al(,p,h) =1 for all p and h.

Tables of the A-functions needed for the above are available in the R. Milton Table [3] for many
values of k, p and h; note that for k = 2 we only need a standard normal (df and density) table.

To illustrate the calculations we first consider k=2 and use (3.13). For o =1-8 = il, k=2,

* * *
P =.9 and ¢ =d = .1 the use of (3.13) gives a trial h,-value, i.e.,

1
(3.14) @(hl) = ﬁ: 949 or b = 1.63,

We now add %@2(1.63) to .9 and solve a° (hl) = ,9037 for a new value of h One or two iterations

1
*

gives the result b, = 1.650. Since hl =da Jn+2/ A/2(%) (-E- , Wwe obtain n = %(1'—6%-9)2 -2 = 100.1, so

that 101 observations are needed from each of the k = 2 populations to satisfy the requirement. (The

omission of the lSt order correction term in (3.13) gives n = 98, but the second order correction term
derived in Appendix A indicates that our "Linear" result n = 101 is generally both conservative and
* close to the correct answer; a second-order correction in Appendix A reduces this to n = 100.)

For k >2 it is again useful to solve (3,12) by first assuming that the second term is not present;

* * *
the correction term needed is usually very small. For exemple, with k=5 and @, B, P, e, 4

all as in the above illustration, our first trial value is h, = e¢/2 = 2.15 and the first term in (3.12)
is .

(3.15) Ag(%,?-.ls) = (.9h879)2 = .90020,

and, if this were not adjusted, we would need
hl 2 3,2,15\2
(3.16) n=2¢(l - a) (?) -2 = 8(":‘1") -2 =173.3 - 2 = 1T1.3,

where the first equality in (3.16) is a general reéult for the case o = 1 - B, Thus without correcting

hl we need 172 obgervations from each of the k = 5 populations. The total value of Sl in (3.12)

for this hl is .8973, so that the correction term is only .003 and the terms involving p2 are not

needed. If we now use -hy =2.20 the value of S in (3.12) is
2 10 2 2
(3.17) Sl(for by = 2.20) = (.954k3)° - ?(.055‘#) (.7573)° = .9095 > .9.

By linear interpolation between these 2 results we obtain h; = 2,162 and hence by (3.16) we find that

n = 173.28 so that 174 observations are needed from each of the k = 5 populations to satisfy the
requirement, i.e., a total of 5(17h) = 870 observations.

If we rank the k = 5 populations by considering a comparison of 2 populations, repeated four
times, then the total numbér of observations might at first appear to be smaller than 870 since each
pairing requires 200 observations and the four repetitions would require a total of 800 observations.

*
However if we use P = .9 for each pairing then the overall P(CS) lower bound would be only

(.9)J+ = ,656, Moreover, any attempts to avoid taking new observations on the winner of each pairing would
tle up the analysis with a low P(CS) +that is difficult to estimate. Thus, our above result, 870, does
not appear to be excessively large for the general nonparametric setting we are using. As further

*
evidence of this, suppose we used P = 974 for each pairwise experiment, so that the overall P(C8)

lower bound is (.971!-)1" = ,900, Then for each k = 2 experiment we obtain h, = 2.229 and by (3.16)
we need n = 185 observations per population. Hence this method requires a thtal of 8(185) = 1h80
observations, which is substantially larger than our total of 870.

4, FURTHER RESEARCH NEEDED THAT IS RELEVANT TO THIS PROBLEM.

*
It would be desirable to investigate the effect of taking e 7£ d to see if the number of observations
* *
required is more sensitive to € or to d . It would also be desirable to have an explicit table in

. * * *
which the user can look up the n~value corresponding to specified values of P, € and d ; these are
not yet available. It would also be desirable to compare numerically the solution described here with

Winter Simulation Conference 107



Nonparametric Subset Selection (continued)

that obtained in other seminonparametric models, e.g. with the model in which we assume that for some
x - 0
—)s

unknown df F(x) all the populations are g:.ven by F(

§ being a common unknown location

parameter and the scale parameters cj being the parameters by which the populations are to be ordered.

Here the difficult question is how to find quantities comparable with e* and d* in the other models so
that meaningful comparisons can be made. Finally it would be desirable to generalize the present solution
for selecting the + = 1 best so that we could also consider (nonparametrically) the problem of selecting
the t best populations for + > 1, where 'best" is again defined by having the smallest inter(x,B)-
range.

APPENDIX A

Although the correction terms of order pz were not needed above, they may not always be negligible
and we may want to see how small they are and whether they indicate that our solution above is usually
conservative. Since a slightly more general expression arises for a related problem in Appendlx B below
it is useful to generalize (3.4) and (3.8) slightly by putting bx + ¢ instead of x + c, b’z + ¢’
instead of x + c¢’,. . p, for p inside B(x,y| p) and o, for p outside B(x,y | p); hence we obtain
our result by setting b =b’' =1 pg = in the final result. For convenience, we also set B = bz,

1
"= (b')z and define for j = 1,2

Ay (o T—
(a1) g o EAMFETIE J(1+jB).[1+(j+1)B] r[ o( )
J _ VI T 3B JI1+ (a- 1)B](l+ozB)

where the A-function is defined by (3.10) and F:; is defined similarly with b,B,c replaced by b’,B’,c’,
respectively. Thus to get a mumerical value for F. and F! we only need [3] and a standard normal
(density and af) table, There are four terms, T, (i =1,2,3,4) in (3.8) involving Py end p, to

the second order, namely
2

P
L= 2] o+ e @ax [ F 2wy + o) ey,

=
1

k-2

H
|

= PPy (k= 1) J@(X)ék"z'(bx + e)o(bx + C)dXI©(y)§ (o'y + eo(b’y + ¢")ay,
(az) 2 .
s = (- 1) [otE R o + g (ox + e)ax [T (ol + e o'y + ey,

3
n

m, = 0c (55 1) Jot e 3 (ox + o)’ (ox + o)ax [ o) TPy + 6 (0'y + o day.

Using completion of the square and integration-by-parts the resulting second~order correction term U,
can be expressed as

(83) Ty = CppFpFy + pyFpFy + )P Fy + o) FIFY,

where Fj and. FJ' are defined in (A1),

_(x-1Nr2 (s ) .2 2,71
Cop = ( e Z1+‘B)(1+B’5L(k - 1)ob’py + 2popy + oyBb’ |,
(W) ey = (B2 ° {m? - TR (s - 1wy + 2pgey + oo |,
21~ 2 TB L% - TH B, po PgPy ™ Py
(k- 1) ( B’ bb 2., N
€11 7 ( ce “’1 L-1 TIEE +(1+B)(1+B’)r(k-l)bb Po *+ 28gPy * P1BDT )
and ¢, is the same as Chy except that (B,c) are interchanged with (B’,e’), respectively. For the

special case b =b' =1 and Pg =Py =P (say), we have B =B’ =1 and
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K- DE-2) 2
= 8 P

=_5Q;;%Q:1ch{ . =(k-lﬂk+2%cwa

and Cyp is the same as oy wit’r} e’ replaced by c¢. In partieular, for k = 2 we obtain
- - - = 882 |y nso? = =1
Cpp = Cpp = Cp = 0 end .c;y = 5p =hhip, so that (3.13) with o =1~ B and p = %, becomes
' _ 42 v L 1\21.2 2 .
(26) L s = 8w - o) + 3P m);

note that I, in (A6) can also be written as %‘-pz[cp(l> (hl)]z.

In the numerical example above for k = 2 the corrkction term 3’2 adds .0016 +to the P(CS) 1lower

s We obtain hl = 1,642, which yields the
- 2 = 99.1, Hence we need 100 observations from each of the k = 2 populations

bound. If we use this term to iterate for a corrected h
3,1,642\2

result n = 8(—-1_)

to satisfy the requirement. Thus our previous result of n = 101 was both conservative and close to the

correct answer. N /

!

' 1;/ APFENDIX B

A similar analysis can be used fozj the px‘:oblem of selecting a subset of the k populetions that
contains the 'best" population, where "best" is again defined in terms of having the smallest Q-value,
where (o,B) are given by the problem.

For the given (@,B), let Sj.(_(-y B) de:noébe the sample inter(w,B)-range from the population T, which

i
has cdf F:‘L (i=1,2,...,k); 1let Sn(gr’f) denote the smallest of these k scalar quantities. For
af,8’ such that o <a! <% a,nd:" % < B’ < B (In the main application of interest we set both o =1 « 8
end o’ &1 -B8'.), we put m, in the selected subset if and only if
(1) s(@’s8 ¢ g@8)
i min

Clearly the populetion giving rise to S(gig) gets into the selected subset, so that the subset is never

empty. We wish to find a maximel interval (o’,B’) with o <o’ and B’ < B such that we can assert

* ;
that P(CS) = P ; of course, if B’ = 1 - o' then we are looking for the smallest «’' (with o <o)

having the same property. Ietting j = O denote the best population, the P(CS) for the LFC is given
by

4 1
.!(BZ) P(cs | LFC) = P{Séa B < Sﬁ;s), where min is over j # O}

, : P{Xéj) < xo(f,)),‘ Yé(,)) < Yéj) (3

1,2,...,1:-1)‘}.

et R :e >0 be such that o <o’ <o +¢ and B~ €< B’ < B and such that the two closed intervals

n

(83) I, =[x (F)x, (F)l, I,

. {xs_e(Fo),xB(Fo)}

(3 = 1,2,...,k=-1) from F, we assume that

are disjoint. To separate F 0

J

Fo(x) < Fd(x) for a1l x in I,

=
Fo(x) Fj(x) for all x in I,.

(B4)
Then in the LFC we have equality in (B4) in the corresponding intervals, Using this, we can continue
the chain of inequalities in (B2) to obtain

(85) P(cs | LFC) = P{Fj(xéj)) < FO(XCS(;)),FO(Yé?)) < Fj(Yé'j)) G = 1,2,.;.;1:_1)}

Lov . olu ’ vt ‘ ’
=TT e ™ Ha - w3 "3 - 2)™* agaz |5 Yew™ (v = w)® 11 - v)"Sauav,
00 'voO
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Nonparametric Su’bsqt_Selection (continued);

where r’ = (n+1i)a’,. s’ = (n+ 1)B’, C is given by (2.5) and C’ is the same with (r,s) replaced by
(x’,s"), respectlvely.
dT e e
For the asymptotn.c theory the limits w <u and v<z in (BY) translate into the 1nequalit1es

(B6) X <bxg ke, oy > By - e’ (3 =12,...,k-1),

where b, b’, ¢ and c’ are all positive and given by

(87) po feli=ed . /s'(l-a'*)’ |- o) faTE _(8-8)/57F
e D A S - cve

Then the asyiptotic (n =+ o) result S for the right side of (B5) is
‘ bxte k-1
| L1, ]
(88) 8 = L b’y-c"l‘-m‘ o(w,z | p)awdz | o(x,y | pj)axdy,

where (, is given by (3.1) in terms of r and s and p, simply uses (r’,s’) in place of (z,s),
respectively,

Again using (3.6) (twice) in (B8), we obtain for 8
(B9) 8= Ijan"l(x,y | oy )e(x,y | py)dxdy = ” B (x,-y | 01 )0(x, =y | py)axdy

J'r 5Lz, -y 1 p )0,y | -p )axdy

- 8
= \”{@(bx+c) + @(b'yi*_c o z cp(OI—l) (bxf+c)cp<a'l) (bly+e ') ekl p]_) 'lk l[ \"' (B) (x)cp(B) (y)( O) ']d.xdy
o=1 ) 8=0

2

Letting B=1b", B = (b')2 and using S. +to denote the constant and linear terms in Py and Po

1
we now obtain from (B9) after algebraic menipulation

(B10) 8, = [&(oxs edolx)ax T M (my + ¢ Noly)ay

k-2 ,
('y+e oy +c")ay

> (k l)[pl+pbb (k 1)] ( e \‘ ( cl )
1+3B Ji+BJ/1+B/ ,/1+B/cp\‘ ;;1+B’
. ' B, c A\ B! e’ \

Ak-l(l+ZB’ I /Ak-l(.l+2B CTaeenGaeh

and the second order correction terms are directly obtainable from (A3) and (Ak) in Appendix A, In terms
of @, B, @' end B’ the values of p, and p, are

(BL1) o=/ g((i:osz)j’ L= oél’gtal’)'

Here agein the first order terms will typically be small and hence the second order correction terms will
generally not be needed.

- (s = 1)lpy + ogb (- 1>Jfcp(x)@k‘%mc)w(bx+c>axf¢(y>

=Ak(lEB’ JitE )Ak(l

As & numerical example suppose k=5 and @ =1~ 8= I;.]: and we assume that o' = 1 - B', so_that

. *
0o = %‘- and we want to find the smallest value of o’ (with o <o’) for which the P(CS) = P; say,
P = .90, Assume a common sample size of n = 100 observations from each of the k=35 populations.

Suppose we try &' = .35, B'= .65, Then b=Db'=110, c¢=c’=24(.1)3 =2.33, B=3B'=1.21,
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B/(L+B) =B/(1+B8") =.55, ¢/Jf/1+B=c’/J1+B’=1.56 Then the leading term in (B10) is (to 2
decimal places)

(B12) , A§_<Lss,1.ss) = (.838)% - .

which is much too small. On the other hend with o’ = .40, 8’ = .60 we obtain b =b’ = 1.13,
c=c’=3.5), B=3B'=1.28, B/(1+B)=3B"/(1+B8")=.5, c/J1+B=2.32, so that

(B13) ) 1% 5(+56, 252) = (.967)% = .55

which is slightly too large since the correction term in (B10) is of the order of magm.tude of ,002. The
value o’ = .39, B’ = .61 leads to the value .908 - .003 = .905, 5o that o' = .39 is a conservative
solution for the requirement that we set. Hence our procedure based on n = 100 observations and k=5
is to put inbo the selected subset exactly those populations whose sample inter(.39,.61)-range is less
than the smallest of the five sample interquartile ranges.

APPENDIX C

(EXPOSITION OF) SELECTING THE POPULATION WITH THE LARGEST o~QUANTILE IN A NONPARAMETRIC SETTING.
by Milton Sobel

In the paper [5] a solution is given for the nonparametric problem of selecting those t oub of k

populations which have the largest o-quantiles, The case o = L corresponds to the problem of finding
exactly which t of the Xk given populations have the largest Population medians. For + = 1 tables
are provided in [3] that give the smallest odd number n of observations regquired per population to
satisfy a lower bound probability requirement on the probebility of a correct selection; this requirement
has to hold when the best one is separated from the k - 1 worst populations in a certain well-defined
sense. The justification for teking an odd number from each population is (i) simply to have the sample
median well defined and (ii) the error is at most one extra observation per population,

To explain the above formulation it suffices to consider the case t = 1. Iet Fo denote the best
*
distribution function (df), i.e., the one with the largest population o-quantile, Iet e >0 be
* * * %
specified so that 0 <o - ¢ and @+ & <1, (Actually in [5] we consider two values €, € butwe

* *
now teke them equal and use ¢ to denote the common value.) In terms of ¢ and FO we define the
closed interval

(Cl) I= [xQ’-G*(FO) ’xd+€*(F0) ] )

where x (F) denotes the o™ quentile of the df F.

In order to separste the df's F, (3 = 1,2,...,k-1) from F, we first assume for each J

(3 = 1,2,...,k=1) that F (x) <P,(x) for all x in I. Let d denote the minimum difference of
F (x) - F (x) over all jJ (j =1,2,...,k=1) and all x in I, Our requirement states that when

d = d we want the procedure to have a probability of a correct selection P(CS) of at least P Since
the procedure is simply to take a common number n of observations from each of the k popula:b:.ons and
select the one with the largest sample o-quantile, we have only to determine the smallest value of n

% * ¥ *
that will satisfy the above requirvement. Here d >0 and P (with % <P <1) snd € are all
* *

specified and, of course, o 1is given by the problem. In the computations we teke € =d and solve
for the sma.llest n such that (n + 1l)o 1is an integer.

As a numericel illustration suppose we have k = 5 populations and want to find the one with the

* * *

largest median (o = %). Suppose that d =¢ = ,10 and P = ,90. Then by Table 3 of [5], using the
first of the four entries, in the cell we find that n = 169 observations are needed from each of the 5
populations to satisfy the above requirement,

The second entry in each Table of [5] gives the corresponding n-value if we meke the stronger
assumption that ¥, (x) = F (x) for all real x and each J (j = 1,2,...,k~1). This adds very little

to the assumption tha'b d 2 d since the first two entries are essentially the same throughout “the '
tables., In parbicular, in the sbove illustration the answer is again n = 169,
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Nonparametric Su‘pset Selection (continued)

Tn another formilation (®rmulation 2A) in [5] we simply consider the difference

(c2) al = 15?21’2_;1{"“-6*@0) - xa+s*(Fj)}

‘ *

and the requirement states that when 4’ > 0 we want to have a P(CS) =2 P, The required value of n
is the third entry in each cell of Teble 3. Finally the fourth entry again makes the stronger assumption
that for each j (j = 1,2,...,k-1) Fj (x) = Fo(x) for all real x. the third and fourth entries are

*
generally quite close throughout Table 3., Thus, in the above illustration with P = .90 and
% *
d =¢ =.10 the third and fourth entries are n = 103 and n = 101, respectively.

APPENDIX D

COMMENTS ON THE PAPER BY DR, G. McDONALD

It is unfortunate that Dr. McDonald was not aware of three papers on nonparametric renking. One in
particular by Rizvi and Sobel deals specifically with the related problem of selecting a subset containing
the one with the largest o-quantile. Another paper deals with selecting the + best populations and the
third deals with nonparametric procedures for selecting a subset of specified size s which includes the
+t populations that have the largest o-quantiles (¢t < s<k - 1). ~Since the Rizvi-Sobel paper is more
pertinent to the present discussion I restrict my discussion to that one. The exact reference is:

(4] Rizvi, M, H. and Sobel, M. (1967) Nonparametric procedures for selecting a subset containing the
population with the largest o-quantile Ann. of Math Statist. 38 1788-1803.

I was asked to apply the procedure in [4] o Dr. McDonald's data on Motor Vehicle Fatdlity rates (by
state and year) and report on the results. The procedure can be described in terms of Ys 10 which

deontes the st‘n order statistic from the df F we assume s constant number of observations n from

33

each Fi (i=1,2,...,k) and, of course, all observations are (mutuslly) independent. Take

r=(n+ llw, so that for o = % we have r = (n+ 1)/2 and Yr 1 is the sample medien from F,
2

(i =1,2,...,k). We define Y . tobe -= and Y to be +» (i = 1,2,...,k). The procedure in

‘ 0,1 ‘ n+l,1

{4] is to put Fi in the selected subset if and only if

(p1) Y .= max ¥
Tyl - =55k r-c,J

where ¢ f(with 1< c¢c<r - 1) is an integer to be determined; c¢ is the smallest integer for which the
* *
P(CS) = P, If we had written 1< ¢ <r then a value of ¢ would always exist (even for P = 1), but
) *
for the indicated range [1, r-1] a value of c¢ exists provided P is chosen not greater thah some

function P, = P. (n,oz,k) where i <P, <1, Since P, -+ 1 rapidly as n increases, this restriction is
not seriousand hence by assuming that™ ¢ < r we can &void with probability one the trivial strategy of
putting all the populations in the selected subset regardless of what observations are obtained, (%

*
should be noted that even if Pl <P <1, the above procedure still 'works" by randomizing between the

nondegenerate rule (D1) and the degenerate rule, c = r,) From the first expression in (3.6) of [k]
which is equivalent to the sum of the first two terms of the rapidly converging alternating sum on the
right hand side of (3.5) in [4]), we find that for k =49 and n = 11, 13, 15 and 17 ‘the approximate

values of Pl are ,70 -.87, .95, and .98, respectively; here again we assume n is odd so that the

* * .
median is simply defined, Hence for P = .90 (and also for P = .95) with k = 49 ye can avoid the
trivial strategy by simply checking to see that n = 17. Since n =17, k= 49 and P = .90, we are
in "good shape” to apply the procedure in [4] to Dr, McDonald's data,

The exact asymptotic formmlas for the P(CS) are given in [4] along with tables of (r=-c)-values to
carry out the procedure for moderate values of k and n.

For k=4¢g and n=17 we may start by using the asymptotic formula (5.2) of [4], namely

(D2) liminf P(CS) = Im ) '1(y + ——-—V-——)><p(y)dy,

n=® - Ja(l-o

where &(x), o(x) are the standard normal df and density, respectjvely and ¥ = ed/n/(n+1l) is to be
determined by setting the right side of (D2) equal to the specified P . From known tables we find (by

interpolation) for o = % and k=50 that v = 1.83, Setting n = 17, we then find that e =7.99
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and r-c=9-7,99 = 1,0L, The nearest integer is 1 and since this result changes slowly with k at
k=50 we alsotake r - ¢ tobe 1 for k=49, Note that this result is consistent with the results

*
for the small k +tabulated under P = .900 in Table 3 of [4]. The exact calculation needed to confirm
this result is obtained from (3.3) of [4] and we would like to see whether

T ,1
(25) G - om0 W18 - )

is less than .90 and with the middle term in the brackets removed the value is greater than ,90, The
values obtained are ,914 and ,9pz2 respectively. (See discussion second paragraph of the next paze)

For r - ¢ =1 the procedure is to compute the mex min constant of the data and put Fi
(state) (year)
in the selected subset if its median is equal to or greater than that constant. For the data of Dr.
MeDonald we obtein max min = 5.3, which happens to come from the state of New Mexico. There are 25
states (including New Mexico) with sample median equal to or greater then 5.3 and this is the size of
the desired subset, It includes all the states taken in by Rl and is included among the states taken

in by R,. DNote that large o-quantiles correspond to "oad" (or "worst") populations in this example,
although they may have been called 'best" populations in [4].

For the dual problem of selecting a subset containing the one with the smellest w-quentile, it

follows from Section 6 of [4] that for o =%‘- we can use the same value of c¢ ‘together with the rule

(o4) "Put F, in the selected subset if and only if Y . < min ¥ LM
i T, 138K T

Note that r + ¢ < 2r - 1 = n, so that with probability one the solution is again not degenerate if we

can use the same c-value, ¥From the data for r - ¢ = 1 we search for the min max constant
(state) (year)

which is 3.2, and happens to come from the state of Conneticut. There are 3 states (Conneticut,

New Jersey and Rhode Island) with semple medians not exceeding 3.2 and these constitute the desired

subset.

Several interesting feabures can now be pointed out for the procedure in [L], although it should be
noted that some of these (namely 1, 2 and 3 below) are, strictly speaking, only conjectures.

*
1, For the same P ‘the subsebs from the procedure in [4] will generally be smaller in size (as in this
example),
2. The two subsets from [4] will generally be disjoint (as in this example).

3. The subsets obtained by [1] will generally be proper subsets of much smaller size than those of
procedures R2 and Ré and will be in general agreement with the ordering of the states by Rank

Sums (as it turned out in this example).

The procedure in [L4] does not assume that the unknown df's are stochastically ordered.

5. The solution in [4] is strictly nonpareametric in the usual wide sense, i.e., in the whole space of
all continuous distribution functions and not just in a "small" subspace characterized by the
slippage of & parameter 6.

6. There are no parameters in the nonparsmetric formulation in [L],

7. Evenwith ¢ <r it is possible under the procedure of [4] that we will put all the populations in
the related subset. In practice this will happen very rarely. Note also that if every state has
exactly the same data (each year) then we prefer to include every state in both subsets.

8. Under the procedure in [4] the selected subset can never be empty (in either of the two problems).
However under procedure R, (and also R.Z') it seems cléar that this can happen. True, it may be

improbable, but the probability of this happening should be controlled at least for some special
configurations of interest. Has this been investigated?

It should also be pointed out that the two problems above have been considered .separately with
distinct probebility requirements and using the very same data. It would be much more desirable to
congider them as a single problem and to control the overall joint probability that the first subset
contains the worst population and that the second subset contains the best population. (This logical
dilemms gets even more profound and confusing in Dr. McDonald's paper where four procedures are

simultaneously used on the very same data.) Even if n were large, « >-;-'- for the subset to contain the
1

worst population, a! < 5 for the subset to contain the best population, and the two subsets' obtained

Winter Simulation Conference 113



Nonparametric quse'b Selection (continued)

were disjoint, it would still be .difficult to argue -that we could treat these two problems as being

» independent of each other; I-presume that the proposed joint problem has not been considered and I
. pecommend it -as a&“challenging” problem for some bright-young student .interested in ranking and selection.

7. Tn Appendix B sbove we apply:nonmparametric ideas similar to-those in 4] +to- the “problem of:selecting
- a‘subset of-the ¥ populdtions which:conbtairs .the one with the smallestainterquartile range, As a
+ gevondary problem~it may be useful and interesting -to-apply this ‘new-procedure to: Dr. McDonald's. data;
S %
+this has not -yet been done, partly because it would .add to the Togical dilemmi of-using &’ P-=formuletion
for different problems .and then applying these formmlations to the very same dsta.

Since the value of n is only 17 in Dr. McDonald's data, it is necessary to check up on the
asymptotic theory by caleulating the integral in (D5) above taken from (3.3) of [4]. Surprisingly, it

. *
turns out to have the value +914 > .900 and hence the solution given above can be improved for P =
.900 by taking r - ¢ = 2 - (rather than 1); +this must give subsets that are of the same size or

. *
smaller than those obtained above. Note that the results above do hold for P = ,950 since in that

N *
case we have touse r - c = 1. To confirm that ' r - e =2 for P = ,900 we also compute the
P(CS | IFC) from (3.3) in [¥] for r - ¢ =3, to see if it is £.900, namelv

1o |
(D5' P(CS/LFC) = _81_'%'7.]‘ [1 - 13662 (1 - W - Iu@ - W - @ - u)17]l‘8u8(1 - u)8au,
BT L

and obtain the value .785 <-.900; for these calculations ad hoc quadrature methods were used together
with the incomplete beta function table (of Karl Pearson).

- *
Applying this result (r - ¢ =2) for P = ,900 to the data we find that the subset size (for
containing the worst state) is reduced from 25 +to 17 and that it contains Vermont, Kentucky and the
last 15 states in Table 4 of Dr. McDonald's paper, Thus the result is similar to the subset selected

*
by procedure Rl' For the dual problem with P = ,900 and r - ¢ =2 +the subset size (for containing

the best state) is reduced from three to two, namely ei'bhez: Conneticut or Rhode Island is the best state

with confidence P* = ,900. -Thus our subset sizes are much smaller than those obtained by the method of
Rank Sums. However the results we obtain are in general agreement with the ordering of the states that
arises by the usage of Rank Sums, since e.g. we include the last 15 states of Table 4 in one subset’
of size 17 and we include the top 2 states of Table 4 in the other subset.

Tt may be of some technical interest to point out that for k near 49, the usa.ge" of k=4 t1
or 49 ¥2 will not affect the second decimal of our calculations for p, in (3.5) of [4] or for

P(cs | IFC) in (3.3) of [4]. Hence any calcualtions sbove that were made with k = 51 instead of

¥k = 49 will still be correct to two decimal places, Further, if someone wants to add or omit certain
states from the analysis, most of the analytical and sample calcualtions are still useful under the
procedure of [4], whereas the rank sums needs a whole new calculation if we add or subtract a single
state.

T would like to thank Dr. McDonald for bringing this interesting set of data to our attention.
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