83

Proceedings of the 1980 Winter Simulation Conference
T.I. Oren, C.M Shub, P.F. Roth {eds.)

DISCRETE EVENT SIMULATION OF STOCHASTIC AND DETERMINISTIC
SEQUENTIAL MACHINE MODELS

Melvin M. Cutler
Strategic Systems Division
Hughes Aircraft Company
Culver City, California 90230%

ABSTRACT: This paper presents and proves the correctness of novel techniques for
the mathematical verification of simulation models against sequential machine
specifications. The main idea is to say that a discrete event simulation program
simulates a given sequential machine specification if and only if there exists a
certain type of mapping from it to the specification. It is first shown that
discrete event specifications can be realized by using the traditional formalisms
of discrete time systems. Then the two main facilitating results are given. A
discrete event simulation of a discrete deterministic system is shown to be a
formal object whose fidelity to the system can be proved. A discrete event simu~
lation of a discrete stochastic system is shown to be a formal object whose sta-
tistical fidelity to the system can be proved.

1. INTRODUCTION

When simulation is used in the evaluation of complex systems which are not analytieally tractable, the
process of verifying that the simulation software does implement the simulated system is a critical one.
An intriguing approach is to represent the simulated system as a sequential machine, and to utilize
automata-theoretic verification techniques (Zeigler 1976). Sequential machines are widely accepted as
specifications for discrete time systems, as are stochastic sequential machines (e.g., Markov chains)
for probabilistic discrete time systems. Digital logic circuits and queueing systems, respectively, are
easily recognized examples of applications of deterministic and stochastic sequential machine specifica-
tions. In trying to apply formal system evaluation techniques, however, two problems arise which impede
the practical application of such discrete time specifications. First, many discrete systems (e.g., job
shops, airline reservation systems, computer networks) are more naturally described by discrete event

specifications -- no central "clock" drives the system to a different state on each "tick". Second,

they do not, in general, provide insight into the autonomous behavior of the system —- the internal
transitions which carry out the functions dictated by inputs previously received.

This paper presents and proves the correctness of a new approach to these problems. It introduces for-
malized discrete event simulation languages as aids to the verification of disecrete systems. The
sequencing of state changes in these simulation languages is event-driven, meaning that the simulation
skips dead time between state changes. Also, the languages provide primitives for the simulation of
autonomous state changes of arbitrary complexity. And programmers, the implementers of system simula-
tions, are used to dealing with a small but universal set of computational primitives rather than the ad
hoc set-defining notation which is the usual description of the state transitions of automata.

The idea that simulation programs could be taken as objects of formal system description is a recent one
(Zeigler 1976, Cutler 1979). Verifying that a program simulates the operation of a system has been a
significant combinatorial problem for deterministic specifications and an error-~prone statistical prob-
lem for stochastic specifications, Because stochastic specifications are simulated by the use of a
pseudo-random generator which is implemented using a deterministic algorithm, the simulation can only
approximate the behavior of a probabilistic system. The large body of a posteriori statistical methods
developed over the years to measure this approximation had been grudgingly accepted as necessary for the
analysis of simulation results. The promising alternative of a priori verification of stochastic system
simulations is a research area of great potential practicality.

* This material is based on work supported in part by the National Science Foundation under Grant

MC378-04725 while the author was a student in the Department of System Science, University of
California, Los Angeles.

80CH1617-0/80/0000~0083$00.75 @ 1980 IEEE

Melvin M. CUTLRR
84
Taken together, the gaps in simulation and system specification techniques described in this section
indicate the following course of action:

1. In order to use simulation programs to their full capabilities, they must be formalized.

2. In order to use automata as system specification tools, they must be adapted to discrete event sys-
tems.,

3. In order to implement probabilistic specifications with deterministic simulation programs, a coh-
cept of deterministic realization and a priori faithfulness of stochastic systems must be developed
and defended.

4, In order to link the specification to the simulation, formalized simulation programs must be made
verifiable against sequential machine specifications.

The results presented herein form a theoretical basis for these advances in the technology of system
verification, and may Spawn future research in the area of formal system verification. The formaliza-
tion of simulation programs is taken from Cutler (1979). Thus we continue the use of a discrete time
base, reflecting the practical restrictions of running these programs on digital computers. This facil-
itates the use of traditional automata-theoretic specifications of systems. Sections 2 and 3 adapt such
discrete time automata to discrete event systems, and compare them to the DEVS of Zeigler (1976) and to
the stochastic DEVS of Melamed (1976). The ergodic machine model of Aggarwal (1977) is defended as the
proper formal system for the deterministic realization of stochastic machines. Section 4 establishes
the homomorphism as a necessary and sufficient condition to verify deterministic simulations against
deterministic specifications, and Section 5 establishes the "regular™ homomorphism as a necessary and
sufficient condition to verify stochastic simulations against probabilistic specifications.

2. NOTATIONAL PRELIMINARIES

A number of formal systems must be defined in order to cover all possible classes of systems to be simu-
lated or specified. We introduce deterministic discrete event automata and behavior-preserving mappings
between them, ergodic machines and behavior-preserving mappings between them, and probabilistic automata
and behavior-preserving mappings between them. It is assumed, however, that the reader is familiar with
the sequential machine (Mealy or Moore) notation. We use N to represent the set of natural numbers.

The first concept to be introduced is Zeigler's (1976) definition of a sequential machine model of
.discrete event specifications (DEVS). In this notation, a state set S5, is augmented by a second com-
ponent which represents the amount of time that the DEVS has been in a state. When this component
reaches a value determined by a function t,,, the DEVS moves autonomously to another state. This auto-
nomous transition is indicated by the null input symbol 4.

Definition 1: A Discrete Event System Specification (DEVS) is a system

M= < Xy, Sy Yy Sya Mygo By
where

Xy is the set of external events,
SM is the set of sequential states,
YM is the output value set,

T is a time base set,

§

e Sy X (XUi8H — sy
MyiSy = Iy

tM: SM -~ T

If T is the set of real numbers, then we say that the system is a DEVS with a real time line. If T is
isomorphic to a subset of N, then we say that the system is a DEVS with a countable time line. Because

DISCRETE EVENT SIMULATION OF SEQUENTIAL MACHINE MODELS 85

we will simulate these specifications with software which runs on digital computers, the use of a count-
able time line will be assumed.

A DEVS changes state at specific points in the time domain. We need a more complete characterization of
the DEVS in order to describe its operation precisely.

Definition 2: A configuration (u,t,x,y) of M is an element of

* ~
XMXT‘= X "Y xT\:*

UM

! L !

SM xTx

S e

where u indicates the current state, t indicates the time of the last state transition, x indicates the
input which is to be read by M in the future, and y indicates the output which has been produced by M in
the past.

Definition 3: A transition of M is defined by the operator "|-" as follows.

If QS(t'-t)StM(u). then

(u,t,(x",8")x,y) |- SM(u X) ' &' ,x,y, A 5 (u,x')
;

. t’

{ 1
{ ¥

S

If (t'—t)>tM(u), then
f \\ f \\
(W8, (787090 1= 4§ 8,00,8,0 1 baty,), (1" oty 3] 8 a8
Ly ’i LN

e
-’
—— ??

If £'<t, then {- is undefined (M blocks).

We will identify a transition of M by the operator |- when it is not otherwise clear from context. Let

}—* denote the reflexive, transitive closure of :-.M

The definition of the transition function restricts the DEVS to change state upon receiving an input x
from XM or when no input appears while the DEVS is in state q for a time tM(q).

Associated with the DEVS specification of Zeigler (1976) is the idea of a behavior-preserving mapping.

Definition 4: Let M=< S , X ,o ,; JHy,T> and M _<X¥. SM"YM 'éM ,;M.,tMv,T> be DEVS. The triple
(g,h,k) is a system speclflca ion morp 1sm from M to M

g: va g XM

and

h: 3, =S

M’

=

such that, for every x in XM" y in YM’ u in SM'

h{LSM(u,g(x))‘; = SM.(h(u).x)

4

tM(u) = tMt (h(u))

f ~
EWER B WA
L !

and

hféM(u,qs)‘: = 8y (h(w) ,8)
L /

The mapping h is a DEVS homomorphism if g and k are isomorphisms.

86 Melvin M. CUTLR

The system specification morphism and the DEVS homomorphism résemble the (ordinary) sequential machine
homomorphism, with the additional condition that autonomous transitions are also related, and take place
at the same point in time.

The next idea necessary for this formalization is the ergodic machine concept of Aggarwal (1975). This
relies on some definitions from measure and ergodic theory.

Definition 5: A probability space is a triple (O,F,P), where O is a set, F is a field of subsets of O,
and P is a probability measure on F.

Definition 6: Let (O,F,P) be a probability space, and let T: O —» O be a transformation on O. T is
measure preserving if and only if for any A in‘F. P({a | TCa)GA}) = P(4A).

Definition 7: A set A is T—invariant if and only if {a | T(a)GA} = A.

Definition 8: Let (0,F,P) be a probability space. A transformation T: 0 — 0 is an ergodic transforma~
tion if it is measure-preserving and if the only sets that are T-=invariant have measure 0 or 1.

Ergodic transformations preserve the structure of measure spaces (Billingsley 1965). We are concerned
only with probability measure spaces, so that in the following discussion (0,F,P) will always refer to a
probability space, and T t0 an ergodic transformation on O.

We are interested in ergodic transformations as a vehicle for the deterministic realization of specifi-
cations which utilize the stochastic sequential machine notation. They are of interest for such appli-
cations because of the pointwise ergodic theorem (Halmos 1956), repeated below.

Let IA be the indicator function of the set A; that is I,(x)=1 if x is an element of A and IA(x)=0 oth-
erwise. Then if T is an ergodic transformation on (O,F,P) and w is in 0O

=7 Py

lim

n-1 K
2 I(T (w)) = P(A) a., e.
n——»00 k=0

Thus, if we apply T to an element of O and keep track of the percentage of times it produces an element
of a set A in F, then the latter statistic converges to the measure of A, P(A). Clearly, this is a
desirable characteristic for deterministic realizations of probabilistic systems, and it is exploited by
Aggarwal (1977) in his research into ergodic machines.
Definition 9: An ergodic machine is a system
E=<, s, M, ¥, T, 61, \ > where

X is a set of inputs,

S is a countable set of states,

T =(R, F, P) is a probability space (we term R the seed space),

Y is a set of outputs,

T is an ergodic transformation on R,

31: Sx Rx X — S is the one-step transition function, and

N S x R -~ Y is the output function.

An ergodic machine is implemented by a deterministic sequential machine, possibly infinite-state, speci-
fied by

M =<X SxR ¥,8)\>
where X, S, R, ¥, and \ are as in E and, for all s in S, r in R, x in X
8s, r, x) = (61(s, r, x), T(r))

Definition 10: Given two ergodic machines E=<X,S,(R,F,P),Y,5 ,\ > and E'=<X',S',(R',F',P),Y',éi,;’>, E!
is a homomorphic image of E if and only if there exists a homomorphism

h:SxR—>S"xR

which maps the state set of ME =<X, SxR, 5. » > onto the state set of ME' =< X', S x R', 3', N>
and homomorphisms g and k

DISCRETE EVENT SIMULATION OF SEQUENTIAL MACHINE MODELS 87

I'—=X
Y — !

x
e oo

such that for all x in X', s in S, r in R,
i. h(8(s, r, 8(x))) = 8'(a(s, r), x)
ii. k(M(s, r)) = \'(h(s, r))

E' is a regular homomorphic image of E if there exist homomorphisms

h' 1 S = 8!
h" : R —> R

such that for all s in S, r in R (h'(s), h"(r)) = h((s,r)) This restriction on h is crucial to ocur for-
mal concept of simulation of stochastic specifications, as we shall see in Section 5.

Definition 10 is analogous to the system specification morphism for Zeigler's iterative system specifi-
cation and is equivalent to the definition of ergodic machine homomorphism given by Aggarwal (1975) when
both the input and output symbol sets of E and E' are equal.

Definition 11: Given an ergodic machine E, for any states s, s' in S and input x in X, the s,s',x tran-
sition seed space As S,(x) is the set
’

As,s'(x) = {r | reR, 61(8. r, x) =s'}

Since A ,(x) is a subset of R, we can require that AS ¢ be in F, that is, AS y 18 P-measurable. If
E is alit8nomous (that is, X has exactly one element), 1% is convenient to repréSent the transition seed
space by AS gt*

’

The transition seed space concept links the ergodic machine to the stochastic system specification
represented by the probabilistic automaton.

Definition 12: A probabilistic automaton is a system C = < S, X, {Z(x)}, Y, /\ > where

X is a (finite) set of inputs

S is a set of states of C, S = {31, cee sq}

{Z(x)} is a set of q x q matrices, one for each element of X, with the i,jth entry Z, ,(x) represent—
ing the probability of C moving to state s under input x given that it is in sta%éJsi, subject to
the constraint that for all i, J

; Zi,j(X) =1
J
Y is a (finite) set of outputs

/At 8 — Y is the output function

C is autonomous if the cardinality of X is 1, in which case we represent {Z(x)} as Z. Now the stochas-
tic and deterministic models for probabilistic systems may be linked.

Definition 13: Given an ergodic machine E, the associated automaton CE is the probabilistic automaton

CE =<8, X, {Z(x)}, ¥, \>

where Zi.(x) = P(A; .(x)). We call E a realization of C_.

J i,J —_—— E
Because C_ is independent of the ergodic transformation T of E, many ergodic machines have identical
associateg automata. Thus, there are many ergodic realizations of the same probabilistic automaton.
Also, it is easy to show that for every probabilistic automaton C there exists an ergodic machine E such
that C is the associated automaton of E (Aggarwal 1977).
Finally, we define the behavior-preserving mappings between probabilistic automata.
Definition 14: A probabilistic automaton M = < X, S, {Z(x)}, Y, /A > , S={s1,...,sq}.
covers a probabilistic automaton M' = < X, S', {Z'(x)}, Y, /\>, S':{s;,...,s&},

if and only if there exists a homomorphism h: S -» S!

such that for every x in X, si,s& in S' and 5, in S with h(sk)=s{,

88 Melvin M. CUTLRR

1 -
Zij(x) =z a ka(X)
-)
s <h (sj)
The probabilistic homomorphism, or p-homomorphism, of Aggarwal (1975) is similar to the covering rela-

tion in that its structural mapping preserves statistical behavior. Yet its appearance is quite dif=-
ferent.

Definition 15: A probabilistic automaton B is a probabilistic homomorphic image of a probabilistic
automaton A if there exist ergodic machines E(A) and E(B) such that

E(A) is a realization of A,

E(B) is a realization of B, and

E(B) is a homomorphic image of E(A).

If h is the homomorphism mapping E(A) onto E(B), then h is called a p-homomorphism from A to B.

If E(B) is a regular homomorphic image of E(A), then B is called a regular probabilistie homomorphic
image of A. The homomorphism h is called a regular p-homomorphism from A to B.

Thus, the verification of behavior preservation can be executed in the ergodic machine (deterministic)
domain rather than in the stochastic machine (probabilistic) domain. The corresponding definition of
Aggarwal (1975) restricts the realizations to the class of generalized ergodic machines whose ergodic
transformations must be faithful. We will not explain these terms, but note that no ergodic machine
with a finite seed space can be a faithful representative. The stronger condition is used for simplifi-
cation, not verification, of the simulation of probabilisti¢ systems, and thus is not eritical to this
research. Though we have modified Aggarwal's definition of p-homomorphism, the relationship it speci~
fies between probabilistic automata has been preserved.

3. DISCRETE EVENT VERSIONS OF DISCRETE TIME MODELS

It has been noted that sequential machines, being discrete time models, limit the flexibility of system
specifications (Zeigler 1976). However, it 1is important that the discrete event specifications are
capable of describing all the systems of interest. Thus, it is significant that there exist discrete
event versions of discrete time models which are equivalent in power. For deterministic systems, it
should be clear that the DEVS formalism restricted to countable time domains is sufficient.

For stochastic systems and their deterministic realizations, the existing formalism is shown to "hide"
discrete event models:

.

Definition 16: An SDEVS is a stochastic sequential machine M = < Q, X', {Z(yix)}, ¥', \ >, where

Q¢ S x Nis a finite set of pseudo~states, where N is the set of natural numbers and S is a finite
set of states

]

X X U {e} is a set .of input symbols

Y

"

Y U {e} is a set of output symbols

{Z(x)} is a set of q x q matrices, q = }Q}, one for each input symbol, with the i,jth entry of Z(x)
representing the probability of M moving to state q_. under input x, given that it is in state 9
subject to the following constraints. J

a. For all i,
q
Ezi

(x) =1
. J
j=1

!

b. For each state si in S, there exists a constant ey depending only on 8; such that

2 2 . (e) =1
s. €S (SivJ),(skfm)

k
0 if j>ci

where m = | s ir e,

Jooe o A =

/A\s S = Y' is the output function

DISCRETE EVENT SIMULATION OF SEQUENTIAL MACHINE MODELS 89

The beauty of this formalism is that the DEVS mechanism is hidden in the input symbol stream and in the
state transition matrices. Thus, it works almost completely within the existing SSM formalism. We can
do this because e is now a unit length null symbol rather than the empty symbol, and is included in the
input alphabet X. The machine makes a transition from state q when either an input symbol is read or it
has been in state q for elapsed time t(q). The SDEVS M is specified so that the Z matrices "simulate"
this.

If M "reads" an input symbol x, its transition matrix Z(x) moves M to a state (q,0), with 0 indicating
that M has just entered state q. Suppose M reads a null input symbol e in state (p,n). If t(p)>n, then
Z(e) deterministically moves M to state (p,n+1); otherwise, the internal transitions represented by Z(e)
move M to a distribution of states of the form (q,0). Conditions a and b of the definition make the
definition of this behavior consistent with existing SSM formalism.

The discrete time SDEVS specification M pretends to be a discrete event system by chopping up the time
line into small but countably many segments. For instance, if the first input (event) Xy is to happen
at time t1, then the input to M will begin with t,-1 e's followed by x,.

In order to avoid the trouble of specifying long input strings with many e's, it is reasonable to
develop a shorthand input notation for the SDEVS. Suppose we represented the input stream as a string
of pairs (%,, x(t.)), where x(t,) is to be input to M after t, time steps. This notation conveys all
the information "needed for M %o operate, although we must mgke some basic restrictions so that no t is
negative, and no two symbols are read at the same time.

Again, a discrete time line is embodied in this SDEVS formalism, diverging from the stochastic DEVS for-
malism of Melamed (1976), in which a continuous time base was installed. This reflects the practical
limitations of digital computer software, and in addition avoids the necessity of providing all the sam-
ples of random numbers a priori fo control the state sequencing in Melamed's stochastic DEVS,

Since the ergodic machine is also a discrete time model, a construction similar to the SDEVS yields a
discrete event specification for the ergodic machine.

Definition 17: A discrete event ergodic machine (DEEM) is an ergodic machine E=<X',Q,T0,Y',T 51, \> such
that

X' = XU {e} is the finite input set
Q ¢ S x N is the pseudo state set
T =(R, F, P) is a probability space
Y* = YU {e} is the finite output set
T is an ergodic transformation on R
61: X'x Q le —> Q is the single step transition function
M QxR — Y is the output function
A DEEM is implemented by a deterministic sequential machine, possibly infinite-state, specified by
=<X', Qx R, ¥, 8, \>
where X', Q, R, ¥Y', and)\ are as in E and, for all x in X, s in S, r in R, n in N
é(x, s, n, r) = (51(x, s, n, r), 0, T(r))
and if t(a)>n
§Ce, s, n, r) = (s, n+l, r)
and if t(a)<n
3(e, s, n, r) = (51(e,s,n.r), 0, r)
Now that it has been established that discrete event specifications for stochastic and deterministic
systems are both feasible and powerful, it is necessary to provide a basis for determining under what
conditions a computer program correctly simulates a discrete event specification.
4, SIMULATION OF DETERMINISTIC SPECIFICATIONS

For deterministic specifications, this question has been addressed by Zeigler (1976) and Cutler (1979).
The approach has been to construct a homomorphism from a "canonical" sequential machine representation

Melvin M. CUTLRR
90

of the program to the specification.

The flowchart model for simulation programs introduced by Cutler (1979) was shown in that paper to be
equivalent to the DEVS in the deterministic case. In that proof, and in order to show that it is
equivalent to the DEEM in the probabilisti¢ (ergodic) case, the "state machine" is a crucial concept.

This machine is analogous to the implementing sequential machine of the DEEM and ergodic machine formal-
ism; that is, a representation of the behavior of a discrete event simulation program in a state transi-
tion sense. The "state" of the program is defined by the values of the variables and the statement
about to be executed. The format is specified using the six-tuple system of Cutler (1979), in which the
program P is represented by a labeled, directed graph (G,L) and its variables are classified as either
ordinary program variables X, random variables R (operated upon by a pseudorandom generator function
RAND), list of pending events E, or simulated time T, all of whose possible values are given by the
domain assignment function D..

Permissible statements (labels of the nodes of G) are the usual start, assignment, decision, exit (stop)
statements which are analogous to those of traditional flowchart programs (Luckham, Park, and Paterson
1970) plus a special event scheduling statement. The interested reader is urged to consult Cutler
(1979) for the details we will omit in order to reduce the already unwieldy number of definitions.

In this section, we define canonical sequential machines and DEVS specifications corresponding to the
operational definition of the semantics of an arbitrary discrete event simulation program S. These
machines M(S) and DEVS(S) define the semantics of S by the interpretive effect of executing the state-
ments on the state of S.

Definition 18: The state machine M(S) of a discrete event simulation program S=<P,X,R,E,T,D>, P=(G,L),
is the autonomous sequential machine

M(S)=< GxD(X)xD(R)xD(E)xN, &, D(X)xN, SM(S), Ny (g,%,r,e,0)>
where the states of M(S) are the states of S, the input alphabet is empty since M(S) is autonomous, the
output alphabet is a set of ordered pairs, (g,x,r,e,RAND) is an initialization of S, and the output and
transition functions are defined as follows.
The function éM(S) is defined by cases depending on the label of node g, with M(S) in state (g,x,r,e,t).
i. If g is an assignment node, then éM(S)(g, x, rye, t) = (g', x',r*, e, £)
where g' is the node to which arec ¢ points, r' = RAND(r,R¥), x' = f(x,r',t).

ii. If g is a decision node, then éM(S)(g' x, r,e, t) = (g, x, ', e, t)

where r'=RAND(r,R¥*) and g' is either the node to which arec T points if q(x,r!,t)=true, or g' is the
node to which arc F points if q(x,r',t)=false.

iii, If g is a START node, then éM(S)(g’ x, r, e, t) = (g', x, r, e, t)
where g' is the node to which arec ¢ points.

iv. If g is an EXIT node, then $)(g, x, r,e, t) = (g', x, r, e', t")

M(S
if é = (p',t')e' and g' is the start node of p'. If e is empty, M(S) halts in final state (g, x,
r, e, t).
v. If g is a SCHEDULE node, éM(S)(g’ X, r, e, t) = (g", x, r', e', t)
where
g' is the node to which are ¢ points,
r'=RAND(r,R¥),
e'=FE(e.(Pj JL(x,r',t))
and the future events update function
FE: D(E) x P x N — D(E)

is defined by

FE((pi1,n1)(piz,n2)---(pim,nm). (p,n)) = ((pi1,n1)---(pik.nk) (p,n)(pik+1.nk+1)---(pim,nm)

DISCRETE EVENT SIMULATION OF SEQUENTIAL MACHINE MODELS 91

where nk$n<nk+1 or nksn and k=m.
The output function of M(S8) is simply the projection
Mg,x,r,e,t)) = (x,t)
Analogous to M(S) is DEVS(S), the DEVS equivalent of S. It resembles M(S) since they share the same
state set. Because a DEVS is a discrete event model, its definition omits some of the overhead of that

of M(3).

Definition 19: Given a discrete event simulation program S = <P,X,R,E,T,D>, P = (G,L), and the state
machine

M(S) = <8,,8,DCxN, 8, \y,50>

of S, define the discrete event specification

DEVS(S) = <8, S., D(X), &), £y, N>

M? M’
where there are no external events and therefore

§: Sy x 18} — S

with

8(s,8) = 5M(s)

and

Ms) = 8" if \y(s)=(s",m)

for all s in SM’ and
0 if L(g)4EXIT

(t'-t) if L(g)=EXIT, e=(p',t")e’
00 if L(g)=EXIT, e empty

tM(g.x,r,e,t) =

frm o A e

The correspondence is straightforward, since the definition of M(S) already includes a state set and a
formal description of the state transition induced by each type. of statement in P. We take the same
state set for DEVS(S), and synthesize the transition function from the rules of S. Inputs to DEVS(S)
are merely the exogenous events specified as e, in S, and outputs are snapshots of the values of program
variables x and simulated time t of S. The time duration function tM of M is derived using the time
until the next event of E.

A crucial concept to the model of discrete event simulation programs is the formal definition of what is
meant by "simulation." When we deal with deterministic specifications, the machines M(S) and DEVS(S) are
used to define simulation formally.
Definition 20: Let S = <P,X,R,E,T,D>, P=(G,L), be a discrete event simulation program, with

M(S) = <Sy,8,D(X)xXN, 8y, \yhs>
D), §

DEVS(S) = <@, 8 N>

g DEVS(S)* ™ Pm»
The program S is said to simulate a deterministic system M if one of the following conditions is met.

a. M=<4Q, 2, ¥, é, N qo> is a deterministic sequential machine and there exists a homomorphism

ki 2= (Px I)*

*
which can be extended to Z , and a homomorphism

h: GxD(X)xD(R)xD(E)xN — Q

Melvin M. CUTLRR

*
such that to every string s. in 2 and state q in Q there corresponds an initialization
I = (85%qrgm(s),empty) of S, and

92
SM(S)(I) = §(h(1),s)

b. M=<32, Q, Y, é, N, £ty N > is a DEVS with a countable time base and there exist
i. a homomorphism
m: 2 — (Px T)*
which can be extended to Z*,

ii, a system specification morphism (g,h,k) from DEVS(S) to M, and

iii. for every string s in‘z* and state q in Q a corresponding initialization of S,
I(S;q) = (go,xo,ro,m(s).empty)

such that if

(q,O,S,empfay) :—* (h(q’) 1t, ,S, * (k(Y1) yt-l) (k(yZ) gtz) L g (k(yn) ’tn))
M

then

(I(s,9),0,g(s),empty) =% (q',t",8(8"),(¥,, 0)(¥ st)eeely £))
DEVS(S) vrrTerte e

In order to simulate a deterministic sequential machine which is not autonomous, the program must ini-
tialize the events list correspondingly. The mapping k effects this initialization.

In order to simulate a DEVS, there must be a similar correspondence between the input to the DEVS and
the initialization of the program. Also, there must exist .a system specification morphism (Zeigler
1976) from DEVS(S) to the DEVS. These two requirements are blended into a single condition which iden-
tifies a transition (on null input) of an appropriately initialized DEVS(S) with a transition of the
simulated DEVS.

The point of these alternative specifications is that the discrete event and discrete time specifica-
tions of a wsimulation program are not driven by input symbols. Therefore, in order to simulate arbi-
trary sequential machine specifications, which may have input alphabets, they must encode the input
string in their initialization variables. The purest way of effecting this encoding is to utilize the
events list as a storage medium for external inputs. The program can then use one procedure for each
input in order to simulate the transition caused by that input.

5. DETERMINISTIC SIMULATION ‘OF STOCHASTIC SPECIFICATIONS
The use of an analogous homomorphism for stochastie specifications is not acceptable since they are
simulated by deterministic programs. This is where the ergodic machine representation earns its keep.
The properties of ergodic machines which make them suitable for the deterministic realization of sto-
chastic sequential machines also transfer to a class of discrete event simulation programs.
Definition 21: A discrete event simulation program
S=< P, X, R, E, T, D>,
P = (G,L), is ergodic if and only if the system
E(S) = <PxD(T), Q, (D(R),F,Pr), D(X)xD(T), RAND¥, 5, N2>

is an ergodic machine, where

§ and)\ are obtained from the definition of DEVS(S),

Q = GxD(X)xD(E)xD(T) is a state set,

F is a field consisting of subsets of D(R),

DISCRETE EVENT SIMULATION OF SEQUENTIA. MACHINE MODELS
93

Pr is a probability measure on F given by
. 1A} ;
Pr(A) = T for all A in F, and
for some g, x', r', e!', (g,x',r',e' ,RAND¥*) is an initialization of S.

Thus, a simulation program S is ergodic if DEVS(3) meets certain conditions, the most significant of
which is that RAND* is an ergodic transformation on D(R).

It might seriously be asked whether Definition 21 is vacuous, for the use of a finite seed space means
that while ergodic transformations on R can exist, their properties are not what we wish (cf. Aggarwal
(1975), Proposition 2.8.2). However, the practical nature of our model implies that the property of

"faithfulness" upon which Aggarwal relies is inappropriate to the software simulations with which we are
concerned.

Finally, we need a formal definition of simulation of probabilistic specifications analogous to Defini-
tion 20 for deterministic specifications. It is quite natural to rely on the ergodic machine E(S) for
this, as we relied on the state machine M(S) for deterministic specifications.

Definition 22: A discrete event simulation program S = <P,X,R,E,T>, P = (G,L) simulates a stochastic
machine M if and only if either M =< Q, X, {Z(x)}, /A > is a stochastic sequential machine, or M
=<X', Y, QxR, t, 8,)\ > is an SDEVS, and

S is ergodic, with associated machine E(S),
CE(S) is the probabilistic automaton associated with E(S), and

M is a regular probabilistic homomorphic image of C) (Definition 15).

E(S
Next, the results of Aggarwal (1975) are extended to give a necessary and sufficient condition for
homomorphisms of ergodic machines to imply a covering homomorphism of their associated automata.

Let M and M' be two ergodic machines such that h is a homomorphism from M to M'.

1. CM does not necessarily cover CM"

2. Even if C covers CM" there may exist no homomorphism from M to M' decomposable into a cross-
product o? mappings

k1 1 5S — S

. 1]
k2 t: R—>R
Because this is a negative result, we need only to give counterexamples. It suffices to construct a
pair of ergodic machines which are homomorphic images but whose associated probabilistic automata have
no covering homomorphism and a pair of ergodic machines which are homomorphic images and whose associ-
ated probabilistic automata have a covering homomorphism but which can not be mapped by a decomposable
homomorphism.

Example of Condition 1 «e-

Consider two ergodic machines:

M=<{0}, s, M, ¥, T, d;, } >
S = 19,9 ,q} R = {0,1,2,3} T(r)=(r+1)mod 4
1 3
M':({O}, S', Im', Y" T"dflv ’\'>
S'=z={p,p1! Rt = {0} T'(0) = 0
1 2
d(q ,0)=(q ,1) ‘ d(q ,2)=(q ,3)

1 1 1 3

d(q ,1)=(q ,2) d(q ,3)=(q ,0)
1 2 1 3

Melvin M. CUTLR

94
d(q ,0)=(q ,1) d(q ,2)=(q ,3)
2 1 2 2
d(q ,1)=(q ,2) d¢q ,3)=(q ,0)
2 2 2 3
d(q 90)=(q r1) d(q ;2)=(q 73)
3 1 3 2
d(q '1)=(q v2) d(q 93)=(q ,0)
3 1 3 3
d'(p)=p d'(p)=p
1 2 2 1
Now considér the homomorphism h.
h(q ,0)=p h(q ,N=p h(q ,2)=p h(q ,3)=p
1 1 1 2 1 1 1 2
h(q ,0)=p h(q ,M=p h(q ,2)=p h(q ,3)=p
2 1 2 2 2 1 2 2
h(q ,0)=p h(q ,1)=p h(q ,2)=p h(q ,3)=p
3 1 3 2 3 1 3 2

And here are the associated probabilistic automata:

s i g i a 1 q | Sty p F p i
bt o2 0 3 -

q | 0.25) 0.251 0.5 | p I o0 1 1

R o + + — + |

q | 0.25} 0.5 | 0.25 | p I 1 t 0o |

-2 S + + ———2

g | 0.5 | 0.251} 0.25}

There is clearly no covering homomorphism!
Example of Condition 2 —we
Consider two ergodic machines:

M:({O}, S, n1| Yv T! d1’ A >

S=1q,q9,9} R = {0,1,2,3} T(r)=(r+1)mod 4
1 3

2
Mr=<io}, 8!, ', ¥°, T, 43, \'>

S' = {P Y 1 RY = {0,1} T'(r) = 1-r
1

2

d(q 10)=(q 11) d(q 92)=(q 13)
1 3 1 2
d(q 11)=(q 12)

d(q ,3)=(q ,0)
1 1 1 1

DISCRETE EVENT SIMULATION OF SEQUENTIAL MACHINE MODELS

95
d(q ,0)=(g ,1) d(q ,2)=(q ,3)
2 2 2 1
d(q ,N=(g ,2) d(q ,3)=(q ,0)
2 1 2 3
d(q '0)=(q 11) d(q 12)=(q 73)
3 2 3 1
d(q ,1)=(q ,2) d(q :3)=(q 90)
3 3 3 1
d'(p vo)=(p '1) d'(p ’1)'—'(p vo)
1 2 1 1
d'(p ,0)=(p ,1) d'(p ,1)=(p ,0)
2 1 2 2

Now consider the homomorphism h.

h(q ,0)=(p ,0) h(q ,0)=(p ,0) h(q ,0)=(p ,0)
1 1 2 1 3 1
h(q ,1)=(p ,1) h(q ,1)=(p ,1) h(q ,1)=(p ,1)
1 2 2 2 3 2
h(q ,2)=(p ,0) h(q ,2)=(p ,0) h(q ,2)=(p ,0)
1 2 2 2 3 2
h(q ,3)=(p ,1) h(q ,3)=(p ,1) h(q ,3)=(p ,1)
1 1 2 1 3 1

And here are the associated probabilistic automata:

S 1 a t a 1 aqa | sty p I p |

oot o2 1 3 o1 2

q | 0.5 | 0.25} 0.25} p | 0.5 | 0.5 |

]t 4 + + ——— 0 !

qg | 0.5 | 0.25} 0.25 | p | 0.5 | 0.5 }

—D et + + $ e D e} + t
q | 0.5 } 0.25} 0.25 i
——3e + 4 ¢

There is clearly a covering homomorphism between them ({q,, q,} is one block, and {q,} is the other
block). We can, in fact, show that no homomorphism from M to M' is decomposable. How would this
hypothetical homomorphism operate on S? It must map exactly two states to one state of 38!, because oth-
erwise it would either not be onto S' or not be well defined. We can exhaust the possible mappings one
by one. If we map q, and q, together, then look at (q1,0) and (q,,0), which are mapped to the same
state in 3'., d(q ,0} and d q2,0) must then be mapped to the same state in S', but they can not be since
their first components are q. and q,, respectively. If we map q, and q., together, then look at (q1,0)
and ,0), which are mapped to the same state in S'. d(q 03 and d?q ,0) must then be mapped to the
same stéte in S', but they can not be since their first components are q3 and P respectively. If we
map (., and 43 together, then look at (q,,1) and (q,,1), which are mapped to the same state in S°'.
d(q ? and d(q 1) must then be-mapped to the same state”in S', but they can not be since their first
components are 3 and 43, respectively.

One may begin to wonder if there is any strong relationship between covering and p-homomorphisms. That
is, if two ergodic machines have associated probabilistic automata which are homomorphic images, must
there be a homomorphism between them?- The answer is simply that even this weak condition may not hold.
For instance, the seed spaces may be incomparable, with R' much larger than R x S. In that case, no map-
ping could be a homomorphism since the ergodic property of T! would prevent it.

Because of these results, "simulation" and "covering" must meet the regularity condition in order to be
equivalent. The proof of this property is the remaining result. We assume that we have been given an
ergodic discrete event simulatiom program and a probabilistic machine specification. Then-consider the
probabilistic automaton, CE’ associated with the ergodic discrete event simulation program.

Melvin M. CUTLR
96

Given an SDEVS C

=<Q, X', {Z(x)}, Y', N\ > and an ergodic discrete event simulation program
S=<P,X,R,V,T,D>, P=(

G,L), whose ergodic machine is E, S simulates C if and only if CE covers C.

Since S is ergodic (with associated machine E), the result reduces to an equivalence of the covering and
regular probabilistic homomorphic relations (from the definition of simulation). That is, C_ covers C
if and only if there exists an ergodic machine EC representing C such that Ec is a regular progabilistic
homomorphic image of E.

If part: Follows directly from the definition of simulatiqh and Theorem 2.5.1 of Aggarwal (1975).

Only if part: Suppose CE covers C. Then a block i of C corresponds to a set of states Ci={i1,...,in}
with ij=(sij,rij).

We represent E as < X, S, (R,F,P), Y, RAND*, §,)\ >
and construct Ec as < X, S', (R,F,P), Y, RAND%, 6', N
such that S' = {C1,....Cn}
81(C;, ry50 x) = (G, RAND(r; ;) whenever §(s;, rj5,) = (s, RANDR(r; ;)
for each input symbol x, 0<i,j<q, and

)'(Ci, r..) = M., rij).

Thus, we can define the homomorphism 1J 1J

h((sij,rij)) = (Ci, rij)

which maps states to blocks -and is isomorphic on the seed spaces. Then

i3 x) = 5'(h((sij, Py %))

h(é(sij, rije X) = h((sy,, RAND¥(r;) = (G, RAND¥(r;)= 6'(ci, ry

and

b (h((sij' rij)) =\ (Ci, rij) E)(sij, rij).

Therefore, E, is a p~homomorphic image of E. O

6. CONCLUSIONS

Existing discrete time sequential machine specifications have been shown to have within them the seeds
of discrete event specifications, and a flowchart model for simulation programs has been shown to be
equivalent in power and behavior to these specifications. By the use of the ergodic machine formalism,
a mechanism has been found by which programs simulating stochastic systems can be verified. A necessary
and sufficient condition for this mechanism has been proved. These results constitute a broadly appli-
cable facilitating contribution to techniques for the mathematical verification of simulation models
against sequential machine specifications,

ACKNOWLEDGEMENT

The author would like to give special thanks to Sudhir Aggarwal, who suggested the approach to the simu-
lation of stochastic specifications, and to Sheila Greibach, whose aid in the development of the nota-
tion was invaluable. The assistance of Jack Carlyle in placing the ergodic machine model in the proper
frame of reference of stochastic specifications was also an important philosophical contribution.

REFERENCES

Aggarwal, S. (1975), “"Ergodic Machines—~Probabilistic and Approximate Homomorphic Simplifications," PhD
Dissertation, The University of Michigan, 190 pp.

Aggarwal, S. (1977), "Deterministic Representation of Probabilistic Systems by Ergodic Machines,"
Mathematical Systems Theory 10, pp. 345-361.

DISCRETE EVENT SIMULATION OF SEQUENTIAL MACHINE MODELS 97

Billingsley, P. (1965), Ergodic Theory and Information, Wiley, New York, pp. 1-19,

Cutler, M. M. (1979), "Proving Properties of Simulation Programs for System Verification and Valida-
tion," Proceedings Summer Computer Simulation Conference, pp. 610-616.

Halmos, P. R. (1956), Lectures on Ergodic Theory, The Mathematical Society of Japan, Tokyo, 99 p.

Luckham, D. C., Park, D. M., and Paterson, M. S. (1970), "On Formalised Computer Programs," Journal of
Computer and System Sciences 4, pp. 220~249.

Melamed, B. (1976), "Analysis and Simplifications of Discrete Event Systems and Jackson Queuing Net-
works," PhD Dissertation, The University of Michigan, 318 pp.

Zeigler, B. P. (1976), Theory of Modeling and Simulation, John Wiley, New York, 435 p.

