INTRODUCTION TO SIMULATION MODELING

INTRODUCTION

Since World War II system modeling has. played
an increasingly important role in the analysis of
complex systems in both the private and public
sectors. In the broadest sense, a model may be
considered to be a representation of reality with-
out the presence of reality itself. Hence,
pictures, graphs, management games, computer
programs and mathematical equations may be
considered models of tliose systems which they
represent. For the purposes of this discussion we
will restrict our attention to that class of models
which attempts to capture the relationship between
the behavior of a measure or measures of system
effectiveness and the behavior of those variables
and parameters which influence the measure(s) of
effectiveness and includes simulation and math-
ematical madels. The specific focus of our
attention will be on simulation models.

SYSTEMS ANALYSIS AND MODELING

To analyze the behavior of a system under a
variety of operating conditions the analyst may
choose to experiment with the physical system
itself or carry out his experiments on a model of
the system. As experimentation with the physical
system is usually disruptive to the functioning
of the total organization or some part thereof,
this alternative is usually infeasible or at least
economically unattractive. At this point .the
analyst turns to analysis of the system through a
model of the system.

_ The type of model chosen for the analysis is
usually dependent upon the nature and complexity of |
the system and the capabilities of the analyst. In
the analysis of organizational systems such as
large corporations, governments, hospitals and
the like, the system investigated is often repre-
sented through either a mathematical or a simula-
tion model. The choice between a mathematical model
and a simulation model depends upon the complexity
of the system analyzed, the background and
capability of the analyst and the history of success
or failure of the two approaches to modeling within
the organization.

The basic advantages of simulation modeling are
versitility and simplicity. Many systems are
sufficiently complex to defy a complete mathematical
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description while being amenable to representation
through a simulation model. In other cases, the
system studied may be amenable to mathematical
analysis but the level of mathematical sophistica—
tion required is beyond the background or capability
of the analyst while he may possess the capability
to develop a valid simulation model. That is, for
reasonably complex systems the level of mathematical
sophistication required for development of a valid
mathematical model is usually more extensive than
that required for development of the corresponding
simulation model.

In general the steps taken in -the analysis of
a system are the same whether the analyst chooses
to use a simulation mdoel or a mathematical model.
These steps can be summarized as follows:

l. Problem identification

2. Specification of the objectives of the
analysis ’

3. Identification of the operating character-
istics of the system and the collection of
data describing the behavior of the system

4, Formulation of the system model

5. Parameter estimation

6. Preliminary model validation

7. Development of computer programs if
' necessary

8. Final model validation
9. Experimentation with the model
10. Analysis of results.
The primary focus of attention of this tutorial will

be on steps 4, 5, 6, and 8.

HISTORICAL DEVELOPMENT

The origins of simulation may be traced to the
sampling experiments of W. S. Gossett [18] (publish-
ed under the name Student). However, the modern
foundations of simulation are usually attributedto
the work of von Neumann [21] and Ulam [20] in the
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" late 1940's which related to the analysis of nuclear
shielding. The analytic technique employed was
termed "Monte Carlo Analysis" and has since become
fundamental to simulation modeling. Prior to the
1950's and the advent of the digital computer, most
simulation experiments were carried out on analog
computers. While analog computers are still used
for this purpose, digital computers have become the
dominant vehicle for execution of simulation
experiments.

Although digital computers are discrete in
nature, tliey are used to imitate the behavior of
analog computers as well as in the analysis of
discrete event systems, Today digital simulation
is broadly accepted as a technique for the analysis
of engineering, business, and behavioral systems
and has been applied to problems such as:

The Analysis of Air Traffic Control Systems

The Analysis of Large~Scale Military Operations

The Analysis of the Traffic-Handling Capability
of Telephone Switchboards

Job-Shop Scheduling

The Analysis of Forestry Operatioms

Analysis of the U.S. Economy

The Analysis of Multi-Product Inventory Systems
Determination of Manpower Requirements
Ihstructional'Mbdeling for Higher Education
Competitive Market Analysis

Transportation Planning

Man~Machine Interface

Corporate Planning

FUNDAMENTALS OF DIGITAL SIMULATION
(Much of this material is taken from [16])

Simulation models may be classified as static
or dynamic. A dynamic simulation model captures the
time-dependent nature of the system under study.

For example, the status of a waiting line system
will change over time as customers arrive and are
served and a dynamic simulation model of the system
would reflect this time dependent variation. While
most real world systems are in fact time dependent,
situations exist where the time dependent nature of
the system need not be captured for the purposes of
analysis. ‘Simulation models which do not take
account of the time dependent nature of the system
are referred to as static models. In the discussion
which follows we will treat the development of both
static and dynamic simulation models.

Static Simulation Modelipg

Perhaps the simplest way to present the basic
concepts of simulation modeling is by example.
Consider a sampling system for quality control by
attributes., Manufacturing lots containing L items
are submitted for inspection. The inspection
procedure consists of drawing a sample of size n,
inspecting each item in the sample, identifying each
as either good or bad, recording the total number of
defects found, x, and comparing the number of defects
identified with a criterion variable called the
acceptance number, c. If the number of defects
found in the sample is less than or equal to the
acceptance number the lot is accepted. Otherwise,
the lot is rejected. Let us assume that the objec-
tive of the analysis is to determine the proportion
of lots which one might expect to be rejected as a
result of implementation of the quality control
system.

First let us examine how one might determine
the proportion of lots rejected by experimenting
with the physical system. This could be accomplish-
ed by implementing the inspection system defined
above and using it for the inspection of M manufac-
turing lots. Associated with each lot selected is
the number of items contained in the lot and the
proportion of those items which are defective. For
simplicity we will assume that the lot size is con-
stant from one lot to another. However a similar
assumption with respect to the proportion of defec-
tive items contained in each lot would be unrealistic.
Thus we must assume that an unknown proportion of
defective items will be contained in each manufac-
turing lot, and that the proportion defective will
vary from lot to lot. From each lot we draw a sample
of size n and carry out the sampling procedure al-
ready defined. Repeating this process for a total
of M lots we record the total number of lots reject-
ed and divide this number by the.total number of lots
inspected, M, to obtain an estimate of the proportion
of lots rejected. A schematic representation of the
experiment with the physié¢al system is shown in
Figure 1l.a.

Now let us consider the development of a
simulation model to conduct a similar analysis. It
is relatively simple to develop a computer program
to execute the steps indicated in Figure l.a with the
exception of definition of "the proportion defective
for each lot and the execution of inspection of each
itém included in the sample. Thus to completely
define the simulation model we must develop a method
for assigning a value to the proportion of defective
items included in the lot such that the simulated
variation in proportion defective from one lot to
another is representative of the variability which
exists in the real world system. In additdiom,
complete specification of the simulation model will
require the development of a technique whereby each
item in the sample is classified as good or bad in a
manner descriptive of actual conditionms.

Let us treat the problem of simulating the
inspection of individual items in the sample first.
It should be obvious that the proportion of defec-
tive items in the lot will influence the number of
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Introduction to Simulation Modeling (Continued)

defective items detected in the sample. We will
assume at this point that a value has been assigned
to the proportion of defective items in the lot, P.
If an item is drawn at random from a lot having a
proportion of defective items P, then the probability
that the item is defective is P. Hence the meth~
odology déveloped for simulation of the inspection
process should have the property that the probabil-
ity that any item selected is defective is P as it
is in the case of the real world system. To
accomplish this we will use what are known as
"random numbers". A random number is a random
variable which is uniformly distributed on the
interval (0 1. Hence, -in drawing or generating a
random number each number between 0 and 1 has an
equal and independent chance of occurring.

Let us examine how one would use a random
number to determine whether or not an individual
item of p¥oduct is defective. Suppose that the
proportion of defective items in a lot is O. 05, that
is P = 0.05. If we were to draw a succession of
items from the lot we would expect to find that
approximately 5% were defective. Now let us draw a
sequence ¢f random numbers. Since these numbers
have the property that each:value between 0
and 1 has an equal and independent chance of
occurrence, we would expect approximately 5% of the
numbers drawn to lie on the interval (0.0,0.05).
Thus to simulate the inspection of items, we draw a
sequence 6f n random numbers and compare each to the
proportion defective, P. If the random number,
which we shall designate by r, is less than or equal
te P, we will classify the item as defective. On
the other hand, if r is greater' than P we will .
designate the item as good. To put the process in
probabilistic terms, we will designate a 0 as
corresponding to a bad item and 1 as corresponding
to a good item. The probability of a 0 occurring
(bad item) is then P and the probability of a 1
(good item) is 4~P. The cumulative probability
distribution for this random variable is shown in
Figure 2. . By choosing a random number, r, we are
actually designating a value of the distribution
function. Entering the y axis in Figure 2 at the
point designated by the random number we proceed
horizontally until we intersect the distribution
function. Dropping vertically from the
point of interesection we arrive at the value
assigned to the random variable. As indicated
previously, if r 1s less than or equal to P, a 0 is
generated and if r is greater thamn P, a 1 is gener-
ated. Hence, we.have devised a synthetic method of
categorizing items as good or bad which has the
property that the probability that any item is
categorized as defective is, the same as the proba-
bility that the item would be found defective in the
physical inspection process.

The fundamental methodology used to generate
all random variables is similar to that described
for the inspection process discussed above. Let
us apply this approach to the generation of values
of proportion defective for those lots for which
the inspection process is to be simulated. ’
Proportion defective is a random variable which can
assume values between 0 and 1. A typical cumulative
distribution function for proportion defective is

shown graphically in'Figure 3. To generate values

" of proportion defective we select a random number, r,

enter the y axis of the distribution function at the
point designated by r, proceed horizontdally until we
intersect the distribution function, and drop down
at this point to-the x axis to pick up the value of
proportion defective generated.
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The reader will recall that the two central
problems which existed in developing a simulator for
the quality control system discussed here were to
identify synthetic means of generating proportion
defective in a manmer such the variability in the
values of proportion defective generated would
correspond to those which exist in the real world,
system and to devise a method of designating sampled
items as good or bad. Having developed these two
techniques we are in a position to complete the
logic for preparation of the final simulation model.
A flowchart for the simulation model for this
quality control system is shown in Figure

In discussing the development of the simulator
for the sampling inspection system described above,
we have assumed that the analyst has available a
source of random numbers and that he is able to
construct the cumulative probability distribution
functions required for generation of the random
variables included in the system. Random numbers
can be obtained from standard tables or can be
generated on a digital computer. We will discuss
random numbers furthefr in a later section of
this paper. In order to construct the cumulative
distribution function of a random variable data
must be collected from the system under study
which indicates the variation which exists in
the random variable of interest. While the data
collection effort required may be expensive and time
consuming, it is necessary prerequisite to the
development of a valid simulation model or any system
model for that matter.

Dynamic Simulation Modeling

Dynamic or time dependent simulation models
take account of status change in systems as they
occur through time. Keeping track of events and
changes in system status over time is generally
accomplished in one of two ways. The first and
perhaps most widely used method for tracking system
behavior over time is through the next event approach.
In the next event method the simulation model keeps
track of the times at which each distinct status
changing event will occur. It then chooses the time
at which the next event will occur, moves forward in
the simulation to that point in time, and alters the
status of the system in accordance with the condi-
tions dictated by the occurrence of the event. The
philosophy underlying the next event method is that
there is no need to view the system at points in
time other than those at which status changing events
occur. An alternative to the next event method is
the fixed time step approach. Using the fixed time
step method the simulation model moves forward in
time in constant increments recording those status
changing events which have occurred since the last
step was taken and alteting the status of the system
accordingly. While the next event method is general-
1y more precise than the fixed time step method, the
precision of the fixed time step method can be
increased by reducing the time increment for each
step.

Simulation of time dependent systems will be
introduced by example. TFor this example the next
event ‘method will be used for time keeping. Considex
a system of 5 production systems which are to be
maintained by a single repair crew. From time to

‘by the model in order to terminate the analysis.

time the production lines fail and repairs must

be carried out. K However at the time a given line
fails, the repair crew.may be busy.with another
production line which has failed previously. 1In
this case the failing production line would have to
wait for service until the repair crew becomes
available. It will be assumed that the repair crew
services production lines in the order in which they
fail, that is first-come, first-served, and that the
production system operates three shifts per day five
days per week. For the purposes of this example we
will assume that the objective of the amnalysis is to
develop a simulation model which can be used to
estimate the failure rate, average down time, average
repair time, and average time waiting for service
per week for each of the five production lines.

In developing a simulation model for this
system one must recognize that there are ten events
which may change the status of the system. First
a failure on any one of the five production lines
will alter the status of the system as will the
completion of a repair on any line. In addition the
end of the p riod of simulation must be recognized
The
simulation analysis moves forward in time by compar-
ing the times of occurrence of each of the 11 events
just mentioned. The model selects the time at which
the next event will occur and moves forward in time
to that point, altering the status of the system as
dictated by the occurrence of the next event. In
order to compare the times of occurrence of each of
these 1l events the simulation model must constantly
have available a recorded time for -each.

Let us assume that all five production lines are
operating when the period of simulation begins.
Using methods similar to those already described, the
simulation model generates and records the time until
the first failure for each of the production lines.
Until the simulation model moves forward in time to
the point of the first line failure, a time of
service completion is not generated for any line.
However the reader will recall that the simulation
model determines the next event in the simulation by
comparing the times recorded for failure of each of
the five production lines, repair of each of the five
production lines, and the point in time at which the
simulation is to end. However, at the beginning of
the simulation experiment no times have been gener-
ated or recorded for completion of the repair to any
production line, since production lines have not yet
failed. Hence, the next event in the simulation
must be either the failure of a production line or
the end of the period of simulation. To make sure
that the simulation model picks up one of these six
events as the next event, at the beginning of the
simulation experiment we récord the time of the next
repair for each line as infinity, or more appropri-
ately as some arbitrarily large value which éxceeds
the duration of the simulation experiment. As we
move forward in the simulation, a point in time
will be reached at which a production line
fails. At this point the simulation model will
record the production line as down. Since the
production line cannot fail again until it is ser-
viced, the time of the next failure for this pro-
duction line will be recorded as infinity to avoid
the problem of picking up a second failure on a line
which is already down. In general, then, we assign
an arbitrarily large time to any event which
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‘ logically.qannot be the next event in the simulation.

Let us now consider the operation of the simu-
lation model .at an arbitrary point in the simula-
tion experiment. The simulation model searches
through the times of occurrence of each of the 11
possible events which could take place next., Let us
assume that the next event in the similation is the
failure of a production line. The simulation model
moves forward in time to the point at which this
failure takes place, determines which production
line has failed, records the failure time, increases
the number of lines down by one, accumulates the
number of failures which have taken place on this
line thus far, and sets the time fo the next failure
to infinity. Since the repair crew may not be
available for servicing this line, the simulation
model must determine whether or not the repair crew
is busy servicing another production line. If the

_repair crew is wunavailable for service of the line
which has just failed, that production line is
placed in the waiting line. Otherwise, the repair
crew is assigned to the failing production line, a
repair time for the line is generated and the point
in time at which the repair will be completed is
computed.

Now let us consider the case where the next
event in the simulation is the completion of service
on one of the production lines. In this case the
numbér of lines down is reduced by one, the repaired
production line is put back in service, the time
until the next failure for that line is generated,
the point in time at which the failure of this line
will occur is calculated, the time of the next
repair on this line is set to infinity, and repair
time and down time for the line are accumulated.
Since the repair crew has just completed service on
one of the production lines, the simulator must
determine whether another production line is waiting
for service. If a production line is waiting for
service then the repair crew is assigned to that
production line, service time is generated, and
cumulative waiting time and down time for that liine
are increased. If there are no further production
lines waiting for service, the repair crew is
placed in an idle status.

When the next event in the simulation experi-
ment is ‘the end of the period of simulation, summary
statistics must be calculated and printed out. In
this case the simulation model would compute the
failure rate, average down time, average waiting
time, and average repair time per week for each of
the production lines .and print this information out
for the analyst. -The simulation model for this
system is shown in the flowchart in Figure 4. A
summary of the results of the simulation of this
system for a period of 20 weeks is given in Table 1.
Similar results are shown in Table 2 for a 20 week
period of observation of the system. The reader
will note that the results of the 20 week period of
simulation are quite similar to those obtained for
the 20 week period of observation. It is a check of
this type which can serve as a means to validating
the simulation model developed. However, in general
the analyst should compare simulated results with
those obtained from observation of the physical

system through appropriate statistical testing pro-
cedures rather than by simple visual comparison.

RANDOM_ NUMBERS

As the two examples cited above indicate,
random mumber generation is an important component
of every stochastic simulation model. An essential
property of every random number generator is the
ability to generate random variables which are
uniformly distributed on the interval (0,1). Actu-
ally digital methods for generating random numbers
are algorithmic and therefore the numbers resulting
are generally termed pseudo-random numbers. That is,
since the numbers are generated algorithmically they.
are not actually random. However, were one to com—~
pare a set of numbers derived from a reliable digital
generator with numbers which were truly random, the
distinction between the two sets of numbers would not
be apparent. A discussion of algorithmic methods for
the generation of random nunbers is beyond the scope
of this article. However, random number generators
are available for most high-speed digital computers.

GENERATION. OF RANDOM VARTABLES

At the heart of every simulation model is a
mechanism for generating values of those random vari-
ables which influence the behavior of the system
analyzed. The method used to generate values of a
random variable is often referred to as a process
generator. Fundamentally, a process generator de—
fines a relationship between each possible value of
the random variable considered and values of a uni-
formly distributed random number. The principle
underlying the generation of random variables was
discussed in the preceeding sections and is illus-
trated graphically in Figures 2 .and 3.

While the graphical approach to process gener-
ation is acceptable in some cases, it is often use-
ful to define mathematical relationships which
simplify the process. The reader will recall that
in the graphical approach we selected the value of
a uniformly distributed random number which was in
turn used to define a specific value of the cumu-
lative distribution function of the random variable
to be generated. Let r be the value of the random
number and let F(x) be the value of the distribution
function such that

F(x) =1 : (1)

where r and F(x) lie on the interval (0,1). The
problem at hand is to find the value of the random
variable x which satisfied (1). That is, x is
related to r through (1) and we must find an inverse
relationship of the form

x = h(r) (2)

To illustrate how this is accomplished, assume that
x is exponentially distributed with the probability
density function given by

Ax

f(x) =xe ™™, 0<x<o 3)
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Table 1.

Results of Twenty Weeks Simulation of 5 Production Lines
(All Times in Wesks)

Avarage No.
Line of Yailures
Number Par Waek

Average Average
Down Timea Rapair Time
Par Week Par Wesk

Aversge
Walting Time -
Per Week

8.85 Q.12 0.0% 0.03
34,70 0.30 0.18 0.12
17.70 0.14 0.06 0.09-

5.75 0.11 0.09 0.02
54.65 0.31 0.14 0.18

Table 2.

Results of Twanty Weeks Obsarvation of 5 Production Lines
(All Times in Weeks)

Average
Waiting Time
Per Week

Average No.
Line of Failuzes
Number Per Week

Average Average
Down Time Repair Time
Per Week Per Week

8.70 0.12 0.08 0.04
35.80 0.30 0.17 0.13
0.14 0.06 0.08

i
2
3 16,10
4 5.90 . 0.15 0.12 0.02
5

54.10 0.35 0.14 0.20

The distribution function of x, F(x), is given by
=1-M (4)

Now when we choose or generate a value of r we are
simply specifying a particular value of F(x). That
is

r = F(x)
=1- (5)
Solving for x in terms of r we have
x = - § Ia(i-r) )

Thus we have a simple mathematical expression which
will define a unique value of the exponential random
variable x for each value of r generated.

Although conceptually the technique described
above may be used for the development of a process
generator for any random variable, its application
may lead to a tedious exercise in the case of many
random varlables. For example, consider the normal

.19

rahdom variable with probability density function
given by :

_i’ﬂﬁ
. 1 262
(X)=(,—,721T—e s =@ < x <o (7)

The procedure outlined abbve calls first for develop-

‘ment of the distribution function of x, given by

_ ew?
X 2
20

1
5 Vaw ® ax ®

F(x) = J

However, in this case the integral in (8) must be
evaluated numerically which in turn leads to sub-
stantial difficulties in deriving a solution for x in
terms of a random number r.

Even in the case where a simple expression for
the distribution function can be achieved, the
inversion technique discussed so far may prove
cumbersome. To illustrate suppose that x is Erlang
distributed with probability density function

2Ax

£(x) = 22 xe “™, 0 <x <o 9

The distribution function of x is given by

2AxX

Flx) = fi— [1-e -2 xe~ 2M¥y ©(10)

At this point we would normally set the left-hand-

side of (10) equal to a random number r and solve for
x In terms of r. However, in this case the solution
for x can be achieved only through numerical methods.

Cases may be encountered where the value of a
random variable x associated with a random number r
can be identified only through numerical methods.
However it is often useful to attempt to identify a
relationship between the random variable of interest
and other random variables which can be generated
conveniently. TFor example, the chi square random
variable with n degrees of freedom can be expressed
as the sum of the squares of n standard normal
random variables. The Erlang random variable may be
expressed as the sum of identically distributed
exponential random variables. In a similar fashion
the binomial random variable may be expressed as the
sum of Bernoulli random variables and the negative
binomial random variable may be expressed as the sum
of geometric random variables.

SYSTEMS ANALYSIS THROUGH STIMULATION

Thus far our discussion of simulation methodol-
ogy has dealt primarily with the mechanics of the
development of simulation models. We have said very
little about how such models can be used as an ana-
lytic tool and as an aid to the decision making pro-
cess. An in depth discussion of these topics is far
beyond the scope of this paper. However, there
are certain critical aspects with respect to systems



analysis through simulation that the reader should
be aware of. We will simply introduce the reader
to the two most important of these problem areas
without attempting to deal with their solution.

In attempting to develop a simulation model one
of the first difficulties to be dealt with is that
of model validation. Before a simulation model can
be used for systems analysis the analyst must first
verify that the model is an adequate reflection of
reality. This can sometimes be achieved by compar-
ing model results with those of real world system.
However, even though a model realistically reflects
the performance of a system in the past and today,
there is no guarantee 1t will do so under conditions
which may prevail in the future. All too often the
analyst has no objective basis for ascertaining
model validity but rather must rely upon his own
judgement and that of others familiar with the
system under study.

Simulation models are often used to estimate a
measure of measures of performance of the system
studied:. However, unlike mathematical models, the
output of a simulation model is one or more random
variables. Hence, there 1ls error in an estimate of
system performance through simulation. This is both
an advantage and a disadvantage. Since the output
of the real world system is also a random variable,
the random nature of the output of the simulation
model might be considered a realistic reflection of
true system performance making no attempt to hide
the difficulties which exist in assessing the value
of that measure. On the other hand, suppose that we
wished to compare several systems based upon the
mean value of an appropriate measure of system
performance. In this case we require an estimate of
system performance for each system which is precise
enough to validly carry out the comparison indicated.
The precision with which such measures of performance
are estimated can usually be improved by increasing
the length of the simulation run. However, as the
simulation run length is increased the cost of the
analysis also increases.’ Thus, the analyst is faced
with the problem of balancing the cost of the analy-
sis against the precision of estimation to be achiev-
ed.

SIMULATION LANGUAGES

The complexity of the systems usually analyzed
through simulation gemerally requires that the
analysis be carried out on a digital computer. 1In
such cases the analyst must translate the simulation
model into a medium which can be interpreted by the
computer. This translation is accomplished through
a programming language. Translation of the simula-
tion model can be accomplished through a general
purpose language or a special purpose language.
General purpose languages such as FORTRAN, BASIC
and PL/I provide the programmer with a tool for the
analysis of a virtually limitless number of problems,
of which simulation is only one. On the other hand,
special purpose simulation languages are designed to
address problems to be analyzed through simulation
although the variety of simulation problems which
can be handled by these languages is quite broad.
Included in the category of special purpose simula-
tion languages are GPSS, SIMSCRIPT, GASP, DYNAMO
and SIMULA.

Perhaps the principle advantage of general pur-
pose languages lies in the fact that one of these
languages is probably already known to the program-—
mer. In addition these languages provide the analyst
with a maximum of flexibility in the design of his
analysis. However, because special purpose languages
are orlented toward the specific application of
simulation, the:programming time required for trans-
lation of the model is generally less than that re-
quired in the case of general purpose languages since
the time keeping mechanism and many of the sub~
routines normally required in any simulation model
are built in. 1In addition, the structure of special
purpose languages will often help the analyst to
formulate his model. However, in using a special
purpose language the analyst is restricted to a
prescribed output format.and increased computer
running time. .

SUMMARY

Simulation has proven to be an effective and
versatile modeling technique for the analysis of
complex interactive systems in both the private and
public sectors. In addition simulation offers the
advantage of relative simplicity in model construct-
ion as compared with mathematical modeling although
the analysis of simulated results may require an
advanced knowledge of probability theory and
statistical methodology.

Although the advantages of simulation are
substantial, it should not be used indiscriminately.
In general, if a system can be modeled mathematically
it should be. A mathematical model can usually be
evaluated more quickly than a simulation model since
replication of a given system condition is normally
required for reliable estimation of the measure of
system performance when the system is modeled through
simulation. Thus the cost of the analysis is likely
to be greater when the system is modeled through
simulation than through a mathematical model.
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