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Abstract

An existing but unvalidated digital simula-
tion model of a system of urban bus routes is re-
viewed. A data collection project is described
which was to yield sufficient field data to allow
at least partial validation of the model. Data
collection and analysis were completed, although
with some difficulty. Previous field results
were reviewed and found to be reasonably consis-
tent. High levels of variance were observed so
that model inputs derived by averaging, were very
approximate. A theoretical fault in the model
was also found. Partial validation was attempted,
but with limited success. The project provided
insights on the model, the problem of bus schedul-
ing, and on the methodology of simulation valida-
tion.

1. INTRODUCTION

In the developed countries of the world,
traffic chaos and energy shortages have recently
caused a revival of interest in urbam transport
systems. At the same time, in underdeveloped
countries the vast majority of urban dwellers will
be dependent on public transport for the fore-
seeable future. In developed countries research
on urban bus systems has attempted to increase
the efficiency and reliability of the service,
since recent studies (e.g. Markham (1)) have
shown that car owners seem more sensitive to
quality of service than to cost. One particular
difficulty is in maintaining a reliable and suf-
ficient service during peak periods (“'rush hours")
when demand is at its highest but traffic con-
gestion at its worst. While this is by no means
the only problem area facing a bus manager, it
would appear to be well suited to the application
of Operations Research methods. Amalytic studies
of simple bus systems are numerous. For example,
Potts and Tamlin (2) explained the observed
phenomenon of buses pairing along routes.as being
due to "self-generated instabilities.,' Bullock
(3) extended analysis to include bus capacities
and some variation of bus journey times and pas-
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senger demand. Any further extension of an analy-
tical model to include a limited fleet operating
on a group of overlapping but distinct routes
seemed to be unpromising, especially as many of
the variables involved might be represented
stochastically and be highly correlated, so re-
search moved towards digital simulation of bus
systems using observed data as input. Further-
more, a reliable, cheap and easy to use simulation
model would facilitate the testing not alome of
alternative schedules but also of different bus
types and capacities, as well as giving estimates
of the sensitivity of the quality of service to
variations in passenger demand or in travel time
along any or all of the routes. Before placing
any confidence in such a model we must measure its
validity, that is the accuracy with which it re-
plicates the real world. This paper outlines an
existing model and describes an attempt to vali-
date it using field data.

2. The Model

2.1 OQverview

The Bus Operations Simulation Model (BUSOPS)
was developed at the IBM (United Kingdom) Scien- -
tific Centre in Peterlee, England, by J.P.D. Ger-
rard (IBM) and D. Brook (University of Newcastle-
Upon-Tyne). It is fully described by Gerrard and
Brook (4) and by Ryan (5). While it drew upon
aspects of previous models, notably those of De-
kindt and Griffe (6) and Oliver (7), the model
was the first to tackle the problem of the con-
gested "urban corridor," along which passengers
are carried by a number of routes. These routes
share a common stem before branching to separate
outlying termini. Buses may overtake one another
and limited stop services may be operated.

The model is a discrete event stochastic
digital simulation model in which the main enti-
ties are buses, passengers and bus queues. In
operation the model is event-driven with the ar-
rival of a bus at a stop as the main event. Buses
are traced through the system from stop to stop
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Validating a Model (continued)

while queues are created and serviced with bus ar-
rival. The primary output statistic is the aver-
age time spent waiting by the passengers who board.

The operating environment of a bus routé or
routes includes factors which can be varied by the
manager and external factors which are outside his
control. The former can be called:

Internal or controlled factors:

(a) number and type of buses

(b) schedule of services for each route

(c) fare-collection method (e.g: one man

operation)
while the latter are:

External or umcontrolled factors:

(d) bus journey times between any two stops

(e) number of passengets arriving at any

- stop and the routes they wish to board

(f) number of passengers alighting at any

stop

(g) time required to board and alight.
Controlled factors are represented directly in
BUSOPS. They are deterministic in the real world
and are modelled deterministically. Specification
of the bus management strategy is part of the mod-
el input.

Modelling of the uncontrolled factors in-
volves the use of hypothesized patterns which may
be supported by observed data. To each of these
patterns BUSOPS adds a random variation (positive
or negative) to represent the unexplained (and
hence "random") ‘variation which is observed in
real life.

2.2  Bus Journey Times

Since the model is primarily designed for
rush-hour simulation, the variation in journey
time Between each Pair of stops is taken to have
a particular peaked form:
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where
f(x) = journey time between two stops (i.e.
one link) at time x.
¢ = constant ‘{off-peak) journey time for
this 1link.
k = scaling factor for this link.

§~= time peak period begins.

1. time to reach maximum,

The parameters t and p do not vary from stop to
stop and govern the shape of the curve, which has
a sharp rise followed by a slow decay, while c
and k are determined by observation for each pair
of stops. A stochastic component is added to the
result given by equation (1). This "excess" com~—
ponent also‘has the gamma form and_}s;adjusted to
have mean.of zero with a limit of £(x) and a
long positive tail giving occasioﬁai large posi-
tive deviations. Furthermore, the excess times
(positive or negative) of successive bus trips be-
tween the same pair of stops are serially correlat-
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ed with an effect which is exponentially damped
out over time: Thus if X, , is the excess time of
the previous bus Whiﬁhﬁ%ﬁ?éﬁ%d?% given [dink at a
time t, ., then the correlated excess time (X,) of
the bu§_%raversing the same link at time t :Ls:L
givén by:

2
X, =DX, 5 +/(1-D) T,

2)
where

T
b <

bus (uncorrelated)
D = e Ta|t1F1-1]
Td = "gserial correlation discount factor"

stochastic (excess) component of this

The values given by equations 1 and 2 are added to
give the total journey time over a given link.

2.3 Passenger Arrivals and Classification

Individual passengers are not traceéd in the
BUSOPS model.

Instead, passengers are divided into types
depending on the choice of routes available to
them to reach their destination., Clearly, if
there are n distinct routes in a system, there

can be at most 2°-1 different passenger types.
The passengers on buses or in queues .are grouped
by passenger type. The pattern of arrivals over
the period to be simulated is input for each stop
and is used to calculate the number of simulated
passengers added to a bus queue between pne bus
arrival and the next. Inter-arrival times are
generated with a Poisson distribution whose para-
meter is the average arrival rate over the time
period (t,=t,) between two bus arrivals. A pas~
senger is” counted for each inter-arrival time
generated and the process ceases when the total
of inter-arrival times exceeds t,~-t.. Distribu-~
tion of these arrivals by type dépefids on the "at-
tractiveness" of potential destinations for each
passenger type. A measuré of each stop's "at-
tractiveness" as a destination is calculated as
shown below.

‘Since the model is oriented towards measuring
the waiting time of passengers, rather than their
"trip-time" or travel time, origin-destination
data is not required. The model aims to replicate
the actual number boarding and alighting at each
stop, but assumes independence of origin and des-
tination. Instead, the origin-destination matrix
for the stops in the system is taken to consist
of entries of the form A,u, where A, is the load-
ing index of the origin étap i, and"u, is the un-
loading index of the destination'stoij. Each y,
is an overall measure of a stop's relative "at-
tractiveness” as a destination. In the case of
outbound passenger flow the origin-destination ma-
trix for a system of n stops, numbered in ascend-
ing order in the outward direction, will yield a
set of non-linear equations of the form:

Ry =X j21+1 Hy for 1 = 1,2,3,...n
Cj = Uy 21 M for j = 1,2,3,...n



. where

Ri = the sum of the ith row of the origin—

destination matrix (and hence the total num—
ber boarding at stop i)
v 3 L gnd Yddnt 6f ¢he/fth*édlumn (and hence the

total alighting at stop j)
If the values of R, and C, are known, for all val-
ues of i and j, the set o} equations in equation
(3) yields solutions of the form:

. = a,t and A, = bi

J J 3 e
where

a,b = constant

= parameter.
Iin practice an arbitrary value is assigned tou
and the system:solved explicitly by back substifu-
tion. The unloading indices are calculated inde-
pendently and are input to the model. They are
used as follows to estimate the proportion of
each passenger type in any group of arrivals. The
probability of passenger arrivals at stop i being
of type k is given by:

Pik = Iu, V.apik @
Iu, V.eD,
J 1 1
where
Di = get of all destination stops from stop i
Dik = get of all destination stops, for pas-

sengers of type K, from stop i.

2.4 Passenger Alighting

The probability of passengers of type k a-
lighting at a given stop i is given by an ex-
pression similar to equation (4):

Oy = My (5)
i+2u VjeDik .
where
Dik = set of all possible destinations be-

yond stop i, for passengers of type k.

‘When a bus arrival is being processed, the prob-
abilities given by equation (5) are applied to
each passenger class on board the bus and the sum
of this calculation gives the total number a-
lighting.

In considering alighting and boarding, only
the outbound flow of passengers has been mention-
ed. Inbound flow would require similar calcula-
tions, which would be simplified by the smaller
number of passenger types (only one, unless there
is a limited stop service).

2.5 Boarding and Alighting Times

The time required for passengers to board and/
or alight at a stop is taken to be:

1]

T

Max.(n, t,,n t ) for parallel
bap "obaa board/alight (6a)

and

for sequentia%6b)

T t, +n_t
bas b aa board/ailight

where .
nb, n, = number of passengers boarding, a-
lighting
tb’ ta = time required for one passenger to
board/alight.

An overhead for each board/alight operation
is the acceleration and deceleration time penalty
which is effectively an additional constant term
to equations (6a) and (6b) above.

3. The Project

3.1 Objectives

A model which has been implemented as a com—
puter program must be made credible before any
reliance can be placed on it. The term '"valida-
tion" has been used to describe this entire pro-
cess, for example by Teorey (8), but others, in-
cluding Schatzoff and Tillman (9) and Mihram (10,
11) distinguish between verification and valida-
tion. Following Mihram (11) we can define veri-

fication as:

~"The determination of the rectitude of the

completed model vis-a-vis its intended al-

gorithmic structure"
Verification therefore includes not only the nor-
mal debugging of the computer programs used to
implement the model, but also tests, whether
quantitative or qualitative, which confirm the
desired behavior of all or part of the model.

Once a model has been verified, its adequacy
as a representation of the real system must be -

.established. This validation Mihram (11) defines

as: .
"The comparison of responses emanating from
the. verified model with available informa-
tion regarding the corresponding behavior

of the simulated: system"

Validation involves comparing the model's beha-
vior with that of the real system over as wide a
range as possible. This ideal may not always be
attainable, especially where wvariation of the real
world system is costly or difficult.

In the case of the BUSOPS model it was pos-—
sible to attempt first to validate some of the un-—
derlying assumptions before proceeding to overall
model validation. Field data, which was needed as
input to the simulation model, could first be
analyzed. with respect to the BUSOPS modelling hy-
potheses.

In particular it was necessary to test the
following assertions:

(a) Profiles of passenger arrival rates
are repeatable from day to day.

(b) Passenger boarding and alighting
times are accurately represented by
equation (6).

(¢) Totals boarding and alighting at
each stop are reasonably consis-
tent from day to day.

(d) Journey times between pairs of
stops are repeatable from day to
day and follow the Gamma form of
equation (1).

Once these hypotheses had been tested, vali-
dation by comparing system and real world outputs,
could proceed.

Ideally, validation would require the great-
est possible variation in both the controllable
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" test the validity of model assumptions.

486

Validating a Model (continued)

inputs (bus types, frequencies and capacities) and
the uncontrollable inputs (passenger arrivals,
traffic congestion, total numbers alighting at
each stop) so that the accuracy of the model in
predicting the real system's behavior can be test-
ed over as wide a range as possible. This is
clearly impracticable in the case of bus route
simulation because of the difficulty and cost of
changing even the controllable inputs. The alter-
native method, which is that of collecting suf-
ficlent data to give a wide range of inputs, is
severely restricted by the limited time and money
available. However, if the model%s primary out-
puts’ (in this case the average passenger waiting
time at each stop) are derived during simulation,
from all of the model's inputs and hypotheses, and
if for a given setting of the inputs the observed
and simulated values of the outputs do not differ
significantly, the model can be said to be partly
validated.

- As the definition given above implies, veri-
fication does mot require the use of field data,.
Instead, one-sample statistical tests are applied
to test the distribution of model output. However
as the verification of a large model will in-
evitably involve error detection (or debugging) it
is advisable to have realistic inputs which rough-
1y correspond to those of the real world. For
example, the adequacy of a fixed length queue (as
used in BUSOPS) depends on the service and ar-
rival rates. A subsidiary objective of data col-~
lection was therefore to provide a realistic set
of testing data which could be used during verifi~
cation of the model program. This approximate
data was updated as necessary before being used in
the attempt to yalidate the model.

3.2 Data Collection’

Once preliminary contact had been established
in June 1973 with Coras Iompair Eireann (C.I.E.),
who operate the Dublin City bus services, it was
necessary to specify exactly what data was re-
quired. ' Tt was decided that over a two to three
week perfod the following data on the evening
rush hours were required:
(a) Passenger arrival rates at stops.
(B) Total numbers boarding/alighting at
stops.
(c) Journey times between each pair of
stops.
(d) Information of bus types, route struc—
ture and schedules.
(e) Passenger boarding and alighting rates.
(f) Passenger waiting times at stops.
TItems (a) to (e) are model inputs, while
items (a), (b), (c) and (e) are necessary to
Ttem (f)
is required for model validation as described in
3.1 above.
Permission was obtained from C.I.E. to col-
lect data over the period 18 July, 1973 to 3
August, 1973, Inclusive, but in the time avail-
able it was not possible to obtain union consent
for observers to travel on board the buses while
collecting data., While this was not an insur-
nmountable difficulty, it caused considerable comp-
lications in the analysis of the journey time data.

December 3-~5, 1979

The group of routes numbeted 50/50A/50B/56,
which run from Dame’St. ‘in*DublinCity Centre to
the Crumlin/Walkinstown/Diimnagh housing areas in
the southwest of the city, were chosen for the
data collection project. A sketch of the route
structure, with the termini and some stop numbers
marked, is shown in Figure 1.. From the model
viewpoint these routes had the advantage of a
long common "ecorridor" of 17 stops, little "inter-

Figure 1
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ference™ from other routes and a high level of
congestion in the city centre terminus area.
Furthermore, unlike many of Dublin's bus routes,
they were not yet radio-controlled.

Twenty-six students were employed on a part-—
time basis to collect data during the evening
peak period. They were briefed individually be-
fore beginning data collection. Three different
data forms were used:

Form A: for passenger arrival data only

Form B: for bus timings (arrival and depart-
ure) and for passenger alighting
data.

Form C: for a sample of passenger waiting
times. ’

The following can be noted about the forms:

(a) No boarding data was collected, as it is

. only the total number boarding that is
required and this can be deduced from
the other data.

(b) Since both Form A and Form C require
the full~time attention of the observer,.
it was necessary to obtain the remainder
of the data from Form B, if a maximum of
three observers were to be used at any
one stop at the same time. TForm B may
therefore be over—demanding on the ob-
server,

(c) In Forms B and C the times were recorded
in minutes and seconds after the hour.
It was appreciated that one second ac-
curacy was unlikely, but one minute ac-
curacy would have been insufficient,
particularly on the shorter links be-
tween stops.

(d) Blank spaces on Form C were used to de-
scribe the passenger who began waiting



so that he or she would be recognized

when boarding later.

(e) In addition to the route number, Form B
observers also recorded the right-most
.three digits of the bus registration
number (vehicle identification)

Since the set of routes chosen had about 40
stops, it would have required 120 observers to
monitor all types of data, at all stops, each day.
Instead, it was decided to "cover'" stops with a
frequency relative to their importance, concen—
trating the A and C (arrivals and waiting time)
data collection in the area of greatest passenger
boarding., Form B data colleetion (bus timings) on
the other hand, which was required for all stops
in the system, involved having two observers with

X ovraa't

synchronised watches taking timings at consecutive

stops. Consequently, when the data collection
team assembled for briefing each day at 4 p.m.,
watches were synchronised, and when debriefing
after 6:30 p.m., the accuracy of synchronisation
was measured. Results from this test are describ-
ed below. The observers who kept the most ac-
curate times were assigned to Form B data collec-
tion, since it was only for journey-time estima-
tion that a high degree of synchronisation was
essential.

Throughout the data collection operation the
students were kept informed of the project's pur-
pose and progress, which helped to maintain a high
level of interest and diligence. No antagonism
was encountered from the bus crews, who seemed to
have been reassured by their management and trade
unions.

3.3 Difficulties and Errors

The synchronisation test at debriefing re-
quired each observer to record the time of a
staged évent, under classroom conditions. Devia-
tions from the daily mean were accumulated for the
days on which tests were made and were grouped,
giving the histogram in Figure 2. It can be seen
that 907 of the timings were within *15 seconds
of the mean. The deviations are attributable to
a number of factors. The observer may have erred
in synchronising his watch before data collection.
The observer's watch may have "drifted" and lost
accuracy during the data collection period, or
the observer may have erred in reading the watch
while timing the event. The first of these
errors was minimised by giving repeated time
checks until each observer was satisfied with his

watch's synchronisation. The effects of the second
and third types of error on Form B data were mini-
mised by assigning the more accurate observers to
collect this data.

Nevertheless, because of the remaining errors
in synchronisation and because of the circumstances
of field data collection, the accuracy of bus tim—
ings cannot be taken to be better than #10 seconds.
Where the journey time between stops was of this
order of magnitude, as it was on some -outer subur-
ban links, deductions about bus journey time varia-
tions cannot usefully be made.

A second major difficulty was specifying the
base time for timings. Initially the field in-
structions were for times to be taken "from the
time data collection began." As this complicated
timing, especially when observers started a few
minutes late, it led to errors in recording minutes
From the second day onwards, timings were taken
from the hour.

There was less difficulty with Form A (arri-
vals) and Form C (waiting times). On a few occa-
sions observers at the city centre terminus lost
count of arrivals during a peak period and esti-
mates were used for the numbers arriving. Observ-
ers collecting waiting time data were asked to
record as high a proportion of the arrivals as
they could accurately maintain. This varied from
"almost all' at stops having few boarders to "about
one in eight" at city centre termini.

Collectors of arrival (A) and waiting (C)
data reported that lack of queue discipline made
observations difficult, on a few occasions.

3.4 Data Validation

Pigure 2 FAVQUENCY DISTRTMITION OF DEVIATIONS FROM THF DAILY NEAN
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In all collection projects the adequacy of
the advance planning, form design, field instruc-
tions, etc., can only be judged when data has been
successfully validated. The BUSOPS project allow-
ed insufficient time for deliberation and planning.
As a result, data validation was difficult. Pas—
senger arrival data was least complicated and con-
sequently almost free of (logical) errors.

Timing proved to be the major problem. Wait-
ing time data were difficult to check as the change
of hour was not explicitly shown. Observers re-
corded only minutes and seconds past the hour. In
the bus journey timings this was compounded by the
sheer volume of data required, by the field condi-
tions (eg simultaneous bus arrivals, rapidly pass-
ing non-stop bus) and by the difficulty of identi-
fying buses. Errors of observation and/or timing
led to spurious timings and/or fictitious buses.
The ideal solution to most of these difficulties
would have been to have observers on board buses.
This proved impossible and the present method had
to be adopted at short notice. In consequence the
Form B data required an excessive amount of manual
checking and correcting, so that the effort expend-
ed in obtaining marginal data was out of all pro-
portion to its usefulness. WNevertheless all data
was eventually verified so that the analysis could

.proceed.

4. The Results

4,1 Bus Journey Times

Previous studies of bus journmey times are nu-—
merous (e.g. 3,12,13). One of the more recent is
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validating a Model (continued)

that of Charlesworth and Walmsley (14) who studied
the variation between different periods of the day
and between single days in July 1974 and November/
December 1974. As Charlesworth and Walmsley did
not consider time of day, other than to distin-
guish between peak and off-peak periods, they did
not hypothesize any particular form of peak in the
journey time variation. Furthermore, they elimi-
nated day of the week variation by sampling, as
far as possible, on the same day. However, their
conclusion that, where road conditions are un-
changed, there is no evidence of significant sea-
sonal variation between Novémber and July, servés
to mitigate one limitation of the present study,
where all the data were collected in the same sea-
son (i.e. in July/August of 1973).

A more relevant study for the present purpose
is that of Markham and G'Farrell (15), where not
alone was the objective to study variations in bus
journey times bétween routes, time of day and days
of the week, but in addition, among the routes
studied were the 50A and 50B both of which were in-
cludedin the present project. Hence it was pos—
sible to compare directly the results obtained.
The only major differénces between the two studies
were:

(a) Markham and O'Farrell had a four week
survey period in June 1971, whereas the
present study took place approximately
two years later and was limited to two

: and a half weeks. .

(b) Markham and O"Farrell had observers at
four fixed. locations on the routes, on
every day of the study, whereas the "
present study monitored almost all the
stops on the routes, but with varying
fréquercy’. s :

A preliminary comparison could be made be-
tweén the results obtained in the two studies by
taking a long link (stop 3 to stop 17) and ana-
lyzing its average timings within fifteen minute
intervals. This was compared to the results of
Markham and O'Farrell, who do not provide any
raw data but base their analysis on fifteen min-
ute interval averages (commencing at 16.45). The
links being compared do not correspond exactly.
They do however have a long section in common so
that the form of any variation, if not the actual
values, should be comparable. TFrom the compari-
son given in Figure-3, it can be seen that the
histograms are similar in shape. The overall
average in Markham and O'Farrell, is higher, at
19.5 minutes, than the result for link 3 to 17
which is 16.725 minutes. Although the latter is
the longer link, the interval measured by Mark-
ham and O'Farrell included a greater length in
the more congested inner city area. The results
' were scaled to have equal méans and the result-
ing histograms compared using the Chi-square test.
A test statistic of 0.045 with 6 degrees of freer
dom was recorded. This shows very high correspon—
dence between the two sets of data.

SPSS (16) routines were used to analyze the
raw data. Correlations were computed between T,
the journey time in seconds, and the following
functions of D, the minute of departure,

D, D2, D3, Dé, qu DeD and 1og2
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Corre&ations were low, the highest (0.37) be-
ing with D, :

W%

g +— Markhem & O'Tarrell

- BUSCPS

16.30 17.00 17.30 18.00 18.30

Time of Dav
Figure 3 Comparison of Two Studles of Iatarval Average Journay Time

A stepwise regression was pverformed with T as
the independent variable and using the above func-
tions of D. The process stopped after four steps
yielding the equation:

T = 0.29D" + 245.80D - 4.810° - 179.8910g D +

687.35 )]

The dependent variables are shown in equation (7)
in the order in which they entered the calculation.
The fit of this equation to the data was very poor
giving an R~ statistic of 0.29.

It cannot be concluded from this analysis that
any of the proposed forms of variation in journey
time with time of day, is confirmed by the data.
Neither the quadratic form deduc%d by Markham and
O'Farrell nor the gamma form (te ) hypothesized by
Gerrard and Brook and used in BUSOPS provided an
adequate fit to the field data.

The overall conclusion must be that although
an overall daily.trend was discernible, and al-
though it did resemble that detected in an earlier
study, the factors included in the analysis, which
were the time of day the journey began and, to a
lesser extent, the day of the week, were sufficient
to explain only a small proportion of the variance.
The high "random" factor in the observed journey
times might be attributed to one or more of the
following factors:-

(a) Observation errors.

(b) Differences between bus drivers' behavior.

(¢) Variations in weather conditions.

(d) Traffic control either by police or traf-

fic signals. - .

(e) Accidents, emergencies, bomb hoaxes, etc.

(f) Variations in individuals' travel habits.

If further analysis justified the inclusion of
any of these factors in a model of the journey
times, it would require a higher level of detail in



the model. :

In the meantime we must conclude that bus
journey times show much greater variance than the
BUSOPS model of equations (1) and (2) allows.

4.2 Passenger Arrival Rates

To establish the repeatability of the pas-
senger arrival rates there are two aspects to be
considered. The variation in total arrivals, at
each stop, from day to day, and the variation at
each stop in the pattern of arrivals during the
time period being studied.

Figure 4 shows the mean, bracketted by the
standard deviations, of the arrivals at all stops
where data was collected. The number of days data
upon which the calculation is based is shown in
parentheses. It can be seen that the amount of
variation was large at all stops. Only at the
less used stops (numbers 5,7,8,9, and 17) does
the pattern resemble,a Poisson distribution with
mean and variance (¢”) approximately equal. As
the busier stops have more variation than would
be expected for a purely Poisson distributiom,
the day of the week might have a noticeable effect.
The following table gives the frequency of maxi-
mum and minimum total arrivals, for all stops, by
day of the week. e.g. There was only one stop for
which Wednesday provided the maximum arrivals.

DAY | MON. TUE. WED. THU. FRI.
MAXTMA| O - 1 1 4 5
MINTMA | 5 0 4 1 1

It is clear that Thursddy and Friday have "more"
arrivals, while Monday and Wednesday have "less".
There is insufficient data to prove the signifi-
cance of these variatioms.

The conclusion regarding the day to day
variation of passenger arrival totals is that be-
cause of the high level of variatior observed,
the construction of a very accurate model would
ehtail consideration of day of the week effects,
and hence a considerably increased data collec-
tion effort. The BUSOPS.model would require
fundamental modification, to include day of the
week effects, before it could be expected to
model passenger arrival totals with great ac-
curacy.

The second pattern in the arrival data to be
studied was the variation with time of day. TFor

_each stop a histogram of ten minute interval to-
tals was computed. Two typical results are shown
in Figure 5. Stop 3 was in the city centre, stop
6 was in the inmer suburbs. Each was observed on
9 days. It can be seen that arrival rates in-
crease from 16.30 to a peak at or shortly after
17.00 hours. Then there is a slight drop follow- .
ed by a second peak at 17.30 hours, after which
the arrival rate declined until 18.30 when data
collection ended. This accords well with the fact
that most Dublin business premises close at 17.00
or 17.30. Demonstyating a repeatable pattern, for
example by using X test, was not attempted be-
cause of the high observed variation and the (rel-
atively) small number of days for which data was
available.

Figure 4 OBSERVED AVERAGE TOTAL ARRIVALS BY STOP
Standard Deviation Shown as —e——-
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In spite of the limitations described above it
was possible to derive the input data for the
BUSOPS model. Given the relatively coarse level
of detail in the model, and the consequent inherent
error levels in simulation and outputs, passenger
arrival rates were sufficiently regular to justify
the BUSOPS assumptions.

4.3 Passenger Boarding and Alighting Rates

The final data to be used in checking the

BUSOPS model's assumptions were the timings for
passenger boarding and alighting operations. Three
parameters are input to the model, and together
they determine the total time needed for a bus to
stop, to allow passengers to board or alight and
for the bus to regain its normal driving speed.
The three parameters are:-

(a) The average boarding time per passenger:

b
(b) The average alighting time per passenger:

t
a

(c) The additional time "penalty" incurred in
decelerating and accelerating a bus, re-
gardless of the number of passengers
boarding or alighting.

In the case of buses having parallel boarding
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Validating a Model (continued)

Figure § ARRIVALS BY 10 MINUTE INTERVALS
(¥ean and Std. Deviation)
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and alighting, and all the Buses in the present

study were of this type, the boarding and alight-

* ing ‘time (Iba) is calculated in BUSOPS using the
formula; )

Ty, = Max. (gbtb, nata) (8)
where n_ and are the number of passengers
boagd{pg and alighting respectively, The model
mdkes no éxplicit allowance for so-called “dead
time" (i.e. there is no constant term in equation
(8)), but if such an allowance was required it
could be included in the acceleration/decelera-
tion penalty.

The data collection was limited to approx—
imately one hour of the evening peak period on
two successive days. A straight. and uncongested
stretcl of the route was selected and four ob-
servers were positioned as follows:-

" ‘direction of travel —— ?Bus Stop
® . U T
1 2,3 .. 4

Observers 1 and 4 recorded the registration num-—
ber and time of passing of each bus., If the bus
halted at the stop, observer 2 recorded the exact
time the bus stopped (wheel stop) and the time
. the bus began to move off. Meanwhile observer 3
counted the number of passengers who boarded and
alighted from the Bus. Although tha experiment
was limfted, partly by choice because of the
wide range of previous studies available (see
Chapman (17) for a comprehensive survey of board-
ing tPme studies), and partly by necessity due to
the relatively high number of observers required,
some useful results were obtained nevertheless.
The derivation of the acceleration/decelera—
tion time .penalty proved difficult as there were
only 3 non-stop buses observed by observers 1 and
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time from observer 1 t5 obServer 4. The 5oﬁrney
times for buses that halted were adjusted to allow
for the time spent stationary while passengers were
boarding or alighting, and the average neit journey
time from observer 1 to observer 4 was calculated.
The result was approximately 4 seconds greater

than the non-stop average and this value was taken
as an estimate of the acceleratlon/deceleration
time penalty.

The total number of observations of boarding
and/or alighting was twenty~five. This is much
less than the minimum (100) recommended by Chap-
man. An additional complication was that most
of the buses observed had both boarding and alight-
ing at the stop. A function of the form given in
equation (8) was chosen, and by trial and error a
reasonable fit was obtained for tt = 4.5 and ta =

1.5. The work of Ellis (18), which was conducted
around the same time, gave:

4. These gave an estimate of the ,pon-stop 1ourney

for boarding Tb = 6.3 + 1.1nb (9a)

for alighting T, = 7.3 + 3.5n, (9b)

These figures correspond reasonably well with
equation (8), although for small values of n, and
the absence of a constant (or intercept) 2term
makes the T, value of equation (8) somewhat smal~
ler than thd8e of (9a) and {9b). When viewed in
the light of the results surveyed by Chapman the
marginal, and in this case average, boarding time
of 4.5 seconds per passenger seems a little higher
than average for buses with on-bus ticketing.
Judging from Chapman most results lie in the range
2.5 to 4.5 seconds. To determine whether the
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present study's results would be better fitted to
the conventional model of a "dead-time" plus a
marginal boarding time per passenger, it was first
of all necessary to select only observations where
the boarding time was_ dominant. A straight line
was fitted to the twelve obsérvations thus ob-
tained, and yielded the equation:

T,= 6.1+ 2.1n, (10)

This is shown, with the data points, in
Figure 10. It can be seen that all the observa-
tions were for six or less passengers boarding and
the spread from the fitted line was quite large.
The "dead-time" figure, given by the y-intercept,
is 6.1 seconds, which is large by comparison with
the results surveyed by Chapman but accords quite
well with the result of Ellis, given from equation
(9a) as 6.3 seconds. Although it is generally
believed (Jenkins 19) that the marginal boarding
time decreases for a high number of passengers
boarding, the value of 2.1 seconds, which was
obtained with relatively low numbers boarding,
is quite low on the range of values surveyed by
Chapman. ‘

The relative importance of boarding and a-
lighting times as factors affecting the relia-
bility or punctuality of bus services has not been
definitely established. Chapman (17) states that
"as a rule of thumb one fifth of total journey
time is spent at bus stops." More relevant for
the present study is the sensitivity of the aver-
age passenger waiting time to changes in the
average time taken to board or alight. It was
found from experiment that within the range of
realistic values the average waiting times in the
BUSOPS model showed a lack of sensitivity to ya-
riations in board/alight- times, Whether this is
the case in réality could not be established from
the present study where there was only one type of
bus in operation. TFor the purpose of model input
however, this insensitivity in BUSOPS would have
made it wasteful to expend excessive effort in
obtaining highly precise estimates of the actual
boarding and alighting times.

Indeed, we can conclude that the BUSOPS
assumptions regarding boarding and alighting
rates, while crude and approximate, were suffi-
cient for this relatively simple model,

4.4 A Theoretical Flaw

As described in Section 2.3 above, the ob-
served boarding and alighting totals are used to
compute a set of indices (u,, i = 1 to n), which
are described as measures of the "attractiveness"
of each stop as a pessible destination. The
method of solution of the set of equations (given
as Equation 3 above) which should yield the values
of u, for 1 = 1 to n is illustrated in the origi~-
nal BUSOPS report for a single route system. The
procedure to be adopted for a branched outward
flowing system is not given in detail. Instead it
is asserted that "the system of equations can ob-
viously be augmented to include one or more branch-
es from the mainstream”" (Gerrard and Brook, pp. 16).
In fact, this proved impossible to implement.

Within the BUSOPS model, passengers arriving
at a stop are distributed by type, using the rela-
tive cumulative attractiveness of all stops which
are reachable from this stop by a given route.

The derivation of the unloading or alighting in-
dices (the n's)vin a branched network is not
defined. The omission of impossible values (Aiuj

where stop j is not reachable from stop i) from the
Origin-Destination matrix can yield an underdeter-
mined set of non-linear equations. The difficulty
is due to a conflict between the BUSOPS assumption
of independence of passenger origin and destination
and its use of an 0-D matrix in calculating load/
unload indices, and can be illustrated as follows.

Consider a single route system (i.e. no
branching), with passenger boarding and alighting
totals as shown.

BOARD
40 30 25 0
0 20 35 40

ALIGHT

There are hany origin-destination flows which
would accord to this distribution, e.g. the follow-
ing twoy n o

Both of these conjectured flows, and all
others that would yield the correct board/alight
totals, give the same nett flow of passengers at

:any point'along the route. This means that the
loading factor (i.e. percentage occupancy) for
buses is independent of passenger origin and des~
tination and that therefore in this route system
‘the level of service to passengers, as it is
!measured by BUSOPS, is also unaffected by the ac-
tual origin and destination pattern. This is only
possible because BUSOPS considers only the waiting
time to boarding in its measure of the level of
service and takes no measure of, for instance,
‘passenger in-vehicle time, or total journey time.
However, if an example is taken where there are
two routes, and hence three possible passenger
types, the above argument fails. Consider the
following branched system where boarding and a-
lighting totals are again shown above and below
the stop positions.

40 30
20

Among the possible origin-destination patterns that.
would conform to this boarding/alighting distribu-
tion are the following two.
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Validating a Model (continued)

It can easily Be seen that in this system the level
of service to passengers boarding different routes,
as it is measured by the average waiting time to
boarding, will depend on the loading factor (per-
centage occupancy) of buses on the desired route
or routes. This Is id turn determined by the
choice 6f destination of passengers already board-
ed. In the above system the level of service to
passengers boarding at stop 2 depends.both on their
ultimate destination and the destination of pas~
sengers arriving at stop 1 to board. It follo
that even if the Origin-Destination matrix could .
Be used to find values of "loading and unloading
Indices," the result would be an arbitrary choice
from among many alternatives and would not nec-
essarily reflect the actual journey patterns in)
the system.

As a method to yield a reasonably accurate
set of values for the unloading indices (u's) it
was decided to solye four separate systems, one for
each routé being studied, Breakdown of totals
alighiting by stop and route was computed. Statis-
tics for boarding by route were estimated using
the passenger waiting time data and the overall
boarding totals. Each route yielded an indepen-—
dent set of u values and these were scaled, in
proportion to the totals carried by each route,
before being combined to give an overall index for
each stop. These composite indices were then used
as input to the BUSOPS model. .

Subsequent results, given below, cast doubt
on the validity of computing the u values in this
way.,” However it is difficult to see any other way
of choosing a realistic solution to the set of
equations given as equation (3) above.

4.5 Comparison of Observed and Simulated Results

The analysis of model output must always be
an iterative process involving simulation, adjust—
ment and further simulation. However a point can
be reached, beyond which improvements in miodel

-validity, as measured by its accuracy in repli-
cating the real world system, can only be schieved
by a radfcal change in the model., When this point
was reached with the BUSOPS model it was decided
to evaluate the comparison of an average set of
model outputs with those that had been observed in
the field. An average of ten successive runs was
taken to give an estimate of the average model
output. The average numbers simulated as boarding
or alighting, and the average passenger waiting
times, were calculated manually, as the BUSOPS
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model provides no averaging facility. The average
model output was then compared to the average ob-
served statistics, for those stops for which a
useful quantity of data had been collected. There
were three distinct comparisons involved:

Comparison A Average total boarding (by stop)

Comparison B Average total alighting (by

stop) ‘

Comparison C Average passenger wait time (by

stop).

It must be emphasized that Comparison A, using
observed and simulated results, was largely a
verification of the BUSOPS process for passenger
generation, which had the observed passenger ar-
rival rate as one of its inputs.. Comparison B
would test, not only the passenger generation pro-
cess, but slso the realism of the BUSOPS alighting
procedures, which in turn rely heavily on the in-
dices of attractiveness (the n's discussed above).
This comparison would validate a part of the BUSOPS
model. The principle measure of the model's
validity, as had been intended from the cutset of
the project, was to be the comparison of passenger
waiting times, Comparison C above. The average
passenger wait time was not only a measure of the
quality of service received, but was also a statis-
tic which was a product of all the model's opera-
tions and hence could provide a useful validation
criterion. .

The comparison of observed and simulated
boarding totals is given in Figure 6. The observ-
ed figures are averages, scaled to reflect losses
to other routes. (Some of the lesser used stops
were estimated from short samples.) It can be
seen that overall, the fit is poor, and this is
reflected in a x? statistic of 237 for 14 degrees
of freedom. The simulated results tend to be lower
and are particularly so at the less used stops,
numbers 11 to 18, This may be attributed in part
to the fact that BUSOPS, as implemented, attempts
to generate passengers before every bus drrival.
I1f buses are frequent and arrivals are few, there
will be a severe truncation effect. e.g. If .4 of
a passenger is generated 5 times, there will be no
arrival recorded. The deviation at stops 17 and
18 was even more noticeable. These stops lie at
the end of the common stem. Passengers boarding
here must require a specific route. Accordingly,
thelr arrival rate may reflect the published (or
observed) arrival times of buses on these routes.
It is difficult to see how BUSOPS, or indeed any
aggregate model, could accurately reflect these
effects.

As the passenger generation method cannot be
considered verified from the preceding comparison,
the examination of passenger alighting total, ob-
served and simulated, might be considered point—
less. However, the actual total boarding, whether
simulated or observed, was reasonably consistent
and the alighting data was available for a larger
number of stops. The observed and simulated a-
lighting totals are shown in Figure 7. The good-
ness of fit is poor and is reflected in a x2
gtatistic of 249 with 24 degrees of freedom. Al-
though the fit is quite good for stops 4 to 15, the
difference is very large at some outlying stops.
This may be caused by the shortfall in passengers
generated for boarding (discussed above) or by the



method of computing the alighting indices (n's).
Further study is needed to quantify these effects.

Figure 6 COMPARISON OF STMULATED AND OBSERVED BOARDING TOTALS
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Figura 7 COMPARISON OF STMULATED AND OBSIRVED ALIGHTING TOTALS
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Average passenger waiting times had been ob-
served for only 10 effective stops (stops 1 and 2
had been combined). The observed results for these
stops were compared to the corresponding simulated
results, as shown in Figure 8. The results conform
quite well for the first eight stops, although the
simulated figures are slightly higher, but there is
a wide divergence at stops 16 and 17. The x2 stat-

istic of 50, with 9 degrees of freedom, shows a
significant (p < 0.0l) difference. However if the
two furthest stops are omitted from the calculation
a x% of 2.53 is obtained and this shows a high
level of conformity. (p ¢ 0.05) The divergence at
stops 16 and 17 may be due, in part, to the rela-
tively low arrival rates at these stops. As ex-
plained already, it then takes a long inter-bus
interval to allow the generation of a passenger.
At the end of such an interval, a "bunch" of buses
can be expected to arrive, one of which is likely
to suit the intending passenger. Offsetting this
consideration however is the suggestion that pas-
sengers time their arrivals to coincide with
scheduled (or observed) buses. If this is the
case, the BUSOPS would assert that they do con-
siderably worse (by a factor of 2 or 3) than if
they arrived at random!

The BUSOPS model was found to have a serious
theoretical flaw when used with branched networks.
The modified model's output was compared to some
observed results. The results did not significant-
1y increase the model's credibility, as although
the waiting times simulated were (mainly) within
the correct range of values, the model proved very
poor at reproducing the passenger boarding/alight-
ing behaviour of the real world system. The ex-
tent of attempted validation was very restricted,
however, being confined to a single set of inputs,
and did not accurately test many aspects of the
model, e.g. its sensitivities to variation of in-
puts.

Figure 8 COMPARISON OF SIMULATED AND OBSERVED WAITING TIMES
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5. Findings
5.1 The BUSOPS Model

An extensive data collection effort had pro-
vided a substantial test-bed of realistic data so
that model validation could be attempted., Those
model inputs which directly derived from field data
were obtained, although not without difficulty,
caused mainly by the organization of the data col~
lection project. The hypothesized regularity in
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Validating a4 Model (continued)

the observed -data was not generally confirmed.
Passenger arrivals were reasonably consistent but
bus journey times showed extremely wide variation.
A significant day of the week effect was also
noted. Results of previous studies were review-

ed and did not provide any marked contrast in
trends or -approximate values. The limited valida-
tion intended was further restricted by the fail-
ure of an underlying BUSOPS hypothesis on the ef-
fects of independence of passenger origins and
destinations. Some validation tests were made,
although these were of necessity on single sets of
average values. The results did not add much to
the model's credibility and tended to reinforce
the belief that some of the .fundamental premises of
the model were inadequate. However, the range -of
“validation was too smgll to allow a definite con~
clusion. It had been hoped to observe the model's
response over the (small) observed range of inputs.
However the level of variation was so high that

the amount of data available could not provide dis-
tinct and realistic subsets. It seems unlikely, in
view of the model's demonstrated shortcomings, that
the expense of further validation would be justifi-
ed, involving as it would, either the controlled
modification of the real-world system or extensive
data collection.

5.2 The Bus Scheduling Problem

However great may be the merits of simulation,
its usefulness can never be universal. Some sys—
tems are naturally suited to being modelled, in
particular thoge which have a clear boundary and
include random factors which make analytical solu-
tions tedious or impossible. Queueing systems,
chemical reactions or motorway intersections are
all amenable to simulation to a degree of detail
which is limited only by the cost of field data and
the availability of computing power. More complex
systems, having somewhat arbitrary boundaries, can
be modelled simply, provided sufficiently accurate
approximations can be made, or they can be simula~
ted by equally complex models. Available evidence
indicated that the assumptions made in BUSOPS were
oversimplified, especially in their representation
of bus journey times. The basic question here is
whether any satisfactory approximation can be
found to model thie observed variatioms in journey
times. If none can be found, within the rather
arbitrarily demarcated gystem which is being simu-
lated, then one must either conclude that the bus
scheduling problem is unsuitable for simulation,
or one must expand the system being simulated to
include such additional entities as will allow
accurate approximations to be made. A possible
addition would be to subdivide the inter-stop

" links to take account of intersections, traffic
lights, bottlenecks, etc. TFactorial analysis of
observed data might provide an alternative method,
but the factors that would explain the observed
behaviotr are not immedfately -obvious.

Minor difficulties which arose while testing
and evaluating the BUSOPS model reflect inherent
difficulties in simulating bus systems. Factors
were ignored whose influence may actually be large.
Among these were the effect of weather on passenger
demand and behavior, and the actual, as distinct
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from the theoretical, capacity of the buses.
There is also the problem of "second-best" choices
when passengers choose an alternate route, when
they've waited for some time for their first
choice route, This clearly cannot be resolved,
even partially, without major increases in model
complexity and in data collection costs. On a
wider plane there are fundamental questions about
the purpose and usefulness of simulating, without
question, an existing public transport system.
The aim is generally stated as increasing effi-
ciency and improving the reliability of services.
In a static situation these limited goals would
be worthy of the efforts of many scientists. But
urban transport is far from static. In many
cities, including Dublin, the public transport
system has declined, due mainly to increased
wealth and the consequent dominance of private
cars. Under these circumstances, it can be
argued that limited scientific resources are bet—
ter employed in tackling the more fundamental
problems of urban transport. How can the overall
cost of transport be minimized? What are the
effects of urban planning or zoning legislation?
How can unnecessary travel be avoided?

These problems may be more difficult to simu-
late but their solution would have gréater long
term benefits than we can hope to achieve simply
by tuning the current declining systems.

5.3 Simulation Methodology

Few scientists would regard simulation using
digital computers as a precise and rigorously
defined method. Due partly to its novelty but
mainly to the problems it addresses, simulation is
very much an art, wherin trial and error are un-
avoidable. Some skills and approaches are pre-
requisites if a simulation model is to be success-
fully developed and jmplemented on a computer.
Other techniques and abilities, although not
essential, will help the model builder to reach a
successful conclusion with less expenditure of
time and effort. The primary requirement for
worthwhile modelling is a clear and comprehensive
understanding of the system being modelled and
especially of the use to be made of the final
model. As with any exercise in systems analysis;
costs and benefits must be carefully weighed, so
that resources are directed with priorities that
reflect overall objectives. The third major pre-
requisite is a critical and sceptical approach
that never loses sight of the fact that all models
are approximations of an imperfectly understood
reality.

Simulation is by definition an interdisciplin-
ary activity, so the range of desirable techniques
or knowledge, is very broad. It is so broad, in
fact, that one person can rarely provide all that
is required and a team approach is generally
preferable.. Besides, a team allows for comstant
cross evaluation and is less likely to lose sight
of the overall objectives. The work which has
been described above illustrates the strengths and
weaknesses of the personmnel involved.

The BUSOPS model was developed on the basis
of very limited field observation and made many un-
substantiated ‘assumptions. Validation of the



model was very much an afterthought. When valida-
tion was proposed a data collection project was
successfully undertaken at short notice. The
field data collected is believed to exceed pre-
vious samples in the Dublin area, not only in its
volume, but also in its accuracy. In other areas
there were noticéable shortcomings., The data col-
lection experiment would have benefitted from more
advanced planning and more sophisticated sampling
methods. A pilot experiment might have high-
lighted problems with the data collection forms
and with the data verification. Finally, a
knowledge of commercial data processing would have
helped both in verifying the data and in its sub-
sequent analysis.

The overall conclusion is that the construc—
tion and evaluation of simulation models are best
undertaken by a team which has within it a broad
range of knowledge and abilities. Furthermore,
validation should be a consideration from the out-
set of model design with the primary consideration
being that an unvalidated complex model is never.
preferable to a simple and even partially validat-
ed alternative.
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