Interactive Analysis of Simulation Output by the Method of Batch Means

ABSTRACT

An interactive FORTRAN subroutine js presented for
use with ongoing simulations to determine and col-
lect the sample size needed to estimate the mean of
a process with a specified level of statistical pre-
-cision. The subroutine can be used with simulation
models written in a variety of languages, e.g.,
FORTRAN, GASP, GPSS, SIMSCRIPT. The subroutine
partitions a sequence of observations on the random
variable of interest into a series of consecutive
batches, finding those batch sizes whose batch means
are independent. The classical iid method is then
applied to build a confidence interval on the mean.
Under interactive user control, the subroutine then
goes back to the simulation model as often as may be
necessary to extend sample size to the point that
the confidence interval satisfies the user's needs.

This paper complements an earlier paper presenting
software for interactive autoregressive analysis of
simulation output [1]. The present paper reports on
the use of both techniques to analyze data produced
by data models for which analytic results are known.
The method of batch means is not successful in iden-
tifying the batch size for which the batch means are
known to be independent in one of these data sets.
This raises serious questions about the procedure
used to test for independence of batch means, and
points out the need for further research in this
area.

I. INTRODUCT ION

The purpose of building a stochastic simulation mod-
el is to imitate a process which is too complex to
model analytically. For example, suppose .a manager
wants to estimate the hourly cost associated with
the in-context use of an expensive piece of materi-
als handling equipment being considered for pur-
chase. This hourly cost consists not just of the
uniform capital recovery cost of the equipment, but
also of various potential delay costs attributable
to the equipment's ability or inability to succes-
sfully move material from point to point in timely
fashion. Because of the many interdependent ele-
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ments characteristic of the equipment-usage context,
it is impossible to build an analytic model with
which to estimate the hourly cost. The alternative
is to build a computer-based stochastic simuiation
model to imitate the process of interest. The over-
all purpose of such a model is to simulate the hour-
by-hour. performance of the proposed piece of equip-
ment, and thereby estimate the magnitude of the
costs associated with its use. - .

In general, the output from such a stochastic simu-
lation model consists of a sequence of observations
made on one or more dependent random variables

whose behavior is of interest to a decision maker.
In the materials-handling problem, for example, the
important output variable is cost per hour.
Throughout this paper, we will be concerned with
such a single output variable from a simulation mod-
§1. The associated random variable will be denoted
y X. ’ :

We assume that the simulation of interest has been
run for a long enough time to eliminate transient
responses and bring about a steady state of opera-
tion. This means that observations obtained from
the simulation are realizations of a stationary
stochastic process. Since we want to use the obser-
vations to make inferences about the process, it is
reasonable to begin by saying a few things about
such a stochastic process itself.

We designate the n random variables for which our
observations are realizations by X(1), X{(2), ... ,
X(n). Because the stochastic process is assumed to
be stationary, these random variables are identical-

1y distributed with a common mean, u, and a common

variance, o2. This sequence of random variables
differs from an independent and identically distri-
buted sequence because it has a non-zero auto-
covariance function R(s), where for any i,

R(s) = Covariance[X{i),X(i+s)],

s = 0,1,2,... ‘The non-zero autocovariance function
indicates that the random variables are not inde-
pendent. For example, in the materials-handling
problem, it will very likely be the case that the
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Interactive Analysis of Simulation OQutput {continued)

cost observed in a_given hour will have an effect on
the cost observed in one or more following hours.

In this paper, our sole inference objective is to
use the observed values of X to make inferences
about the process mean, u. A point estimator of u
is given by X, where

X = [X(1) + X(2) + ... + X(n)J/n.-
However, our interest is in obtainfng an interval
estimate for the mean, not just a point estimate.
We might naively compute a confidence interval
as... : :

¥+ t(e/2; n-T)s/nl/?

where

§? =

.i

e

X - X1%/(n-1)

and t(a/2; n-1) is the t statistic with n-1 degrees
of freedom at a 100(1-x)% confidence level. This
method of confidence interval construction is based
on two assumptions which are usually unfounded for
simulation output. One assumption is that the X
values are realizations from a normal distribution.’
This assumption is often not a critical one, how-
ever, because the procedure for estimating the con-
fidence interval is capable of gjving satisfactory
results even when the X's. depart from normality. -
The second assumption is that the X's are indepen-
dent. This assumption is very critical and, when
not satisfied, can result in a distorted confidence
interval which is either too wide or too narrow,
depending on the autocovariance function R(s).

Some: way is needed either to incorporate the auto-
covariance function into the analysis, or to circum-
vent its existence. Two important papers addressing
this problem have appeared, [2] and [4], both by
Fishman. In [4], the correlation structure in simu-
Tation output is modeled by finding the order of.an
autoregressive representation which best fits the
data. Then the parameters of the chosen autoregres-
sive model are estimated, and these parameters are
used to build the desired confidence interval. This
methodology can be described as direct, because the
correlation structure of the data is exploited
through the use of an autocorrelated model.

In [2], an attempt is made to circumvent the exist-
ence of the autocovariance function by dividing sim-
ulation output into batches of such size that con-
secutive batch means are independent of each other.
In contrast with the autoregressive approach, the
batch-meéans approach can be described as indirect in
that it attempts to work around the correlation
structure by finding subsets of the overall data set
which have uncorrelated batch means, These inde-
pendent batch means can then be used to build the
desired confidence interval for the mean of the
process.

In [1], Andrews and Schriber presénted an interac-
tive FORTRAN subroutine implementing the autoregres-
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sive methodology presented in [4]. That subroutine,
named AUTOR, is easily coupled with a simulation

_model to automate the autoregressive analysis of the

simulatijon output. And, because of its interactive
nature, the AUTOR subroutine can be conveniently
used by a decision maker to extend sample size to
the point needed to produce a confidence interval

“ adequate to support the decision-maker's needs.

The purpose of the present paper is to present an

" interactive FORTRAN subroutine implementing a varia-

tion of the batch-means methodology presented in
[2]. Named BMEAN, the subroutine is analogous to
AUTOR in that it is easily used to automate the
batch-means analysis of output from a simulation
model, and can be conveniently used by a decision
maker to produce confiderice intervals adequate for
the needs at hand.

The next section describes the batch-means model on
which the BMEAN subroutine is based. In Section

111, the BMEAN subroutine itself is then described,
and its use in conjunction with a GPSS model is de-
monstrated in Section 1V. Section V returns to the
question of the differences between BMEAN and AUTOR
and reports on an experimental investigation of

their performance, both in relative and in absolute

terms. Finally, conclusidns are presented in
Section VI.
II. THE BATCH MEANS MODEL

This section explains the underlying statistical
model on which the batch-means method for confidence
interval construction is based. An illustrative
numeric example is developed to support the discus-
sion. As its context, the numeric example uses the
materials-handling problem described in Section I.
Hence, denoting the sequence of values produced by
the stationary stochastic process of interest as
X{1), X(2), ... , X(n), it is then possible to in-
terpret X{i) as the dollar cost incurred during the
j-th simulated steady-state hour and attributable to
the materials-handling equipment being considered.

Suppose that a simulation of the materials-handling
system has reached steady state and then has pro-
ceeded for another 50 simulated hours, thereby pro-
viding 50 identically distributed hourly-cost obser-
vations, .These 50 hypothesized observations are
given in column 2 of Table 1. (These observations
were actually genérated by a simulation model cor-
responding to the quantified materials-handling pro-
blem to be described in Section IV.) Employing the
batch-means method of analysis, we now want to group
these 50 observations into batches, with each batch
being of identical size, i.e., containing an -identi-
cal number of observations. Let k denote the number
of batches, and m denote the batch size. For exam-
ple, with 50 observations, we might work with 50
batches of batch size 13 or with 25 batches of
batch size 2y or with 16 batches of batch size 3;
and so on. (MNote that some batching schemes fail to
use all of the ohservations in the overall data set.
For exampie, the 16 batches of batch size 3 would
use only the first 48 of the 50 values-in Table 1.)

Now for a given choice of batch size m and the cor-



Table 1

Batch Means Corresponding to Various Batching Schemes

for 50 Observations from the Materials-Handling Problem

Cost Observed

Batch Means for Various Batch Sizes

Hour During Hour m=1
1 20 20
2 28 28
3 23 . 23
4 35 35
5 - 46 46
6 33 33
7 21 : 21

8 20 20
9. 35 35

10 36 36

1 32 . 32
12 28 28
13 20 20
14 20 ' 20
15 24 24
16 24 24
17 27 . 27
18 20 20
19 23 23
20 38 38
21 82 82
22 46 : 46
23 20 20
24 22 22
25 26 26
26 22 . 22
27 20 20
28 24 24
29 21 21
30 20 20
31 33 33
32 32 32
33 21 21
34 20 20
35 27 - 27
36 26 26
37 20 20
38 37 37
39 37 37
40 48 48
41 20 20
42 27 27
43 29. 29
.44 20 20
45 23 23
46 23 23
a7 20 20
48 92 92
49 72 72
50 70 70

m=Z  m=3
2. 93,67
29

39.5 38
20.5 55 33
35.5

0 ¥

20 51,33
24

235 23.66
30.5 4767
- 64

;. 29.33
2 2267
22

205 21.67
32.5 2567
20.5

265 24.33
28.5 31,33
42.5

235 31.67
24.5

23

7

m=4

26.5

30
32.75
22

27
42.5
23
26.5
23.5
3.5
24

39.5

m=5

30.4

29

24.8

26.4

39.2

21.4

26.6

33.6

23.8

55.4

30.83 -

28.67

22.5

38.5

22.17

26.5

31.5

34.8

esponding number of batches k, we proceed to compu-
te the batch mean for each of the k batches. Let
Y(1), Y(2), ... , Y(k) denote those batch means.

_ For example, in Table 1, withm = 2 and k = 25,
there are 25 batch means having the values 24, 29,
39.5, ... , and 71 (4th column in Table 1).

\

Because we are at steady state, the expected value

of each X is the same. We have denoted that value
by u. Also, since each Y is an average of a subset

of the X's, the mean of the Y's is also u.
jective is to build a confidence interval for u,

We can do this quite easily, in
(a) First, determine a batch

the process mean.

concept, as follows:

size (if any) for which the batch means are inde-
pendent; (b) Then compute the sample variance of
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-Interactive Analysis of Simulation Output (continued)

the batch means; (c) Finally, form the confidence

interval as
T+ t(a/2; k-1)s/k/2

where s2 is the sample variance of the batch means,
and t(a/2; k-1) is the t statistic with k-1 degrees
of freedom at a 100(1-0)% confidence level. The two
assumptions inherent in the above computational pro-
cedure are those described earlier {see Section I).
The important thing to note here is that the assump-
tion of independence has been satisfied via (a)
above. In addition, the assumption that the Y's are
normally distributed becomes increasingly better
satisfied as batch size m grows, via the Central
Limit Theorem.

In the Table 1 example, we potentially have the
choice of building a confidence interval based on
six alternative batching schemes, corresponding to
m=1, 2, 3, 4, 5, or 6, with the respective k's
being 50, 25, 16, 12, 10, and 8. {Batches of size 7
and larger are excluded from consideration here for
a reason to be indicated shortly.) The choice of
which particular batching scheme (if any) to use in
building a confidence interval for the process mean
will be determined by testing the hypothesis, batch-
size by batch-size, that the batch means are
Jindependent.

The testing procedure used to test the hypothesis of
batch-mean independence requires the use of at least
8 batches. This explains why batch sizes larger
than 6 aren't possible in the Table 1 example.

For the technical details of the hypothesis test it-
self, see [2].

It is suggested in [2] that the hypothesis test be
used sequentially, starting with a batch size of 1.
If the null hypothesis of independerice is rejected,
[2] suggests doubling the batch size and running the
test again. This double-and-test procedure is con-

tinued until either the independence hypothesis is
accepted (at which point a confidence interval is
constructed), or until the number of batches is
less than 8 {at which point rio confidence interval
can be constructed).

We use the same test of hypothesis in our work as
described in [2], but our procedure for determining
which batching scheme to use in building a confi-
dence interval differs.from that in [2]. We test
the independence hypothesis for every possible batch
size. That is, setting the Type I error at 0.10, we
test the following hypothesis structure for every
value of m from 1 up to the largest batch size which
will provide 8 batches: ’

Ho: The batch means are independent.

H.,: H

a o s false.

There are then two possible overall results. Either
(a) the hypothesis of independence will be rejected
for every batching scheme, or (b) some of the batch-
ing schemes will be accepted as providing indepen-
dent batch means. In the {a) case, we recommend to
the user that more observations be generated by the
simulation model. In the (b) case, we choose that
batching scheme for which it is the most probable
that the batch means are independent. Since the .
standardized test statistic has a normal distribu-
tion, this means we choose that batching scheme
whose test statistic is closest to zero.

Table 2 displays pertinent information which results
from applying batch-means analysis to the various
feasible batching schemes possible with the 50
Table 1 observations. Inspection of Table 2 shows
that in our procedure, we would proceed to build a
confidence interval using the batching scheme cor-
responding to 10 batches of size 5, because the test
statistic for this scheme, 0.23, is closer to zero
than any of the other batching-scheme test statis-
tics. 1In contrast, if the procedure in [2] were

Tab]e‘z

Selected Results from Analysis of the Table 1 Data Set
by the Method of Batch Means

Value of the
Test Statistic
Confidence

Interval
Half-Width

none*

* Sample Variance
of the
Batch Means

265.49

m=1 m=2

Normalized 3.73 1.73
none*

190.47

m=3 m=4 m=5 m=6

-0.33 -1.15 0.23 -1.22

4.29 4.30 7.4 4.73

65.00 45.88 99.63 32.02

*These batching schemes faifed to produce
independent batch means.
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followed and a Type I error of 0.10 were used, the
result would be to build a confidence interval using
12 batches of size 4.

Table 2 provides some interesting insights into the
relationship between the number of batches and the
sample variance of the batch means. It might be

thought that as the batch size increases, the samp]e‘

variance of the batch means would get smaller. This
would indeed be the case if the X's were indepen-
dent. However, in the case of an autocorrelated se-
quence, the sample variance of the batch means will
depend not only on the variance in the underliying

- population, but also on the autocorrelation struc-
ture. This means it is quite possible for the vari-
ance of the batch means to increase with increasing
batch size. This phenomenon occurs in Table 2, in
fact. As batch size increases from 4 to 5, the
variance of the batch means increases from 45.88 to
99.63. One possible explanation for this is that
the data may harbor autocorrelation of order 5.

It is also interesting to consider how the number of
batches, k, enters into the computation of the width
of the confidence interval. As k gets larger, the

t statistic becomes smalier (leading to a narrower
confidence interval), and for a given sample vari-
ance, the variance of the sampling distribution of
the batch means becomes smaller (as reflected by

the appearance of the square root of k in the de-
nominator_of the confidence interval expression
based on Y, and given earlier), which also leads to
a narrower confidence interval. As Table 2 shows,
however, the sample variance in autocorrelated data
may not follow a predictable pattern as k changes.
It is not necessarily the case, then, that one wants
to choose a batch size which maximizes the value of
k while satisfying the condition that the batch
means are independent. As indicated earlier, we
recommend basing the confidence interval on that
batching scheme which best supports the test for in-
dependent batch means, regardless of the relative
value of the associated sample variance.

Our work departs from the methodology. suggested in
[2] in one other way. For ‘large data sets, it
proved impossible to work directly with the batch
means themselves when large batch sizes were involv-
ed. Trouble occurred because as batch size in-
creases, the variance of the batch means approaches
zero. This is true because the variance of the
batch means is of the order of 1/m. Letting Y(j)
be the j-th batch mean, this fact is evident upon
inspection of the expression for the variance of
Y(Js)y 2 m"]

o + 2z (1~ s/mR(s)
Variance[Y(j)] = s=1

m
where, for any i,

R(s) = Covariance[X(i),X(i+s)],

s = 0,1,2,... This problem was handled by using a
standardized version of the batch means, denoted by
Y* and defined as the square root of the batch size
times the batch mean, i.e.,

ve(3) = m'/2(j)

This standardized batch mean has the following

variance.

: m-1
Variance[Y*(3j)] = oL+ 23 (1 - s/m)R(s)
s=1
where R(s) is as defined above. WNote that the
variance of this standardized batch mean is not of
the order of 1/m.

III. " THE SUBROUTINE BMEAN

The subroutine BMEAN is designed to carry on a run-
ning dialog both with a simulation model, and with
an interactive'wser. The dynamics and some of the
options involved in using the subroutine will now be
sketched out.

The action starts with the simulation model, which
can be thought of as a main program. "(The main pro-
gram discussed in the next section is a GPSS model
but it could, of course, take other forms, such as
that of a conventional FORTRAN main program). In
general, the simulation model must move itself first
of all through transient conditions and into a

" steady state of operation (with the simulated time

required to bring this about, if any, having been
determined by the modeler through earlier experimen=
tation). =

The main program then calls BMEAN which, detecting
that this is the first call on it, requests that the
user input values for (1) the confidence level which
is to apply to the confidence interval on the mean;
and (2) the number of observations to be taken ini-
tially on the random variable of interest. Control
is then passed back and forth between BMEAN and the
simulation program the number of times needed to
collect this initial sample size. (Each time the
simulation model has control returned to it by
BMEAN, it proceeds with the simulation until one ad-
ditional observation hds been collected on the ran-
dom variable, and then passes this value to BMEAN.
Experience shows that this approach makes it rela-
tively easy to convert a simulation model not
originally developed for BMEAN use to one that can
use BMEAN quite naturally.)

BMEAN then performs the batch-means analysis on this
initial sample, and reports relevant results, in-
cluding a confidence interval, to the user. If the
user is not satisfied with this confidence interval,
s/he can indicate what width interval is desired.
BMEAN then reports to the user what the estimated
additional sample size required to achieve this con-
fidence interval would be. The user is then given
three options: (1) terminate the simulation; or (2)
specify the amount by which the existing sample is
to be supplemented by the taking of additional ob-
servations; or (3) provide a new specification on
the desired width of the confidence interval, in re-
sponse to which BMEAN will report the estimated ad-
ditional sample size required to achieve this newly
specified size of confidence interval.

If the user selected option 2, BMEAN then jnteracts
ac¢cordingly with the main program to extend the tot-
al number of observations as reouested, analyzes and
reports out the confidence interval associated with
the total sample, and again gives the user the three
options indicated above. This back and forth pro-
cess typically continues until the user chooses to
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Interactive Analysis of Simulation Output (continued)

. terminate the simulation, or until BMEAN terminates
the simulation because the total sampie size has
reached 15,000. (BMEAN cannot handle samples con-
sisting of more than 15,000 observations, although
this restriction could easily be relaxed by intro-
ducing modest changes in BMEAN.)

Another condition which might come about results
from the possibility that no batching stheme leads
to acceptance of the hypothesis that the batch means
are independent. In this case, the user is given
the option of terminating the simulation, or of ex-
tending the sample size in the hope that one or more
of the batching schemes will result in independent
batch means for the larger sample size.

Except for the facts pointed out in Section II that
BMEAN considers all feasible batching schemes and
uses standardized batch means, the subroutine pre-
sented here is statistically identical to a sub-
routine presented in [3], and written in SIMSCRIPT.
The subroutine in [3] is, however, set up for batch
mode use. One of the obvious advantages of BMEAN
-is that because it is interactive, the user can
conduct an analysis of output relatively quickly and
efficiently. This contrasts with a batch mode ap-
proach, in which the user might have to engage in a
potentially lengthy sequence of experimental runs to
determine the number of observations needed to build
a confidence interval having the desired or required
width. In addition, observatiens from earlier runs
that might be awkward to save and re-use in a batch
context are continuously taken into account as the
user extends his or her sample size in the interac-
tive mode investigation. Finally, the present im~ -
plementation puts tested software for analysis of
output within easy reach of the casual user of
FORTRAN, GASP, and GPSS simulation models. (Copies
of the subroutine at the source level will be dis-
tributed to interested persons on request. See the
end of this paper, however, for some reservations
concerning the test for independence of batch means
which BMEAN implements.)

1V, AN -APPLICATION OF BMEAN

The following problem, which will be used to illus-
trate the use of BMEAN in context, 1s a modified
version of a problem in [5]. (This same problem was
also used to illustrate the use of AUTOR in [1].)

"A. certain materials-handling unit is used to trans-
port goods between producing centers in a job shop.
Calls for the materials-handling unit to move a load
come essentially at random (i.e., according to a
Poisson input process) at a mean rate of two per
hour. The total time required to move a load has an
-exponéntial distribution with an expected time of 15
minutes. The total equivalent uniform hourly cost
(capital recovery cost, plus operating cost) for the
materials-handling unit is $20. The estimated cost
of -idle goods (waiting to be moved, or in transit)
because of increased in-process inventory is $10 per
load per hour. Furthermore, the scheduling of the
work at the producing center allows for just 1 hour
from the completion of a load at one center to the
arrival of that load at the next center. Therefore
an additional $5 per load per hour of delay (inclu-
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ding transit time) after the first hour is to be
charged for lost production. Using simulation, es-
timate the mean cost per hour and report a 95%
confidence interval for this mean hourly cost."

A key decision which must be made in modeling the
materials-handling system concerns the approach to
follow in making observations. on the cost-per-hour
random variable of interest. Suppose it is agreed
to make an observation at the end of each simulated
hour. Two choices are then available for computing
the cost incurred during the hour: (1) the cost
could be based only on those jobs which have left
the system during the hour; or {2) the cost could
be based on all jobs which have been {and perhaps
still are) in the system at any time during the
course of the hour. Of course, total costs incur-
red in the long run will turn out to be the same
either way. The alternative cost-accounting
choices outTined above differ only in the timing
with respect to which cost information is accumula-
ted. Should a job in the system be viewed as con-
tributing continuously to the value of the cost-
per-hour random variable (choice 2 above), or
should its total cost contribution be taken into
account in one Tump sum, at the time the finished
job Teaves the system (choice 1 above)?

Following either choice, the cost-per-hour random
variable has one and the same expected value. Does
it then matter which choice is made in deciding how
to take readings on the random variable? Well, if
one observational method has a smaller variance as-
sociated with it than the other, then it is the bet-
ter method to follow. The reason is that the smal-
ler variance leads to construction of a narrower
confidence interval for a given sample size, other
things being equal. Now, it is perhaps intuitively
clear that costs accumulated continuousiy {method 2)
will show Tess variation on an hour-to-hour basis
than costs which are based only on jobs completed
during the hour. For example, if a given job is re-
sident in the system part of hour 1, all of hour 2,
and part of hour 3, then by method 2 part of its de-
lay cost will be accounted for in hour 1, another
part in hour 2, and the remaining part in hour 3,
whereas by method 1, instead of spreading out its
delay cost across hours 1, 2, and 3, all of its de-
lay cost will be taken into account in one lump sum
in hour 3. This means that hourly costs observed
under method 2 will be "smoother" (fluctuate less)
than those observed under method 1. A GPSS model
which follows method 2 is shown in detail in [1].
Despite its advantages, that model is necessarily
considerably more complicated and logically demand-
ing than a GPSS model which follows method 1. For
variety, a GPSS model following method T is used in
the present paper. (Copies of the GPSS model will
be distributed to interested persons on request.

The model has been liberally documented with
comments so, that the person who knows GPSS will be
able to come quite easily to a complete understand-
ing of its design and operation.)

The beginning portion of a run made using the GPSS
model coupled with BMEAN is shown in Appendix A.
Information typed in by the user has been underlined
(after the fact) in Appendix A to make it readily



distinguishable from information typed out by BMEAN.
The following features of the run can be followed by
referring to Appendix A:

(1) The user specifies a confidence level of 95%,
and an initial sample size of 500. (The three al-

ternative confidence levels which BMEAN supports are -

90%, 95%, and 99%. As for initial sample size, the
only restriction on it is that it not be less than
50, and not more than 15,000.)

(2) BMEAN reports back a confidence interval on the
_mean hourly cost of ($27.34, $33.02) and indicates
that this case was developed based on 14 batches,
with 34 observations per batch. {(In coming to this
conclusion, BMEAN considered 62 alternative batching
schemes, corresponding to batch sizes ranging from 1
through 62. This fact is not evident in the output)

(3) Dissatisfied with the width of this confidence
interval, the user indicates that a confidence
interval with a half-width of $1 is desired. BMEAN
responds that this will require the taking of an es-
timated 3,364 additional observations.

(4) Not willing to take this many additional obser-
vations at this time, the user then backs off, in-
dicating that a confidence interval with a half-
width of $1.5 would be of interest. BMEAN replies
that this will require an estimated 1,230 addition-
al observations. ’

(5) The user decides, conservatively, simply to have
an additional 500 observations taken. The underly-
ing thinking is that the initial sample size may
have been too small to provide a very accurate esti-
mate of the population variance (and this estimated
variance, in turn, is being used by BMEAN to esti-
mate the number of additional observations needed to
shrink the width of the confidence interval to a
range which satisfies the user.)

(6) Based on what is now a total sample of 1,000 ob-
servations, BMEAN reports out a confidence interval
of ($28.63, $32.83). Eleven batches of size 90 were
used in this analysis.

(7) Noting that the confidence interval still ex-
ceeds $3 in width, the user again specifies that the
desired half-width is $1.5. BMEAN then recommends
that 942 additional observations be taken in an at-
tempt to achieve this desired half-width.

(8) This time the user takes 1,000 more observa-
tions, bringing the total number of observations to
2,000. The resulting confidence interval which
BMEAN reports is ($29.35, $32.08), based on 47
batches of size 42. This confidence interval meets
the $1.5 half-width criterion and so the user, now
satisfied, terminates the simulation.

The available analytic solution for the materials-
handling problem indicates that the expected hourly
cost is $30.68. The confidence interval reported in
(8) above does cover the mean, as it would ideally
be expected to do 95% of the time.

V. EXPERIMENTAL PERFORMANCE OF BMEAN AND AUTOR

This section reports on an experimental investiga-
tion of the performance of BMEAN and AUTOR (or, more
precisely, reports on an experimental investigation

of the statistical methodologies which these two
subroutines implement). The experimental investi-
gation takes place in terms of three alternative
daga]sets produced by three distinct data-generating
models.

The first data set consists of independent observa-
tions produced from a trivariate normal distribution
model. The idea of "independent trivariate" obser-
vations would seem to be a contradiction in terms,
and requires some explanation. Consider the first,
second, and third observations in this set, vs. the
fourth, fifth, and sixth observations. Because they
come from a trivariate distribution, observation two
depends on observation one, and observation three,
in turn, depends on observations one and two. Simi-
Tarly, observation five depends on observation four,
and observation six depends on observations four and
five, because these observations also come from the
trivariate distribution in question. But, by de«
sign, observation four does not depend on observa-
tion three. Hence, the first set of three observa- .
tions, although exhibiting dependency within the

.set, is independent of the second set of three

observations; and so on. In spite of the awkward-
ness df the phrase, then, "independent trivariate
data set" will henceforth be used to refer to this
particular data set. Precise details of the sampl-
ing design used to produce the "independent tri-
variate" observations are spelled out below.

"The second data set consists of autocorrelated ob-

servations produced by an autoregressive model of
order 2. The third data set consists of hourly cost
observations taken from the simulation model for the
materials-handling problem introduced in the preced-
ing section.

The purposé of using BMEAN and AUTOR to analyze data
produced by these three data-generating models
should be obvious. The observations produced by the
independent trivariate scheme should be ideally
suited for analysis by BMEAN. (In fact, BMEAN
should report that batches of size 3 in this data
set are independent.) Similarly, the observations
generated by the 2nd order autoregressive model
should be ideally suited for analysis by AUTOR.

(For these data, AUTOR should report that a 2nd
order autoregressive model fits the data well.)
Finally, the observations generated from the materi-
als-handling problem provide a realistic usage con-
text both for BMEAN and AUTOR. In any event, by
using BMEAN and AUTOR to analyze each of these three
data sets, their performance can be considered under
a variety of circumstances.

Each data set consists of 19,200 observations. These
data sets, in turn, are each partitioned into 200
consecutive subsets of data, with each.subset con-
taining 96 observations. Each subset of data is
analyzed by BMEAN and AUTOR independent of the other
199 subsets in the corresponding data set. This
means that each 96-observation data subset can be
viewed as a replication, and each overall data set
can be thought of as consisting of data produced by
replicating the data-generating process 200 times.

Let's now indicate how observations in the three
data sets were produced. For the independent tri-
variate normal, a data set was generated using a
mean vector (1000,1000,1000), and variance-covari-
ance matrix...
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10,000 1,000 8,000
vV = 1,000 10,000 1,000
8,000 1,000 10,000

For a given replication, a value of X{1) was first
determined by sampling from a normal distribution
with mean 1,000 and variance 10,000. As for X(2),
it can be shown that under the above trivariate
normal specifications, the conditional distribution
of X(2) given X(1) is normal with mean equal to
0.1*X(1) + 900, and with variance 9,900. And so a
value of X(2) was determined simply by sampling from
the normal distribution with those parameters. Fi-
nally, it can be shown further that, given X(1) and
X(2), X{(3) is normally distributed with mean

[2x(2) + 79X(1) + 18,000]/99, and variance
356,000/99. Hence, determining a value for X(3).
again -involves sampling from a normal distribution
with the appropriate parameters.

The method used to generate X(1), X(2), and X(3) was
then repeated to generate X(4), X(5), and X(6);
X(7), X(8), and X%Q); and so on, until the overall
data set of 19,200 observations had been produced.
Note then that X{4), X(5)}, and X(6) are independent
of X(1), X(2), and.X(3), and so on for consecutive
3-observation sequences within the overall data set,
as was indicated earlier in a qualitative way.

Now let's discuss the 2nd order autoregressive data-
generating model. The overall autoregressive data
set was developed by generating 19,302 observations;
then the first 102 of these were discarded, leaving
the 19,200 observations desired. The first 3 obser-
vations in the set of 19,302, namely, X(1), X(2),
and X(3), were produced by the trivariate normal
method just described. It was then assumed that
X(4) depends on X(3) and X(2), with X(4) being nor-
mally distributed with mean equal to [2X(3) + 79X(2)
+ 18,0007/99 and variance equal to 356,000/99. Simi-
larly, X(5) depends on X(4) and X(3) in the same way

that X(4) depended on X(3) and X(2), and so on. An- .

other way to express this is to say that the auto-
regressive observations were generated from an auto-
regressive process of the form:

X(i) = [2X(i-1) + 79X(i-2) + 18,000] + ¢

where ¢ is normally distributed with mean 0 and
variance 356,000/99, and i = 3,4,5, ... , 19,302.

As for the data set produced by the model simulating
the materials-handling system, it was a simple mat-
ter to write a FORTRAN subroutine to force the simu-
1ation model to produce 19,200 steady-state observa-
tions, and then to form 200 consecutive subsets of
+these pbservations, each of size 96.

Before reporting the results of using BMEAN and
AUTOR to analyze these three overall data sets, it
is useful to state what results we expected from the
analysis. When analyzing the 200 replications of
the independent trivariate observations, BMEAN -
should conclude for most of the replications that
batch means based on batches of size 3 are indepen-~
dent. Similarly, when analyzing the 200 replica-
tions of the 2nd order autoregressive observations,
AUTOR should conclude for most of these replications
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that a 2nd order autoregressive representation.fits
the data. If BMEAN and AUTOR fail to draw such con-
clusions, then we have reason to gquestion whether
the underlying statistical methodologies which they
implement {in particular, the hypothesis test for
batch mean independence; and the hypothesis test
for autoregressive order) are as effective as they
should ideally be. -

As for what the results might be when BMEAN is used
to analyze the autvregressive data, and when AUTOR
is used to analyze the independent trivariate data,
and finally when both BMEAN and AUTOR are used to
analyze the observations coming from the materials-
handling simulation model, there is no theoretical
basis for speculation. ' .

Tables 3 through 8 summarize the results of the
various analyses, each of which was conducted at a
95% confidence level. ' While inspecting each of
these tables, the following questions should be kept
in mind.

(1) Is the batch size or the autoregressive order
that which might have been expected?

(2) Did the analysis produce a confidence interval?

(3) What is the average half-width of the confidence
intervals produced?

(4) Does the confidence interval cover the known
mean of the data-generating process?

Table 3 summarizes the results of analyzing the in-
dependent trivariate observations with BMEAN. For
all 200 replications, a confidence interval was re-
ported out by BMEAN. However, the anticipated

batch size of 3 was reported in only 23 of the runs
(11.5%). Also, 20 of the runs (10%) reported that
the observations were independent. The reported
batch sizes fell into 12 categories (corresponding
to batch sizes ranging from 1 to 12), with the '
batch-size frequencies evidencing no particular pat-
tern. We are forced to conclude that the hypothesis
test in BMEAN chooses batch size ineffectively, at
least in the case of this particular data set.

93% of the confidence intervals produced by BMEAN
cover the process mean, which compares favorably
with the 95% confidence level at which the analyses
were performed. Coverage itself should not be disc-
ussed, however, without discussing the matter of
confidence interval half-width. In the third column
of Table 3, we see that the average half-width pro-
duced by BMEAN for the 200 cases was 27.66, and that
the average half-widths for the various batch sizes
were relatively stable from batch size to batch
size, ranging from 20.4 (batch size 1) to 33.36
(batch size 11).

Table 4 summarizes the results of analyzing the
autoregressive data with AUTOR. In 198 of the 200
replications, AUTOR determined an order and reported
out a confidence interval. In 168 of the 198 cases,
the 2nd order model which AUTOR should ideally ac-
cept was indeed accepted. When an order other than
2 was chosen, the order was variable over the range
from 1 to 25. It is worth noting that the order
zero {the order corresponding.to uncorrelated obser-
vations) was not chosen by AUTOR for any of the 200
cases. The reported confidence intervals covered



Table 3 )
Selected Results from BMEAN Analysis of an Independent Tiivariate Data Set
. Number of
Batch Number of Intervals CTovering Cover Average
Size ‘Occurrences the Mean Percentage Half-Width
1 20 20 100 20.40 1
2 3 3 100 . 22.24 1
3 23 2 9N 26.14
4 1 10 9] 26.14
5 19 18 95 26.62
[ 26 24 92 28.75
7. ” 16 g4 28.80
8 20 - 18 80 27.65
9 7 17 100 30.41
10 10 : 9 90 33.36
11 28 22 92 33.36
12 10 8 80 29.58
ALL 200 186 93 27.66

the true process mean in 183 of the 198 cases {92%).
For the 168 2nd order cases., 157 cover the mean
(93%). These coverages correspond closely to the
expected 95% coverage.

As indicated in the last Table 4 column, average
half-width of the confidence intervals reported by
AUTOR varies widely, ranging from 11.01 for the
single 19th order case to 507 for the single 10th
order case. This large variability in half-width is
disturbing, and should be investigated. The overall
average half-width was 147.17.

Table 5 summarizes the results of analyzing the
autoregressive data with BMEAN. In 22 cases out of
200, no batch size was found to produce independent
batch means. For these data, there is no basis for
expecting that any particular batch size will re-
sult. When batch sizes other than 1 were accepted,
they tended to be large (9, 10, 11, or 12). This
does not seem unreasonable. However,.a very dis-
turbing outcome of these analyses is that 42 of
them (out of 200) accepted a batch size of 1, im-
plying that the observations are independent (which
we know is not true). This provides further evi-
dence (in addition to that in Table 3) that BMEAN
does not choose batch size well. 1In contrast, when
these same cases were analyzed by AUTOR {Table 4),
none of the analyses concluded that the observa-
tions were independent, which speaks well for AUTOR.

In Table 5, 173 of the 178 confidence intervals, or
69% of them, covered the process mean. The greatest
coverage occurred when the batch size was largest
(39 out of 47, or 83%, when the batch size was 12).
In any event, the coverage falls far short of expec-
tation. The average half-width of the 173 confi-
dence intervals was 35.36, which is considerably
smaller than the confidence intervals developed when
these same observations were analyzed with AUTOR.

.Table 6 summarizes the results of analyzing the in-

dependent trivariate data with AUTOR. In 4 cases out
of 200, no autoregressive order in the range from Q
to 25 was accepted. No particular order was antici-
pated; however, in 160 of the 200 cases, AUTOR re-
ported that the observations were uncorrelated, which
is obviously false. It is worth noting that 15 of
the 200 cases reported an order of 2. The reported
confidence intervals covered the process mean 170 out
of 196 times (87%), with an average half-width of
24.24, However, these average half-widths range from
7.42 to 430.61 in value, depending on the autoregres-
sive order.

Tables 7 and 8 respectively show the BMEAN and AUTOR
analyses of observations taken from the materials-
handling simulation model. Table 7 indicates that
the BMEAN analyses resulted in a coverage of only 76%
and produced confidence intervals with a stable half-
width of 5.12. It was concluded in only 1 of the 200
cases that the observations were independent. Apart
from this, the procedure chose batch sizes in the
range from 2 to 12 with approximately uniform freq-
uency.

Table 8 indicates that the AUTOR analyses of the
materials-handling observations resulted in a cover-
age of only 67%, with a widely varying confidence
interval half-width averaging 4.46. A potentially
disturbing fact appearing in Table 8 is that in 161
cases out of 200, AUTOR reported no autocorrelation
in the data (autoregressive order = 0). BMEAN
anslysis of the same observations resulted in the
no-autocorrelation conclusion in only 1 case, so
that BMEAN and AUTOR are at wide variance with re-
spect to each other here.

The coverage rate produced both by BMEAN and AUTOR
for the materials-handling simylation is very low,
especially for such an uncongested quetting system.
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*Forn 1 neplications of the

Table 4 data, no auto-
negressdive onden was
found which provided an
acceptable model fon the
neplication.

For 22 neplications of the
Table 5 data, thete were no

" batching schemes for which

522

the batch means were found
Zto be independent.
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Table 4
Selected Results from AUTOR Analysis.of a 2nd Order Autoregressive Data Set
. Number of
Order . Number of * Intervals Covering - Cover Average
Reported Occurrences the Mean Percentage Half-Width
0 0 - - -
1 1 0. 0 11.08
2 168 157 93 139.87
3 1 1 100 80.60
4 .0 - - --
5 0 - - -
6 1 1 100 55.99
7 -0 - - -
'8 0 - - -
9 . 0 - - --
10 1 1 100 507.00
n 1 | 100 33.69
12 2 2 100 26.75
13 1 1 100 200.89
14 0 -- - .-
15 0 — - -
16 R 1 100 11.01
17 -1 1 100 79.20
18 0 - - -
19 2 ) 2 100 32.59
20 2 .1 50 325.32
21 4 °3 75 199.50
22 0 - — -
23 3 3 100 278.64
24 1 0 0 17.02
25 8 8 100 147.17
ALL 198* 183 92 147.17
Table 5

Se]ected Results from BMEAN Analysis of a 2nd Order Autoregressive Data Set

Batch
Size

W 0 N Ot B W N

o e
N -0

=

Number of

Occurrences

42

~N o O WO -0

16
40
47

178*

Numbér of
Intervals Covering
the Mean

21

1

1

3

4
n
10
33
39

123

Cover Average
Percentage Half-Hidth
50 19.98
100 22.81
33 19.85
50 26.31
57 27.35
69 31.n
63 , 33.96
83 43.35
83 46.60
69 35.36




Table 6

Selected Results from AUTOR Analysis of an Independent Trivariate Data Set

*Fon 4 neplications of the
Table 6 data, no awto-
regressive onden was
found which provided an
acceptable model for the
neplication.

Selected Results from-BMEAN Analysis of a Data Set from the Materials-Handling Problem

Number of
Order Number of Intervals Covering Cover Average
Reported Occurrences the Mean Percentage Half-Width
0 160 137 86 19.99
] 5 4 80 23.52
2. 15 15 100 35.18
3 2 2 100 27.09
4 2 2 300 21.23
5 0 -- - --
6 1 0 0 14.96
7 0 - - -
8 0 - - -~
9 1 1 100 430.61
10 0 - - .=
n 0 - -- -
12 .0 -~ - --
13 1 1 100 7.42
14 0 - - -
15 0 - - -
16 0 - - -
1Y 0 - - -
18 0 - - --
19 1 0 0 9.54
20 1 1 100 39.81
21 3 3 100 63.55
22 1 1 100 16.04
23 1 1 100 36.95
24 1 1 100 11.08
25 1 1 100 53.55
ALL 196* 170 87 24 .24
Table 7

Batch
Size

W 00~ O O B W N e

— d -t
N o~ O

AL

Number of

1
22
18
17
18
1N
17
20
22
15
21
21

200

Occurrences

Number of
Intervals Covering Cover Average
the Mean Percentage Half-Width
1 100 n
18 82 3.43
12 67 3.63
16 94 4,23
14 93 4,12
5 45 4.20
15 88 6.02
15 75 4,86
16 73 6.29
9 60 4.64
16 76 6.80
15 7 6.19
152 76 5.02
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Table 8
Selected Results from AUTOR Analysis of a Data Set from the Materials-Hindling Problem
o Number of
Order Number of Intervals Coevering Cover Average
Reported Occurrences the Mean Percentage Half-Width
0 161 : 97 60 2.90
1 30 29 ' 97 8.57
2 3 3 . 100 20.60
3 1 1 100 59.54
* No autoneghessive onder between 4 and 20, inctwdive, was
: found for any neplications of the data.
21 1 1 100 1.12
22 1 1 . 100 25.13
23 0 - - e
24 0 - - -
25 2 ‘ 2 100 7.57
ALL 199* 134 © 67 4.46
‘Fon 1 neplication of the data, no autoregressive onder was found which
provided an acceptable model £oa Zhe replication
VI. CONCLUSIONS VII. REFERENCES

In summary, these experimental investigations of
BMEAN and AUTOR's performance strongly suggest that
the statistical methodologies which these sub-
routines implement both have serious deficiencies.
Both methodologies readily accept the hypothesis of
independence when used to analyze observations
known to be autocorrelated. BMEAN does not appear
to have a satisfactory way of choosing batch size,
and AUTOR reports confidence intervals with half-
widths which vary over drastically wide ranges.
Further experimental testing of these methodologies
against data sets with known properties is requ-
ired. If the methodologies fail to provide satis-
factory analyses in these cases, additional work
should be directed toward finding or developing bet-
ter statistical procedures for testing the key hy-
potheses which' these routines implement (the in-
dependence hypothesis in the case of BMEAN, and the
autoregressive order hypothesis in the case of
AUTOR). We will be pleased to provide copies of
our software to others who, 1ike us, are 1nterested
in pursuing these issues.
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Appendix A

An Example of Interactive Use of the BMEAN Subroutine
with a Simulation Model for the Materials-Handling Problem

#EXECUTION BEGINS

*XXXALWAYS USE A DECIMAL FOINT WHEN
ENTERING VALUES FOR THIS PROGRAM¥¥X

ENTER THE PERCENT CONFIDENCE LEVEL 4S
99«3 95,2 OR 90.

?

25,

ENTER THE INITIAL SAMPLE SIZE
(50. <= ENTRY <= 15000,)
7

500,

BATCH MEAN ANALYSIS PROGRAM INITIALIZED

CONFIDENCE LEVEL = 95%
INITIAL NUMBER OF ORSERVATIONS = 500
STATISTICAL RESULTS OF SIMULATION
SAMFLE MEAN +/- HALF-WIDTH = 30.1806 +/—"

CONFIDENCE INTERVAL

< 2743403

SAMPLE SIZE = 500
NO. OF BATCHES = 14
OBSERVATIONS PER BATCH = 34

I8 THIS CONFIDENCE INTERVAL SATISFACTORY?
IF YESy TYFE 2.0 TO TERMINATE THE RUN}

IF NO» TYFE 3.0 TO SFECIFY A NEW HALF-WIDTH
?

3,

ENTER THE DESIRED HALF-WIDTH
OF THE CONFIDENGE INTERVAL

T

i

" YOUR CONFIDENCE INTERVAL HALF-WIDTH REQUIRES

AFPFROXIMATELY

AT THIS STAGE YOU
(1) TYPE 1.0 TO
(2) TYPE 2,0 TO
(3> TYPE 3.0 TO

3364 ADDITIONAL ORSERVATIONS.
HAVE THREE OPTIONS:
TAKE MORE ORSERVATIONSH
TERMINATE THE RUNj OR
SPECIFY A (NEW) HALF-WIDTH

aRrR

lw~¢
-

ENTER THE DESIRED
OF THE CONFIDENCE
7

1.5

HALF-WIDTH
INTERVAL

YOUR CONFIDENCE INTERVAL HALF-WIDTH REQUIRES
APPROXIMATELY 1230 ADDITIONAL OSSERVATIONS.
AT THIS STAGE YOU HAVE THREE OPTIONS:
(1) TYPE 1,0 TO TAKE MORE OBSERVATIONSS?
423 —FYPE-Q v O—-TO—-TERMINATE-THE- RUN#—OR -- -
(3 TYPE 3.0 TO SPECIFY A (NEW) HALF-WIDTH

OR

i

ENTER NUMBER OF ADDITIONAL OBSERVATIONS
?

500,

IR

3

Because of space Timitations, the values of the
half-widths and of the upper confidence points

have been trimmed from this sample session in the
three placeswhere STATISTICAL RESULTS OF SIMULATION
are shown. For example, under the STATISTICAL
RESULTS OF SIMULATION appearing immediately below,
the pre-trimmed session appeared as follows:

SAMPLE MEAN +/- HALF-WIDTH
CONFIDENCE INTERVAL

30.7272 +/- 2.0956

( 28.6317 , 32.8228 )

STATISTICAL RESULTS OF SIMULATION

SAMPLE MEAN +/- HALF-WIDTH

[}

30,7272 +/-
CONFIDENCE INTERVAL

4 28.6317 »

SAMPLE SIZE = 1000
NO. OF BRATCHES = 11
OBRSERVATIONS PER BATCH = ?0

IS THIS CONFIDENCE INTERVAL SATISFACTORY?
IF YESy TYPE 2.0 TO TERMINATE THE RUN3
IF NOy TYFPE 3.0 TO SPECIFY.A NEW HALF-WIDTH
?
2
ENTER THE DESIRER HALF-WIDTH
OF THE CONFIDENCE INTERVAL
7 )
1.5
L3
YOUR CONFIDENCE INTERVAL HALF-WIDTH REQUIRES
AFPROXIMATELY
AT THIS STAGE YOU HAVE THREE OFTIGNS:
(1) TYPE 1.0 TO TAKE MORE OHSERVATIONSS
(2) TYPE 2.0 TO TERMINATE THE RUNi OR
{3) TYPE 3.0 TO SPECIFY ‘A (NEW) HALF-WIDTH

OR

-

1

ENTER NUMERER OF ADDITIONAL OBSERVATIONS
?

1000,
AR
STATISTICAL RESULTS OF SIMULATION
SAMPLE MEAN +/- HALF-WIDTH = 30,7197 +/-
CONFIDENCE INTERVAL = ( 29,3564 »

SAMPLE SIZE = 2000

NO. OF BATCHES = 47

OBSERVATIONS PER RATCH = 42

IS THIS CONFIDENCE INTERVAL SATISFACTORY?

IF YESy TYPE 2.0 TO TERMINATE THE RUNj}

IF NOs TYPE 3.0 TO SPECIFY A NEW HALF-WIDTH
7

20
—

KkKSIMULATION TERMINATEDXkX
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