Simulation of $oms Autoregressive Markovian Sequences of Positive Random Variables

ABSTRACT

Methods for simulating dependent se-
quences of continuous positive-valued ran-
dom variables with exponential, Gamma,
mixed exponential and uniform marginal dis-
tributions are given. In most cases the
sequences are first-order, linear autore-
gressive, Markeovian processes. A two-
parameter family of this type with exponen-
tial marginals is defined and its transfor-
mation to a similar multiplicative process
with uniform marginals is given. It is
shown that for a subclass of this two-pa-
rameter family extension to mixed exponen-
tial marginals is possible, giving a model
of broad applicability for analyzing data
and modelling stochastic systems. Efficient
simulation of some of these schemes is dis-
cussed.

1. INTRODUCTION

In a recent series of papers {1,2,3,
4,5,6,7,8] some simple models have been
derived for stationary dependent sequences
of positive, continuous random variables
with given first—-order marginal distribu-
tions. 1In general the dependency struc-
ture, as measured by second-order joint
moments (serial correlations) mimics that
of the usual linear mixed autoregressive-
moving average (ARMA) models which have
been used for so long in time~series anal-
ysis. In the ARMA models, which are de-
fined gquite generally, there is in usage
an implicit assumption of marginal normal-
ity of the random variables. This is
clearly not the case if the random vari-
ables are positive, say the times between )
events in a series of events [9] or the
successive response times at a computer
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terminal. Thus the new models are derived
to accommodate situations in which the de-
pendent random variables have, for instance,
exponential, Gamma, Laplace and mixed expo-
nential marginal distributions. The expo-
nential case is the most highly developed,
with the nomenclature {[4] EARMA(p,q) (expo-
nential process with mixed moving average-
autoregressive structures of orders p and g
respectively) and NEARMA(p,qg) (new EARMA
(qu) ).

The development of the probabilistic
pbroperties of these processes is given in

the referenced papers, applications to queue~

ing models ard computer system modelling in
[10,11] while development of estimation and
testing procedures has just begqun.

The object of the present paper is to
define and discuss the simulation of the
processes on digital computers, though for
the sake of brevity only the first-order

Markovian, autoregressive case is considered.

The simplicity of structure of these models
--in general they are linear additive mix-
tures of random variables--makes them ideal
for this purpose. However stationarity con-
ditions are sometimes difficult to derive
analytically and in some cases it is not
simple to generate the innovation random
variables in the processes. A striking ex-

ample of this is the case of the Gamma first-

order autoregressive process for which an
efficient means of simulation has only re-~
cently been found [7] for some parametric
values. It is shown that a simple trans-
formation of the exponential sequences
gives a direct multiplicative method for
generating dependent processes with uniform
marginals. These could be the basis in sim-
ulations for many other types of dependent
sequences.
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Markovian -Sequences (continued)

2. EXPONENTIAL, AUTOREGRESSIVE
MARKOVIAN SEQUENCES

We give here three methods of gener-
ating first-order autoregressive, Markovian
sequences with exponential marginal distri-
butions. The first two ‘are sllghtly de-
fective in terms of their sample path prop-
erties while the third, NEAR{l), is satis-
factory in this respect. The defect of the
first two models is also highlighted by the
simulation procedures used.

Note that autoregression in the con-
text of a stochastic sequence {X,} is
vaguely used. In the first place linear,
additive autoregression is usually implied.
In the second place autoregression can mean
that in the defining equation for X; the
previous value enters explicitly, but more
particularly it means that the condltlonal
expectation of x : given n -1 = ¥ge1t is

an additive linear function of CXpoqf

E(anxn_l x 1) =a+bx . (1)

The Markovian proberty (first-order) means
that the probability structure of X X 1

«+ey given X, 6 . = X, 18 1ndependent of

X _or Xp_3r cev -

2A. 'THE EXPONENTIAL DAR(1l) PROCESS

A very simple exponential autoregres-
sive Markovian sequence is generated by
the equation

X, =V X, + (1 -V)IE (2)

where P{V =1} =1 = P{Vh =0} = p and

Ep, n =1, 2,... are independent exponen-
tial random variables with parameter A;

P{E_< x} = 1-e " A¥

It

x>0, A>0,
(3)
0 x<0 .

For this process the serial correlations

A = corr(Xh, n+k) are
o, = o (4)
and
E(anxh—l Xh—l)
= pyX,_q * (l-pl)/l. \ (5)
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This process is an exponential version of
the DAR(1l) process [12,13] but is rather
useless for modelling real data becaduse
simulations of the process show runs of
Xn's with the same value. These occur when

Xn-1 is picked successively in [2], rather
than. the innovation Ep. Moreover the
lengths of the runs of similar values are
geometrically distributed

2B. THE EXPONENTIAL EAR(l) PROCESS
Another model is derived from the usual
1inear model

X, =0X 4 te, " {6)
in which the i.i.d. innovation process {e,}
is chosen so that the ZXp's are marginally
exponential(X). Gaver and Lewis [1] show
that for this to be true, one must have
0<p<1l and

e, = E, wW.p.

= 0

1-p,
wW.p. P , (7

where {E,}, as throught the paper, are
i.i.d. exponential(l). Again p = ¥ and

E(X IX n—l) = X,y * (l-pl)k, as

at (4) and (5) for the exponentlal DAR(1)
model. The difference is in the sample
paths; for the EAR(l) process simulations
show runs of X,'s decreasing geometrlcally.
These occur when only pXn_j is picked in
(6. Again the lengths of these runs are
geowetrically distributed.

The Markov property of the two se~
quences implies that if Xg is chosen to
be Ej, an exponential(}) random variable
independent of El’ E2, .vs 5 then Xl' Xz,

... forms.a stationary sequence.

Naive inspection of the defining equa-
tions (2), (6) and (7) suggest that to gen-
erate a stationary sequence of length N,
Xl,..., XN’ (N+1) i.i.d. exponential de-

viates and N uniform variates (for the
selection process) are needed. However,
the sequences can be generated from only
one exponential sequence; this might be re-
lated to the source of degeneracy in the
processes. This method uses the memoryless

property of exponential()) variables, namely-

that if E, is given to be greater than a
constant vy, then Ep-y is again exponen-
tial(A).

Thus the algorithm is to initialize by
setting Xy = Ej; subsequently.set Xn=pxn_l
if En £ xp = —-n(l-p)/A; otherwise set
= PXpq (En
that, from (3), P{En

- x ). This uses the fact
<x}=
-~ P




Even greater efficiency can be ob-
tained, though this must be qualified by
considerations as to whether the X,'s are
to be generated one at a time or in an
array; whether a subroutine is available to
generate exponential random variables fas-
ter than can be done by taking logarithms
of uniform deviates, and the relative
speed of division and generation of uni-
form deviates.

The more efficient scheme recycles
uniform variables, i.e. if U is given to
be between constants a and b, where
0 Ca<b<1l, then (U~-a)/(b-a) is a
uniform random variable. (Note that its
value is not given, only that it is in
(a,b).) Thus we have, to generate an array
Xl,..., XN' from the EAR(1l) process,

ALGORITHM 1 (EAR(1) process).

1. Generate U and set Xo +« =n U

2. Generate U and set Y « U
3. n+ 1
4. If Y < p go to 7

5. Xn “ an_l - an(¥-p) + n{l-p)
6. Generate U, set Y «+ U and go to 8
“T. < ;'-<-

7 Xh pxn_l b4 Y/p

8. Set n * n+l

9. If n N go to 4
10. Otherwise exit.
The expected number of uniform deviates
required in this algorithm is 1+ (1-p)N,

which is less than the number N required
to generate on i.i.d. exponential (A

sequence.

2C. THE EXPONENTIAL NEAR(1l) PROCESS

A broader 2-paraimeter exponential
sequence which is a first-order autore-
gressive, Markovian process and an addi-
tive linear mixture of random variables is
given by Lawrance :[7] and developed by
Lawrance and Lewis [5]. Called NEAR{(1l),
the sequence is defined as

an—l wW.p. O
X =eg_ +1 (8)
n n 0 W.p. l1-a

n=12,...,

where 0 { a <1 and 0 LB £1l. It can
be shown that for the Xn to be marginally
exponential (1) the innovation variable €n

must be generated from an E, by the expo-
nential mixture
1-8
En w.p. T-(I-9)F
e = (9)
n - of
(1 a)BEn VeP. TTI-o)F

providing o and B8 are not both equal to
one. When o =0 or B =0 the {X,} are
exponential i.i.d., whereas when o = 1 the

EAR(1) model given at (6) and (7) is obw-
tained. 1In fact fixing either o or B

and varying the other parameter gives an ex-
ponential model with a full positive range
of serial correlation -of order one, since

P = (aB) X (10)
Again
E(xnlxn_l = X p) = oBx 5 + (1-a8)/2
= p1¥,.3 * (1-py)/2 (11)

and X0 = E0 gives a stationary sequence.

The NEAR(1l) process allows one to model a
broader class of exponential sequence as |
measured either by sample path behavior or
higher-order joint moments; see [5] for
details.

A particularly simple case occurs when
8 = 1; this model, called TEAR(1), is very
tractable analytically and, as will be
shown below, extends easily to the case of
mixed exponential distributions for the X

Note that in the NEAR(1l) process the
innovation en is always present unless
¢ = 1 and it is therefore not possible to
simulate the stationary process with less
than N+1 uniform variates. The simplest
method seems to be the following:

ALGORTHIM 2 (NEAR(1l) PROCESS) .

1. Generate U; set XQ < =n U; vy « 1l-q;
§ <« (1-B)/[1 - (l-o)B].
2 Generate U; set n <« 1.

3. If ULy set Y +« U/y and go to 7.

4. Otherwise Y « (U - y)/(1 - y).
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Markovian Sequences (continued)

5. If Y 4§ set X, * BX .1~%n ¥ f &nd
and go to 9.

6. Otherwise set
X < BX, ;= YBAn[(Y-8)/(1-8)]
and go to 9.

7. If Y K&
and go to 9.

set X, < -4n Y + 4n &

8. oOtherwise set X <« - yBAn[(Y-8)/(1-8)..
9., Set n <« n+l.

10. If n { N generate U and go to 3.
Otherwise exit.

Note that for stationary array of N
Xn's, N+1 uniforms are required and there-

fore it could be advantageous to generate
these in an array which would be replaced
one at a time by the Xn'Sa

3. UNIFORM MARKOVIAN SEQUENCES

It is convenient to have dependent se-
gquences of random variables with marginal
distributions other than exponential. Be-
fore discussing other solutions to the
BEquation (8) we show that a simple trans-
formation of the NEAR(1l) process gives a
two-parameter family of Markovian random
variables with uniform marginal distribu-
tions. It is well-known that an exponen-
tial transformation of a unit exponential
random variable gives a uniformly distrib-
uted random variable. Thus we have from
(8) and (9) the multiplicative model for a
uniform Markovian sequence {Uh}, n=1,

2'-.- H
X =¢_-xB W.p. o
n n “n-l (12)
= €, w.p. (i1-a)
n=1,2,...,
where
- . 1-8
e, = Uy W.P. T=TvaT8 (13)
- gll-a) 8 0B
= U VP T(I-a (14)
n=1,2,...

for U, n= 1,2,..., i.i.d. uniformly dis-

tributed, providing that o and B are
not both equal to one. Again if X is
uniformly distributed and independent of

Upr Upseen the sequence is stationary.
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An algorithm for generating this 2-
parameter uniform sequence is easily adapted
from Algorithm 2. It remains to find the
correlation structure and the regression of
X on X .

n n-1

To do the former, let * be a NEAR(1)
sequence with ) = 1, so that the sequence
X at (12) is given by X = exp{—xg}. Now

the joint Laplace-Stieltjes transform of

x;, X;-k is given by Lawrance and Lewis
[5] as ’

¢'* 'S 3 (Slt)

X r¥n-x

= E{exp[-sX} - tx* .1}

k

kel
= o T o (8%) b (B + ©)
P

k-1 . ;
+ 1 aeaed ) g (8t ), (1s)
3=0 0

1=

where ¢€(s) and ¢x(s) are respectively

Laplace-Stieltjes transforms of e defined
at (9) and the exponential variable X.
Setting s = t = 1 in (15) gives

Pux wx (L,1)
xh’xhek

E{exp(-X;) exp(-X;_l)}

It

E(X X ) - (16)

Then using the fact that for a uniform ran-
dom variable E(X) = 1/2 and var(X)=¥12,

we have from (15) and (16); after simplifi-
cation,

o = corr(X ,X )

]

3 ]§ ( o8 )
2 + ? i=1\ 1+ (1-q)8*

k = 1,2,... . ‘17)
Note that this is not simply a geometrically
decaying correlation sequence, as for the
NEAR(1) process. However, for the impor-
tant special case when B = 1 we get

k
pk = (__L) ’ k=12,..., (18) '

2=-q

and thus the serial correlations py are
the kth powers of pj , which takes on any
value between 0 and 1. Thus we have a
particularly simple uniform Markovian
sequence.




A similar analysis given in Lawrance
Lewis [5] shows that

=u) =1 1+38 - B8
B(X, 1%y =W =3 T (Tmwpy Urotoen)
(19)

so that the regression is not linear.

This uniform sequence could form
the basis, via a probability integral trans-
form, of many other sequences with given
marginals. However, marginal transforma-
tions do not preserve correlation structure,
as shown at (17), and it is therefore use-
ful to see whether sequences with marginals
other than exponential can be generated
from (8) for special cases with a suitable
choice of innovation sequence gp. Thisg
will result in a simple process with auto-
regressive Markovian structure.

4. MARKOVIAN SEQUENCES WITH
OTHER MARGINALS

Although an exponential distribu-~
tion is a common assumption for positive
random variables met with in problems in
operations research, it is too narrow an
assumption to encompass real situations.
Therefore parametric distribution models
are invoked which include the exponential
as a special case and which allow for the
modelling of data which has greater or
lesser dispersion than exponentially dis-
tributed data. Two commonly used models
are the Gamma(k,}) distribution whose prob-
ability density function is

Ay LA

f(x) =

r (k) '
k>0; x>0 x>0, (20)
where T(k) is the complete gamma func-

tion, and the (convex) mixture of exponen-
tial random variables
—Alx —Azx

A.e + (l-nl)e ’

f(x) = T Ay

0 <Ay <Ayi X207 0<m <1, (21)

The Gamma distribution has dispersion,
measured by the coefficient of variation
C(X) = o(X/E(X)), which is greater than
the exponential value of 1 if k < 0 and
less than 1 if k > 1. . The mixed exponen-,
tial always has C(X) > 1, the equality
occurring when the special case of an ex-
ponential random variable with parameters
Al or 12 holds.

of shot noise process.

4a. The Gamma GAR(1l) process

Direct solution of equation (6) us-
ing Laplace-Stieltjes transforms gives f[1]
that in the stationary sequence for the X
to be Gamma(k,A) we must have n

k
¢ (s) = E(e” %) =lp+ (l—p)——)\——} (22)

At+s

For k integer this has an explicit inverse.
For example for k = 2 the innovation ¢

is zero with probability p2, is exponential(})
with probability 2p(1-p) and is Gamma (2, )
with probability (1-p)2. It is easy

to show in general that e is zero with
probability pK, so that the "zero defect"

is serious for large k. A method of simu-
lating a random variable whose Laplace-
Stieltjes transform is equation (22) was
derived by Lawrance [7], using the fact that
this sequence arises in a particular type
Thus we have the

Gamma Innovation Theorem

let N be a Poisson random variable
with parameter 6 = -k fn(p). ILet Ul’ u,,

be uniformly distributed over (0,1) °

eeer Uy
. and independent. Let Yl’ ces o YN be ex-
ponential (1) and independent. Then g can
be simulated using
N U
£ = o™y if N>O0,
m
=1 }
=0 . if N=20. (23)

A proof is not given here. Note that ¢ is
zero with probability exp{-k n(p)} = pk.
Also the Poisson number N of uniform and
exponential random variables which must be
generated for each e has expected value

6 = -k 4n(p). This will be prohibitively
large, and the simulation will be very in-
efficient, if k 4is large and/or p is
close to zero. Neither of these cases is
serious, however. If k is large, say
greater than 50, the sequence is almost
normal and the usual normally distributed,
AR(1l) linear process can be used. If p is
as small as 0.001 then E(N) is still only
k x (6.9078) which is still reasonable.
However, for p this small the sequence

is approximately i.i.d. Gamma and accept-
ance~rejection techniques for simulating
Gamma variables are known.

It is guite simple to adapt Algo-
rithm 1 to the GAR(l) case. It would pay
to have a built-in routine for generating
the Poisson variable which will bypass fur-
ther calculations if N = 0. In other words
routines for generating Poisson variates
which start by searching at the median of a
table of cumulative Poisson probabilities
will be inefficient.
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Markovian .Sequeiices {(continued)

Unfortunately the NEAR(1l) process
does not appear to extend to the Gamma
case; it can be shown explicitly that there
is no innovation g,in equations (8) and
{9) which will make X, have a Gamma dis-
tribution with " k = 2.

4b. Mixed Exponential Markovian Process

Fortunately first-order autoregres-
sive Markovian processes with mixed expo-
nential marginal distributions can be ob-
tained from eguations (8) and (9) in two
special cases, and these sequences should
be widely.useful in modelling stochastic
systems.

(i) The case o = 1; MEARI(1).

In (1) it is shown that the solu-
tion to the Laplace transform of en for
the linear model (6) is a constant p plus
a (generally) non-convex mixture of three
exponentials. This can be shown to be a
proper density function if p < A3/33, but
it can also be shown that it is not a den-
sity function for all p less than one and
greater than or equal to zero. However,
Lawrance [6] showed that unless A3 is
much smaller than Ay {and thus the X, are
very over-dispensed relative to an exponen-
tial random variable) a solution exists
for ¢ for all p. Thus we have a nseful
process, although again' the zero-defect of
order p is a problem.

{ii) The case B =1; MEAR(1).

When # = 1 in equation (8}, a
mixed exponential process TMEAR(1) is ob-
tained which is extremely simple to simu-
late since the innovation g, is just the
mixture of two exponentials for all
0 < p < 1. Moreover, the process has no
zero-defect. As discussed above, the sam-
ple paths will tend to "run up," but this
is no great problem unless p is fairly
large. Thus we have the following Theorem
which we state without proof:

TMEAR(l) Theorem -

Let the first-order autoregressive,
Markovian sequence {Xn} be defined by

X =¢_ + an

=&, g 0 0= 12,3,

where P{Vh =1} =1 = P{Vh = Q} = g for
0<a<l.

stationary and has a (convex) mixed expo-
nential marginal distribution with prob-
ability density function

Then the sequence {Xn} is

—Alx

;Azx
fx(x) = ﬂlkle

+ (l-nl)e ‘

0<>\l< 7\2;0<1rl<l; x>0, (24)
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if e, 1s i.i.d. and has a mixed exponen-

tial distribution given by

~Y.X -sz

fg(x) = nlYle + nzYze r

Y1>Y2>07 nl_>_0; n2=l-nl, (25)

where
ny = %-(B-l/vl)/(YI-YZ)b
Yi,,= b+ (b2-4ac) 2} 2a;
a= (1-a)u1u2;
U= oMy WUy = E(X) 3
b= uy + uy - au;
B o= uy+ug-ui w =17y wy=1/v,

and X, is independent of e;, €5, +.. and
has probability density function (24).

Note that the special case where
Ty = 0 or m,= 1 give NEAR(1l) exponential

processes with parameters Az and Al re-

spectively. Thus they should be handled by
Algorithm 2 since they will cause computa-

tional problems. The case kl‘= Az also

gives a NEAR(1l) process and is excluded for
similar reasons.

.Another computational problem arises
from the fact that the probability density
function (25) for € 1is not a convex mix-
ture if, as is possible, n3 is greater ‘than
one. Of course, if n; < 1 then ¢ is
generated as an exponential{y;) random vari-
able with probability n; and as an exponen-
tial(yp) with probability (l-nj). In the

other case we use the following theorem (see
e.g. (1)):

Simulation of Nonconvex Mixed Exponential

Let & = n1<14y2/y1). Then with

probability 1 -6 the innovation e is
an exponential(yl) random variable and with

probability 8 the innovation e is the
sum of-an exponential(yl) random variable

and an exponential (y,) random variable.
2

It would be useful to have a mixed
exponential solution for the sequence (8)
for all B for convex mixed exponential
marginal distributions, but this seems dif-
ficult to prove because of the algebra in-
volved.




5. GENERALIZATIONS

In all of the processes discussed
here the correlations -are non-negative and
geometirically decreasing. A scheme for ob-
taining alternating correlations which are
possibly negative is given in [1] and [5].
Another problem is that different types of
dependence and higher-order Markovian de-
pendence might be encountered in data.
Schemes for obtaining mixed autoregressive
moving average exponential sequences where
the autoregressian has order p and the
moving average has order q are given in (4).
The mixed exponential process TMEAR(1l) is
easily extended to give a process with this
type of extended correlation structure.
This will be discussed elsewhere.
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