1981 Winter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

293

ADVANCED USE OF SIMULA

Graham Birtwistle
Computer Scilence Department
University of Calgary, Alberta, Ganada T2N 1N4

ABSTRACT

This paper is a tutorial on program development in Simula.

It assumes a reading

knowledge of Simula, and sketches the design of a local area network simulator

(Cambridge Ring architecture) in five logical levels:

machine interface, queue~

ing, simulation primitives, data collection primitives and fimnally the network

components.

Besides program development technique, we also emphasize the value

of class body actions, inner, the virtual mechanism and data protection.

INTRODUCTION

Simula was designed by Dahl, Myhrhaug and Nygaard
at the Norwegian Computing Center (NCC), Oslo.
It has been implemented on CDC, DEC, IBM, ICL,
and Univac hardwares, amongst others to a mutu~
ally agreed standard as laid out in the Common
Rase definition (Dahl [1}). The NCC did not
merely produce a language but also set up langu-
age custodian and user groups to guarantee con-
tinued uniformity. Language consistency is con-
trolled by the Simula Standards Group and langu-
age development by the Simula Development Group.
These groups are meant for implementors and lan-
guage designers; for ordimary users there is the
Assocation of Simula Users which has its owm
newsletter and annual conferences.

Simula (Dahl [1]) is the successor to Simula 1
[2] which was a pure simulation extemnsion to
Algol 60. (Nygaard [3] is an account of the de-
velopment of the two Simulas.) It is important
to realise that the new Simula was not intended
solely (or even particularly) for discrete event
simulation work. It was designed as an extend-
ible kernel in which to write application pack-
ages (which we will call "contexts') for speci-
alised areas. A context is a package liosted in
SIMULA which extends Simula towards a particular
problem area. It will define a library of con-
cepts and methods associated with that one area,
but leaves it to the programmer to apply them in
his own way.

The implied methodology makes Simula an attrac-
tive proposition for an applications group, with
different specialisations in the same general
area. Since it takes several months to become
an expert in another programming language, it is
economically unjustifiable to expect every mem-
ber of the applications group to be a expert
programmer. Working with Simula, an applications
group needs no more than one Simula expert, for
the rest a nodding acquaintance will do (this
knowledge will grow with exposure anyway). The
expert will collaborate with his colleagues over
the content of a context providing tools to cover
their application area and angled towards their
style of use. Then he will implement the con-
text; note that it is at this level that exper-
tise in Simula is most required. Once commis~
sioned, a context becomes a platform for a myriad
of applications. For example, literally thous-
ands of discrete event Simulation programs have
been based on the standard Simula context SIMULA-
TION, and just about every interactive Simula
program written for the DEC 10 system uses SAFEIO.
All programs written on top of the context must
conform to Simula's syntax and semantics, but
have access to the extra high level the building
blocks now provided. They usually (read 'always')
turn out to be extremely user oriented and very
restricted in format. Thus only a little formal
Simula need be learnt before they can be used,
and that can be picked up in a matter of hours
rather than months. Applications programmers

can either use the already written context

81CH1709-5/81/0000~0293$00.75 () 1981 IEEE

294 Graham BIRTWISTLE

tailor-made for their group, or, if this proves
insufficient, discuss their needs with the Simula
expert and let him extend it for them. But as
their knowledge of Simula grows by repeated use,
the applications programmers will be able to add
in their own fresh layers to the ones provided,
or perhaps peel back some of the provided layers
and produce more suitable ones of their own.

gimula is not an all things to all men language,
but a kernel in which to write user oriented pack-
ages. Simula programs carry the overhead of this
Simula kernel plus the appropriate context. How-
ever the Simula kernel is still a substantial
chunk of software carrying a run time overhead of
about 15 k words. This is due partly to the fact
that it was deemed politically wise at the time
of its design not to come up with a completely
new language but to build on Algol 60. There al-
ready exist dozens of Simula contexts for such
varied areas as discrete event simulation, con-
tinuous simulation, combined simulation, CODASYL
type data bases, graphics, safe interactive i/o,
text formatting, teleconferencing, etc. etc. A
short bibliography, culled mainly from the Simula
Newsletter, is included at the end of this paper.

USING SIMULA

There are two main reasons why so much excellent
software has been developed in Simula ~ namely
the class and context concepts. Classes are used
to describe entire simulated components - both
their attributes and their behaviour patterns.
Olasses have been used to define records (e.g.

in data base applications), records with opera-
tors {e.g. queued loads in simulatioms. Primar-
ily records, they also need operators to place
them into and remove theém from queues), and pro-
cesses (e.g. the transmit and receive software
processes in X25 nodes). In fact, class declara-
tions are quite as general as FORTRAN, PL1, GPSS,
or even SIMULA programs. Furthermore, many cop-
ies of the same declaration may exist at the same
time. The class declaration is probably the most
powerful programming language concept yet devel-
oped. We will use class declarations to describe
the software the transmit hardware of network
nodes, and to define processes representing in-
coming requests and periodic interrupts.

Contexts are libraries of pre-defined class, pro-
cedure and data definitions to which initialising
actions may be added. Context definitions may be
built up layer by layer, each corresponding to an
entire logical software. For example, the ISO
Open Systems Interconnection reference model has
a seven layer peer—to-peer protocol interrélation.
In Simula, this would be modelled by developing a
context for each layer:

CLASS PHYSICAL;

BEGIN
defines the physical media for inter-
connection;
END;

PHYSICAL CLASS DATA LINE;
BEGIN
defines protocols ensuring error free
transmission of packets;
END;

DATA LINK CLASS NETWORK;
BEGIN
defines software to accept input packets

at a source node, forward
packets destined for other
nodes and accept packets at
a destination node;

END;

NETWORK CLASS TRANSPORT;
BEGIN
controls data movements from source to
destination nodes;
END;

etc. etc.

Each layer isolates and resolves one problem.
Concepts developed in one layer are passed onto
the next one(s) by prefixing the next context
declaration. Thus when dealing with incoming
packets in level 3 (CLASS NETWORK), we may assume
that they have been received intact and in order
because appropriate procedures have already been
provided in the prefixing previous layer (DATA
LINK). This methodology is very much in accor-
dance with recent proposals for structured pro-
gramming and system specification. The gap be~
tween the visualisation of a system and its im-
plementation in Simula seems to me to be smaller
than in any other generally available language.

OUTLINE OF THE SIMULATOR

We now describe the implementation of a simulator
for a specific local area network architecture.
The simulator described in level 5 is based upon
a program developed by Bill May, Brian Ritchie
and myself at the Edinburgh Regional Computing
Centre in the summer of 1981. The contents of
the first four levels herein described were ac-
tually provided by Demos [4, 5] in the real model.
But for teaching purposes, L have chosen to work
through some stripped down, purpose-built soft-
ware coded in several thin layers.

Software Iaygr Level
user program 6
node hardware 5
and software

repofting 4
simulation 3
queueing 2
safe input 1
Simula 0

W ADVANCED USE OF SIMULA 295

The simulator is described in 5 levels, built up-
on Simula (at level 0). Working from the bottom
up, level 1 defines routines for safe interactive
input, and text handling. Level 2 is concerned
solely with the notion of queueing. Level 3 uses
the queueing concepts of level 2 to implement an
event list and scheduling mechanisms. Level 3
also introduces processes. Level 4 introduces
data collection devices and uses level 2 queues
to implement automatic reporting. Only at level
5 do we get around to implementing the local area
network stations and their software. At level 5,
level 1 software is used to obtain the simulation
run parameters, level 3 software allows us to
describe software processes and hardware compon-
ents, level 4 software enables us to gather stat-
istical data in an unobtrusive fashion. Written
in this way, we concentrate upon only one problem
at a time. Each level is complete in itself and
can be thoroughly proven before moving on to the
next.

LEVEL 1 ~ SAFE INPUT

Interactive input should be guided by prompts and
malformed or unexpected (out of order) imput
should never cause a program to blow up. To
cater for these needs, we should supply routines
which provide prompting for all types of imput
data (integer, real, boolean, character, text).
These routines will examine the user response
character by character making sure that the data
supplied is acceptable. If not, a warning is
given and request for data is made again. If

the data is ok, it is accepted. In our mini-
context, we outline how these ideas can be im-
plemented for integer input (the paradigm is the
same for other types), and for good measure throw
in two text handling routines which have shown
themselves to be generally useful.

CLASS SAFE_INPUT;
BEGIN .
PROCEDURE ASK(PROMPT, V, C);
VALUE PROMPT; NAME V, C;
TEXT PROMPT; INTEGER V; BOOLEAN C;
BEGIN
PROCEDURE valid input.....;

BOOLEAN OK;

WHILE NOT OK DO

BEGIN
OUTTEXT("? PLEASE INPUT (INTEGER) ");
OUTTEXT (PROMPT) ;
OUTIMAGE;
INIMAGE;
OK := valid input AND C;

END;

END##*ASGK &% s

TEXT PROCEDURE CONC(A, B);
VALUE A, B; TEXT A, B;

BEGIN
TEXT T; INTEGER LA, LB;
LA := A.LENGTH;
LB := B.LENGTH;
T :- BLANKS(LA + LB);
T = A;
T.SUB(LA + 1, LB) := Bj;

CONC :- T;
END#**CONC*%% 3

TEXT PROCEDURE EDIT(T, N);
VALUE T; TEXT T; INTEGER N;

BEGIN
TEXT X; INTEGER LT;
LT :~ T.LENGTH;
X - BLANKS(LX + 3);
N := N-N//1000%1000; !modulo 1000;
X = T3
X.SUB(LX + 1,3).PUTINT(N);
EDIT :- T;

END*®XEDIT#%*

END#%*SAFE INPUT##%%;

o or es

Suppose we wish to input a value for the number
of epochs required in this run. The call

ASK("NUMBER OF EPOCHS",
EPOCHS,
EPOCHS >= 1 AND EPOCHS <= 24);

will write out
? PLEASE INPUT (INTEGER) NUMBER OF EPOCHS

and refuse any input that does not represent an
integer. The final parameter (called by name
and thus re-evaluated on every loop) further re-
stricts the input to 1lie in (1, 24). The rou-
tine is incomplete - 'valid input' is the name
of a local function which looks at the currently
submitted input line and checks character by
character to see that it is both an integer value
and in range., If not valid input tells you why
and returns false causing the prompt loop to be
re-entered. If the input is valid, its value

is assigned to V and valid input returns true.
As shown above, C is used to place tighter
bounds on the inputted value. If the value has
no size restraints, use TRUE as the actual para-
meter.

SAFE_INPUT is very much a poor man's SAFEIO, an
interactive package developed by Mats Ohlin in

1975 and distributed with the DEC 10 and DEC 20
Simula systems. SAFEIO is recommended reading.
It is in daily use by many programs running on

DEC 10 and DEC 20 systems.

Notice that SAFE INPUT is a box of independent
procedures which could be compiled separately
and introduced into a Simula program by the ex-
ternal declarations:

EXTERNAL PROCEDURE ASK;
EXTERNAL TEXT PROCEDURE CONC, EDIT;

Wrapping them together in a single, separately
compiled context means that they would ALL be
available by the single declaration

EXTERNAL CLASS SAFE_INPUT;

LEVEL 2 - QUEUEING

It is possible to design classes which are in-
tended to serve as prefixes, and will not be
used as they stand. An obvious example of this

296 Graham BIRTWISTLE

is provided when we come to develop a queueing
mechanism. This tool will be used in later le-
vels to queue blocked processes, link together
arbitrary numbers of data recording devices and
serve as basis for the event list. As common
event list operations include inserting a pro-
cess at an arbitrary position in the event list,
and deleting scheduléd processes (interrupts), a
two-way linked queue will serve our purpose best.
(Two way queues are in fact, already implemented
in the standard built-in Simula context SIMSET,
but we have a pedagogical need for a context in-
volving two interrelated concepts)

Fach member of a two-way queue is linked to its
predecessor and its successor (the predecessor

of the first member is NONE, the successor of the
last member is NONE). It is important to realise
that inserting members into a queue and removing
them from a queue involves only manipulation of
these pointers and need not depend in any way
apon their other attributes. Accordingly we can
implement a complete layer which encapsulates
once and for all the ideas of two way lists.

Each of our queues will be headed by a QUEUE ob-
ject with pointers to its FIRST and LAST members.
The queue head also maintains a count LENGTH of
the number of items currently in the queue. Be-
sides attributes SUC and PRED, each queue member
.maintains a reference Q to the head of the gqueue
it currently lies in. M.Q == NONE implies that
member object M is not currently in a queue.

Here is a sketch of CLASS QUEUEING. Note that it
is prefixed by SAFE INPUT and thus any user of
queueing also has access to the prompt and text
handling routines of level 1.

SAFE INPUT CLASS QUEUEING;
BEGIN

CLASS QUEUE;
BEGIN
REF(MEMBER) FIRST, LAST;
INTEGER LENGTH;
END##*QUEUE**% ;

CLASS MEMBER;

BEGIN
REF(MEMBER) SUC, PRED;
REF (QUEUE) Q;

PROCEDURE INTO(Q); REF(HEAD)Q$....vess}
PROCEDURE OUT}eevevessrrocsncaacconssss
PROCEDURE FOLLOW(M); REF(MEMBER)M;....3
PROCEDURE PRECEDE(M); REF(MEMBER)M;...;
END#***MEMBER%%** ’
END***QUEUE###;

QUEUEING can now be separately compiled. Its
concepts are made available to a user program by
including the declaration

EXTERNAL CLASS QUEUEING;

Notice this time that QUEUE and MEMBER are inter-
related (each contains references to objects of
the other class) therefore they cannot be com-
piled separately.

Besides the six variables discussed above, we
will alse furnish four operations on queues
which are written local to class MEMBER. A call
M.OUT will remove M from its current queue, if
any. (Members can be in at most one queue at a
time since they are furnished with only one suc/
PRED pair. The first operation of the three
queue insert routines is M.OUI. In addition
M.INTO(Q) has no other effect if Q == NONE;
otherwise M is added to the end of Q (becomes the
new Q.LAST). M.PREGEDE(X) has no other effect if
X == NONE or X.Q == NONE.. Otherwise M is put in-
to the same queue as X as its predecessor. The
effect of M,FOLLOW(X) is now obvious.

A more complete version of CLASS MEMBER is:

CLASS MEMBER;

BEGIN
REF(MEMBER) SUC, PRED;
REF(QUEUE)Q;

PROCEDURE OUT;
! removes from current queue, if any;
IF Q =/= NONE THEN ‘
BEGIN
IF THIS MEMBER == Q.FIRST
THEN Q.FIRST :- SUC
ELSE PRED,SUC :~ SUG;
IF THIS MEMBER == Q.LAST
THEN Q.LAST :~ PRED
ELSE SUC.PRED :- PRED;
SUC :- PRED' :—~ NONE;
Q.LENGTH := Q.LENGTH - 1;
Q :- NONE;
END**&QUTH* %k 3

PROCEDURE INTO(X); REF(QUEUE)X;
BEGIN
OUT;
! no effect if X == NONE;
IF X == NONE THEN warning ELSE
BEGIN
IF X.LAST == NONE THEN
BEGIN
X.LAST :- THIS MEMBER;
X.FIRST :- THIS MEMBER;

END ELSE

BEGIN
X.LAST.SUC :- THIS MEMBER;
PRED :~ X.LAST;
X.LAST :~ THIS. MEMBER;

END; .

Q - X)

Q.LENGTH := Q.LENGTH + 13

END;
END*X*INTO*%*;

! FOLLOW and PRECEDE are too obvious to
need listing; ’
END***MEMBER®*%;

The class QUEUEING is an extended version of the
standard Simula context SIMSET, see Dahl [11,
Dahl [6] gives an extremely elegant presentation
of (the concepts of Simula and) SIMSET, which he
calls TWLIST - Two Way LIST. Using assertionms,
Dahl is able to show that SIMSET lists are guar-
anteed to be well behaved provided that a user
operates on lists with the provided and correct
routines INTO, OUT, etc., and does not make ex-

ADVANCED USE OF SIMULA 297

plicit assignments to SUC, PRED, FIRST and LAST.
Given this tight restraint, SIMSET - and likewise
our QUEUEING - provides a reliable software level
which cannot break down. However, certain common
queue operations (e.g. scanning a list) need ac-
cess to some or all of these pointers, and then
the guarantee is no longer valid. Although the
code may be correct, that you must prove. Simula
has certain attribute protection features (HIDDEN
and PROTECTION) which can be used to extend a
Dahl type guarantee to cover even these cases.
The rewrite of class QUEUEING is left over until
we have introduced a scanning mechanism (used in
levels 3 and 4) and found a simpler need for

data protection.

LEVEL 3 - SIMULATION

It is not necessary that program components re-
presenting processes occurring in parallel be
multiprogrammed in a computer; but it is neces-
sary that the components should be able to sus-
pend themselves temporarily, and be resumed later
from where they left off. Processes in a simu~
lation are represented by Simula objects operat-
ing in quasi-parallel under the control of a
scheduling mechanism.

To implement simulated time, we give each pro-
cess access to a global variable TIME which holds
the current simulation clock time, and which is
incremented on appropriate occasions by the time-
control mechanism. The updating of this variable
must be entirely independent of the passage of
computing time during the simulation, since ac-
tions which take a long time on a computer may
take only a short time in the real world, and
vice versa. As far as simulated time is con-
cerned, the active phases of the processes must
be instantaneous.

To simulate the passing of time, a process simu-
lating an active system component must relinquish
control for a stated interval T of simulated
time; and it must be reactivated again when the
time variable has been incremented by T. This
will be accomplished by the process calling
HOLD(T). While a process is held, we need to
record its reactivation time. We use a process
attribute EVTIME for this purpose.

The method of holding for a specified interval

1s possible only if the process knows how long

it has to wait before the next event in its life.
Sometimes it may need to wait until the occur-
rence of some event in the life of some other
process. For this we require the additional pro-
cedures WAIT(Q) and SCHEDULE(P).

Finally, we may wish to interrupt a process and
let it deal with a higher priority task before
resuming its previous task. For this we provide
a procedure INTERRUPT(P,T) whose parameters spe-
cify the particular process and the amount by
which it must be delayed.

A sketch of the implementation is:

QUEUEING CLASS DES;
BEGIN
REF(QUEUE)EL;
MEMBER CLASS PROCESS;
BEGIN
REAL EVTIME;
'END#**PROCESS#%%;

PROCEDURE WAIT)Q); REF(QUEUE)Qj..cceuess}
PROCEDURE HOLD(T); REAL Tjeevesesnnenoas}
PROCEDURE SCHEDULE(P); REF(PROCESS)P;...;
PROCEDURE INTERRUPT(P, T);

REF(PROCESS)P; REAL Tieveeenvasceracss}

EL :- NEW QUEUE;
END*#*DES#% ;

DES is intended to be used as a prefix to a simu-
lation program or a further context. It 1s pre-
fixed by QUEUEING and thus inherits the concept

of a queue AND the prompting and text handling
routines of SAFE INPUT which prefixes QUEUEING.
Simulation components must be prefixed by PROCESS.
This will give them access to the time control
routines, and the queueing mehcanisms since PRO-
CESS is prefixed by MEMBER. Processes wailting for
the elapse of their holding time are held in the
event list EL. The processes therein are ranked
according to their reactivation times. The pro-
cess with the least event time is EL.FIRST and the
scheduling routines see to it that EL.FIRST is al-
ways the operating process. Other processes in
the event list are suspended.

Notice that DES contains not only declarations,
but this time an action. Whenever a context is
used as a prefix, its class body actions are exe-
cuted before the next level is entered. Thus a
user of DES 1s guaranteed that the event list is
correctly set up before any of his code is execu-
ted.

QUEUEING CLASS DES;
BEGIN
REF (QUEUE)EL;

MEMBER CLASS PROCESS;
BEGIN
REAL EVTIME
PROCEDURE RANK;
BEGIN
REF(PROCESS)X;
X :- EL.LAST;
IF X == NONE THEN INTO(EL)ELSE
IF EVTIME >= X.EVTIME THEN INTO(EL)ELSE
BEGIN
X :- EL.FIRST
WHILE EVTIME >= X.EVTIME DO
X :~ X.SUC;
PRECEDE(X) ;
END;
END***RANK¥*** 3
DETACH;
INNER;
oUT;
IF CURRENT == NONE THEN error ELSE
RESUME (CURRENT) 3
END***PROCESS#*#*%;

298 Graham BIRTWISTLE

PROCEDURE SCHEDULE(P); REF(PROCESS)P;
BEGIN

IF P == NONE THEN error;

IF P.Q == EL THEN error;

P.OUT;

P.EVTIME := TIME;

P.PRECEDE (CURRENT) 3

RESUME (P) ;
END*%**SCHEDULE#%**

PROCEDURE WAIT(Q); REF(QUEUE)Q;
BEGIN

REF(PROCESS)P;

IF Q == NONE THEN error;

P :~ CURRENT;

P.OUT;
P, INTO(Q);
IF EL.LENGTH = 0 THEN error;
RESUME (CURRENT) 3
END***YAT TH4k s

PROCEDURE INTERRUPT(P, T);
REF(PROCESS)P; REAL T;
BEGIN
IF P == NONE THEN error;
IF T < 0.0 THEN T := 0.0;
IF P.Q == EL

THEN T := P,EVTIME + T
ELSE T := TIME + T

P.0UT;

P.RANK;
END***INTERRUPT#%%;
PROCEDURE HOLD(T); REAL T;
BEGIN

REF(PROCESS)P;

IF T < 0.0 THEN T := 0.0;
P :- CURRENT;
IF CURRENT =/= EL.LAST THEN
BEGIN
P.OUT;
P.RANK;
END3
ENDX**HOLD*%% 3

PROCESS CLASS MAIN PROGRAM;
BEGIN
L: DETACHj;
GOTO L3
END***MATN PROGRAM*#¥%;

REF(PROCESS)PROCEDURE CURRENT}
CURRENT :- EL.FIRST;

REAL PROCEDURE TIME;
TIME := CURRENT.EVTIME;

EL :- NEW QUEUE;

MAIN :- NEW MAIN PROGRAM;

MAIN.EVTIME = 0.0;
END***DESH%% 3

First note that if a DES process, P, is sche-
duled, then P.Q == EL. CURRENT refers to
EL.FIRST, the currently operating process. When
a scheduling routine is called, it is always
called by CURRENT. SCHEDULE(P) is an error if

P is already in the event list; otherwise P is
scheduled now and preempts-the caller. WAIT(Q)
places current in a specified queue and puts it
to sleep. The new current (EL.FIRST) is resumed
and the simulatiom clock time is stepped up to

its EVTIME. INTERRUPT(P, T) extends the current
active phase of P by T if P is active. If P is
dormant, it is put into the event list at TIME +
T. HOLD(T) reschedules current at TIME + T; (nor-
mally) a new current is resumed.

Detach and resume are Simula primitives which en-
able processes to be set up as separate program
components and operate in quasi-parallel. RE-
SUME(X) freezes the caller and resumes operation
of X from where actions of X were left off the
last time it was operating. The process MAIN
plays the role of simulation program. The latter
being a block cannot itself be inserted into the
event list. But MAIN cdn., When it becomes cur-
rent, the detach command causes the main simula-
tion program to be reentered. This device is
borrowed from SIMULATION (Dahl {1]) and is incor-
porated in Demos [4, 5]. Reference 4, Chapter 3,
contains a sample trace of event list operations
using this type of object.

The body of PROCESS makes use of an extremely el-
egant Simula device — INNER. When a process has

terminated its actions, it should be removed from
the event list and the new current resumed. Thus
the last two statements of every non-cyclic pro-

cess declaration should be:

0UT;
RESUME (CURRENT) 3

and a programmer must remember to include them
or else his simulation will terminate unexpect~
edly. The prefix/subclass actions are to be
executed in the order

DETACH; sub-class actions; OUT; RESUME
(CURRENT)

What INNER doés is allow the initial and final
actions to be written in the prefix (separated
by INNER). When executing class body actioms,
meeting an INNER forces execution of the sub- "
class actions first. Then control returns to
the textually earlier level and the remaining
actions are carried out. Thus the required ac-
tions are automatically always carried out no
matter what the sub-class and users are relieved
of a great responsibility.

The standard Simula context SIMULATION is usually
implemented as a leftist priority tree (Dahl [81);
Franta [9] and Vaucher [7] have other proposals.
based on lists. Vaucher's proposal is effective
and particularly attractive due to its simplicity
and brevity. Reference 5 contains Simula code
for a complete set of leftist priority tree sche-
duling routines.

LEVEL 4 - DATA COLLECTION

Simula contexts for simulation usually contain
gseveral classes and procedures facilitating un-
obtrusive data collection and reporting - see
Birtwistle [4, 5], Bredrup [10], Fishman [11],
Franta [12], Landwehr [13] and Palme [14]1. 1In
this séction, we tackle the problem another way
by arranging for values of variables to be col-
lected in external files (one file per variable,
sectioned into epochs) for later analysis after

ADVANCED USE OF SIMULA 299

the program has been completed.

The aim of this level is to allow for am arbitra-
ry number of variables and an arbitrary number of
epochs., The user is expected to run his simula-
tion model using such code as:

create the data collection structures
and open their associated files;

FOR n epochs DO

BEGIN
run next epoch and collect data;

MARK - give each open data collection
file an end-of-epoch marker;

END;

CLOSE - close down all data files
opened by the program.

MARK and OPEN are programmed as global routines
in the body of DATA COLLECTION which is listed
below:

DES CLASS DATA COLLECTION;
BEGIN
REF (QUEUE) DATAQ;
INTEGER PRE, FIELD;

MEMBER CLASS DATA(TITLE, L);
VALUE TITLE; TEXT TITLE; INTEGER L;
VIRTUAL: PROCEDURE UPDATE;

BEGIN
REF(OUTFILE)O;

PROCEDURE UPDATE(X); REAL X;
0.0UTREAL(X, PREC, FIELD);
0 :-~ NEW OUTFILE(TITLE);
0.0PEN(BLANKS (L)) ;
INTO(DATAQ) ;
END***DATA%%% 3

PROCEDURE MARK;
BEGIN
REF(DATA) X3
X :- DATAQ.FIRST;
WHILE X =/= NONE DO
BEGIN
X.0.0UTIMAGE;
X.0.OUTTEXT ("4-=++") ;
X.0.0UTIMAGE;
X :- X.SUC;
END;
END#®%**MARK* %%

PROCEDURE CLOSE;
BEGIN
REF (DATA) X;
X :- DATAQ.FIRST;
WHILE X =/= NONE DO
BEGIN
X.0,.CLOSE;
X :~ X.SUC;
END;
END#%*CLOSE®%%;

ASK("PRECISTON", PREC, PREC > 4);
ASK("FIELD WIDTH", FIELD, FIELD >
(PREC + 5));
DATAQ :- NEW QUEUE;
INNER;
CLOSE;
END***DATA COLLECTION*%#%;

We cater for an arbitrary number of data collec-
tion devices by declaring

REF (QUEUE) DATAQ;

and take advantage of Simula's class body actions
to enter each user generated data collection de-
vice into DATAQ automatically.

MEMBER CLASS DATA;
BEGIN

INTO(DATAQ) ;
END***DATA% % 3

Each data collection object is tied to its own
output file. On object creation, the files are
opened and initialised (given a buffer). The
file name and buffer length are class parameters.

The code for MARK and CLOSE is obvious. The in-
itial class body actions prompt the user to sup-
ply a data precision indicator and a data field
width and then generate DATAQ into which all
user created data collection objects will insert
themselves. INNER then causes the user program
to be executed. On the latter's completion, con-
trol returns to this level and the final class
actions guarantee that all files opened are cor-
rectly closed. (Control will them return back
oné)level to finish off the final actions of

DES

No matter how many data objects are generated,
each gets its own file, which is opened and sup-
plied with a buffer. To use a data object, cre-
ate it with a statement like

D :~ NEW DATA ("THRU", 120);

which will open a file THRU, supply a buffer of
length 120 characters, and insert D into DATAQ
(where it can be located for the MARK and CLOSE
operations). New values are appended to the file
by calls typified by

D.UPDATE(TIME-START) ;

Each output value in character format to a frac-
tional precision of PREC places an exponent in a
field of total width FIELD places. If this de~-
fault is inappropriate (for example, you may
wish to write out real values in a different way,
or write out quite different data types), then
you need not write a completely new class for
only its update routine would differ. Variants
of DATA may now be declared which build upon
DATA and supply the new update routine.

e.g. DATA CLASS PAIR;
BEGIN
INTEGER K;

PROCEDURE UPDATE(X); VALUE X;
BEGIN

K=K+ 1;

0.OUTINT(K, 4);

0.0UTFIX(X, 5, 12);

0.0UTIMAGE;
END***UPDATE# %% ;

END***PATR* %%

Graham BIRTWISTLE

300

which outputs sequeatially numbered real values
in fixed format ome per line. PAIR objects be~
ing prefixed by DATA are automatically entered
into DATAQ upon generations. The VIRTUAL spe-
cification at the DATA level has no effect for a
DATA object. But for a sub-class like PAIR where
a revised version of update is given, it causes
the default routine at the DATA level to be er-
ased and be replaced by the new version. The
idea is very versatile and powerful. For it
means that any context default specified as vir-
tual may be overridden by a user. All the latter
has to do is supply a new version of the routine
with the same name. Such an overridden default
becomes completely inaccessible, and its every
occurrence is replaced by a call on the new ver-
sion.

The final Simula feature we wish to introduce is
data protection. At this level for example, wé
want a user to have access to MARK, CLOSE and UP-
DATE, but if he masochistically or inadvertantly
reassigned DATAQ, PREC, FIELD, or O the result
could waste the entire run. This can be preven-
ted by specifying these variables as HIDDEN and
PROTECTED where they are declared. In our case,
add in globally

HIDDEN PROTECTED DATAQ, PREC, FIELD;
and local to class DATA
HIDDEN PROTECTED O;

All access to these quantities outside the body
of DATA COLLECTION is now forbidden and will be
spotted at complle time. A readable account of
HIDDEN and PROTECTED is given by Palme [15]. It
is an interesting exercise to rewrite our previ-
ous levels giving read only status to the queue-
ing pointers (SUC, PRED, FIRST, LAST(Q)) and
completely hiding the event list pointer EL etc.

LEVEL 5 - RING MODEL

We start off with a brief description of the
Cambridge Ring architecture. A more detailed
account is given in [16]. A ring consists of a
number of transmitter/receiver stations, each
station having a unique address in the range 1
through 254. Apart from a common address, the
transmitter and receiver in a station are logi-
cally independent. A small fixed number of pack-
ets circulate continually round the ring. The
number, typically 1, 2 or 4, depends on the ring
delay. To transmit a packet, registers within
the station are loaded by the host computer with
an 8 bit destination address and 16 bits of data.
The next empty ring packet arriving at the sta-
tion is marked as being in use, and has the de-
stination, source and data fields filled in. In
the normal course of events, the packet circu-
lates until it reaches the destination, where the
data is extracted and the packet is modified to
indicate successful delivery. The packet, still
marked 'in use', continues to circulate until it
is delivered back to the source, which marks it
as free, and indicates the success of the data
delivery to the host.

Several things may go wrong with this procedure.
If the destination does not exist, or is not
switched on, the packet will arrive back at the
source without being modified by an away station.
The source station can recognise this and noti-
fies the host station that the packet was ignored.
The destination host may be unable to keep up with
the transmitter (the host may have other work to
do and not be dedicated to the ring). If a pack-
et arrives at a receiver before the destination
host has dealt with the previous packet from the
receive logic, then the statilon will mark the
packet as rejected because the recelve station
was busy. This too will be notified to the send-
ing host. Finally each receiver is equipped with

. a sourceselect register which allows the receiver

to discriminate, amongst stations from which it is
willing to receive data. If the sourceselect re-
gister is set to 0, the receiver will reject pack-
ets from any source; if it is set to 255, it will
accept packets from any source; any other possi-
ble value results in data packets being accepted
from only the source whose ring address corres—
ponds to the value in the source select register.
An indication (unselected) is given to a trans-
mitter if a packet is rejected in this case.

Judicious use of the source select register can
greatly simplify the structure of the receiving
software. A receiver expecting a large block of
data, requiring many packets to transmit, can be
set to receive only from one source, saving the
software from having to concern itself with the
problem .of dealing with unexpected packets from
other sources. The transmitter software, has of
course, to be able to deal with the repercussions
of this strategy.

Simulation aims

The purpose of this work was to build an accurate
model of the ring software as it actually is, and
then to experiment with different hardware/soft-
ware strategies. E.g. fewer but longer packets
(of length 4, 8, or 16 data bytes instead of 2);
or ignoring sourceselect and allowing several
senders to be reéceived at a time. An accurate
first model was built by examining the implemen-
tation source code, following the same branching
logic in our model and incorporating exact tim-
ings for these branches. 1In practise, once the
basic model was accepted, the modifications neces-
sary for other strategies were only séme ten or
twenty lines.

Each node in a ring configuration is represented
in the model by a STATION object. Each node
works asynchronously and models the ring handling
software itself. Three auxiliary processes are
attached to each node. They too work concurrent—
ly. There is a transmitter T which delivers
packets one by one to the destination station, and
reports their dcceptance status back to the send-
ing station; a user U who arrives periodically
with a block to transmit, and waits for it to be
transmitted; and a clock interrupt CPUI which in-~
terrupts the station at regular intervals demand-
ing service for higher level interrupts. These
processes are documented one by one in the sequel.

ADVANCED USE OF SIMULA

The ring handler can best be described as a pair
of independent processes, one transmitting pack-
ets and the other receiving packets. The trans-
mit process accepts buffers handed down from
higher level software and forwards them on to
their destination two bytes at a time. The
transmit process algorithm is:

TRANSMIT:

await block to send;

send header packet (includes no. of data
packets, N);

send receive port number;

FOR k := 1 STEP 1 UNTIL N DO
send data packet k;

.send check sum packet;

return buffer to sender marked yea or

nay;
REPEAT;
The check sum is computed on the fly. It is ac~
cumulated as each data packet is sent. There are

(N=3) packets per block, where N is the number of
data packets. They are sent in strict sequence
and the (k+l)st is not started until the kth has
been accepted. Each packet is retried (up to a
limit) until accepted. When the maximum retry
level for an individual packet has been reached,
the whole attempt to tramsmit is aborted. Also
a timer is started when the header packet is
first transmitted. A time-out occurring before
the check sum packet has been both sent and ac-
cepted will -also cause abortion of the block.
When a block is aborted, the current buffer is
returned to the sender marked with the reason
for the failure, and the process returns to the
head of its code and awaits the next buffer.

The receive block software process is:

RECEIVE:
await arrival of a header.
Set sourceselect and extract the
packet length, N;j
get port packet. Set P to port number;
get buffer B;
FOR k := 1 STEP 1 UNTIL N DO
receive next data packet and copy to Bj;
get check sum packet;
hand on B to port P;
request next buffer;
REPEAT;

Accounting for the several possible failures must
be imposed upon this pattern. The length of the
incoming block, N, may be too long; there may be
no buffer B available from the buffer manager
when it is wanted (get buffer B); the checksum
may fail; the port number may be invalid; the
block may be timed out. Any of these will cause
abortion of the attempt to receive. Then the
buffer B (if any) is returned to the buffer mana-
ger and a request (a notification of intent, but
not a seize) is made for another buffer, the
sourceselect register is set back to 255, and

the process awaits the arrival of the next header
packet (non-headers are received but ignored).

This process description gives a neat explanation
of the receive/transmit process roles, but node
software is actually organised as a polling loop.
The ring hardware can deliver packets at great

301

speed, so that although block arrival/transmission
events are rare, when they occur there is a great
flurry of activity in both the sending and the
receiving nodes. In between these flurries, a
node will be busy doing other work and only turns
its attention to the ring when a header is re-
ceived or a block is handed down. In out line,

we have:

PROCESS CLASS STATION;
BEGIN
do other work;
RING POLLING CYCLE:
switch contexts;
WHILE ring active DO
BEGIN
IF packet to send THEN send it;
IF packet arrived THEN deal with it;
END;
switch contexts;
REPEAT;
END*#*%STATION#*%%;

Whilst in one cycle of the loop, one packet may
be sent and another be received. It is important
to bear in mind that switching contexts is a very
expensive operation (approx. 500 machine instruc-
tions), and that once block transmission has
started, packets can be accepted/sent very rapid-
1y (approx. 50 machine instructions each). It
therefore pays to keep the node software inside
the ring polling cycle whilst there is a reason—
able probability of some actilvity going on. In
the actual implementation, a count of successive
idle loops is maintained. Only when this reaches
10 is the ring polling cycle left. WN.B. an idle
loop takes approx. 30 machine instructioms.

Whilst in the ring polling cycle, lower level in-
terrupts are ignored. Thus the tready bit for
packet arrival is inspected when the ring polling
software is ready, not on actual receipt. But
higher level interrupts are still attended to and
take slices out of the ring polling cycle (thus
adding or deleting items in the valid port list,
disk io's and clock interrupts).

Transmitter processes

When a station wishes to transmit the next packet,
it first ascertains that the transmitter is not
currently sending (tready = true), loads up the
ring registers, and activates the transmitter.
The command SCHEDULE(T) sets the transmitter T

to work at once and in parallel with the station.
The transmitter has the work cycle:

tready := false;
X :~ destination station;
hold an appropriate delay + send time;
IF X is down THEN return ignored ELSE
IF X.ring.source select = 255 or me THEN
BEGIN
IF NOT X.ready THEN
BEGIN
deliver packet;
awaken X, if need be;
return accepted;
END ELSE return := busy;
END ELSE return unselected;
tready := true;

302 Graham BIRTWISTLE

WATT(TQ) ;
REPEAT;

The code is bracketted by assignments to tready
which ensure that only one packet is being sent
at a time. Hardware will delay sending if this
is a retry packet (by 2 ring delays if oretry = 1,
and by 16 of oretry > 1: a ring delay is taken
as 0.005 milliseconds => 200,000 packets/sec).
Then an empty ring packet is awaited.

The. receive station, X, is found from a special
register. If X.SOURCESELECT is 255 or the sen—
der's address, the packet will be accepted if

the software in X has taken care of the previous
packet (X.rready = false); 1if not (X.rready =
true), it is rejected and marked busy. If X.
SOURCESELECT has been set to another station, the
packet is marked unselected.

With ring status now being appropriately set,
tready is set true and the transmit process goes
to sleep in TQ. When next awakened by its own
station, it will repeat the above cycle.

User processes

Class user plays the role of higher level soft-
ware handing down blocks to be transmitted. A
rough outline of a user is:

hand down next block, and awaken § if
need be;

sleep until transmission over;

hold(think time);

REPEAT;

A user hands down a block to its station (S.npq
:= S.npq + 1), awakens S if S is idle (not in the
ring cycle nor dealing with an interrupt) and
then the user goes to sleep. Buffers for blocks
are not modelled as such; we merely keep a count
of how many requests are pending in S.npq. Once
8 has dealt with this block then S awakens the
user who thinks for a while, and then hands down
another block.

Since we have only one user per station, 0 <= S5.PP
<= 1. In future models, if we wish to attach se-
veral users to each statlon sending down differ-
ent classes of message, a simple count will not
be enough, for we will also wish to know who sent
the message down., This can be solved by letting
a user hand on a request block which includes a
pointer to himself.

Clock interrupt processes

These processes mimic higher level interrupts ar-
riving at regular intervals from the clock (50

per second). These interrupts take up a slice of
cpu time, no matter what the node is currently en-
gaged in. The class outline is:

hold(20.0);

delay S by the time to process the
interrupts;

REPEAT;

The station S to which the cpu-interrupt is at~
tached will be interrupted either when it is idle

(doing other work) or when executing a hold’
(within the ring polling cyclé, or perhaps switch-
ing contexts). Either way it doesn't matter be-
cause our interrupt routine defined at level 4 is
geared to cater for both cases. We just code

PROCESS CLASS CPU_INTERRUPT(K); INTEGER K;
BEGIN
L: HOLD(20.0);
INTERRUPT (S(K), t);
GOTO L;
END#*#%CPU INTERRUPT#*%*;

Station processes

We elaborate 'IF packet to send THEN sent it;'
to:

IF outputting THEN
BEGIN
IF tready THEN
BEGIN
IF status accepted THEN try-packet-again
ELSE
IF op_count < op length THEN send next
packet ELSE)
IF check sum THEN send-check sum ELSE
IF op_count >= op_length THEN finish
op_transfer;
END;
END ELSE
IF PP > 0 AND tready THEN start op_ transfer;

If a block transmission has already started then
outputting = true. If tready is false, the trans-
mitter is dealing with a previous packet and there
is nothing to do. If tready is true, then a pack-
et is transmitted. If the last packet was not ac-
cepted (returned marked unselected, ignored ot
busy), then it is transmitted again. Otherwise,
the last packet was accepted. The length of the
current output block is op_length. -Op_count

gives the serial number of the packet we are cur-—
rently trying to send. If op_count < op_length
then we send another data packet. If op count =
op_length, then we send the check sum packet. If
op_count > op_length, then the check sum has been
accepted, i.e. the whole block successfully de-
livered, and we have to wrap up this transfer and
prepare for the next.

The input 'IF packet arrived THEN deal with it'
elaborates to:

IF inputting THEN
BEGIN
IF rready THEN
BEGIN
IF ip_count
buffer ELSE
finish ip transfer;
END;
END ELSE IF rready THEN start ip transfer;

= ip length THEN copy_to_

Action is only taken if rready is true. When
dealing with the last packet received, extracting
the data bytes from the hardware ring register,
sets rready to false. Now a new packet can be
received by hardware. When hardware has an ac-
cepted packet, it loads it into ring rdata/source
and then sets rready. The next time the station

ADVANCED USE OF SIMULA

input polls, it can accept this new packet.

If any away station sends a header and then times
out before getting a response, it may send a se-
cond header. A second header reinitialises block
acceptance. Otherwise, the port is remembered
and data bytes loaded into a buffer two by two.
Ip _count and ip length are analogous to op_count
and op_length. When the checksum has been re-
ceived (ip_count = ip length), the checksum 1s
checked, port validated and the user is awakened,

Results

A complete description of the model, the experi-
ments upon it and result obtained is slated for
completion at the end of 1981 [17]. (We are cur-
rently awaiting more extensive and reliable traf-
fic data to complete our model validation.) Re-
sults so far confirm the good behaviour of the
current design under both light and heavy ring
loadings, particularly with regard to real time
response guarantees. Experiments with longer
packet lengths (6-8) offer no advantage under
light loading (1%), but do offer increased
throughput for no extra station utilisation when
the ring traffic is heavy (15%). Dispensing with
source select and accepting packets from several
sources (up to a maximum) certainly increases
throughput, but at the cost of much extra work
by a receiving station. This strategy would

seem to be useful only with stations dedicated to
ring activity or very much faster than the PDP
11/40 stations currently in use.

ACKNOWLEDGEMENTS

The author spent the summer of 1981 at the Edin-
burgh Regional Computing Centre as the recipient
of an SRC Visiting Fellowship. The Demos model
sketched in level 5 of this presentation is based
upon its PDP 11/40 implementation writtem by B.
Gilmore and S. Binns. Bill May and Brian Ritchie
were co-developers of the model.

REFERENCES
1) 0. J. Dahl, B. Myhrhaug and K. Nygaard,

Simula 67 Common Base Language, NCC publi-
cation, 3rd Editien, 1981.

2) 0., J. Dahl and K. Nygaard, Simula A langu-
age for the programming and description of
discrete event systems, NCC publication,
5th Edition, 1967.

3) K. Nygaard and 0. J. Dahl, The development
of the Simula languages, ACM Conference on
the History of Programming Languages, LA,
1979.

4) G. M. Birtwistle, Discrete Event Modelling
On Simula, Macmillan Press, 1979. Distribu-~
ted in North America by Gage Publishing,
Ontario.

5) G. M. Birtwistle, Demos Reference Manual,
2nd Edition, 1981. (Available from the
author.)

303

6) 0. J. Dahl, E. W. Dijkstra, and C. A. R.
Hoare, Structured programming, Academic
Press, Chapter 3, 1972.

7) J. Vaucher and D. Davey, Self-optimising
partitioned sequencing sets for discrete
event simulation, INFOR, vol. 18, no. 1,
pp. 41-61, 1980.

8) 0. J. Dahl and R, Jonassen, Analysis of an
algorithm for priority queue administration,
BIT, vol. 15, no. 4, pp. 409-422, 1976.

9) W. R. Franta and K. Maly, An efficient data
structure for the simulation event set, CACM,
vol. 20, no. 8, pp. 596~602;, 1977.

10) B. Bredrup, A report generator for Simula,
ASU Conference, Brighton, 1975.

11) G. S. Fishman, Concepts and methods in dis-
crete event simulation, Wiley, 1973.

12) W. R. Franta, The process view of simulation,
North Holland, 1978.

13) C. Landwehr, Abstract data types in Simula
67, TOPLAS, vol. 3, no. 1, 1981.

14) J. Palme, Putting statistics into a Simula
program, FOA Report C 10030-M3(E5), 1975.

15) J. Palme, A new feature for module protection
in Simula, Simula Newsletter, vol. 4, no. 1,
1976.

16) M. V. Wilkes and R. M. Needham, The Cambridge
Digital Communication Ring, Local Area Net~
work Symposium, Boston, 1979.

17) G. M. Birtwistle, W. D. May and B. Ritchie,
A simulation model of the Cambridge Ring.
In preparation.

BIBLIOGRAPHY

K. G. Muller, On the Simulation of Generalised
Activity Networks in Simula, Simula Newsletter,
vol. 2, no. 3, 1974,

D. 0'Sullivan, Simula used for production plan-
ning, Simula Newsletter, vol. 2, no. 4, 1974,

P. A. Houle and W. R. Franta, On the structural
concepts of Simula and simulation modelling,
Simula Newsletter, vol. 3, no. 2, 1975,

J. Cunningham and R. Sim, Continuous simulation
in Simula, Simula Newsletter, vol. 4, no. 2,
1976.

F. Schumacher, Modeling of discrete systems with
extended Petri Nets, Simula Newsletter, vol. 4,
no. 3, 1976.

0. Leringe, A simulation study of ice breakers,
Simula Newsletter, vol. 4, no. 3, 1976.

B. Unger, Oasis a Simula extension for systems
software and simulation, Simula Newsletter,

304 Graham

vol. 5, no. 2, 1977.

Palme, Moving pictures show simulation to the
user, Simula Newsletter, vol. 5, no. 3, 1977.

Larsson, Specifying a new operating system in
Simula, Simula Newsletter, wol. 5, no. 3, 1977.

Belsnes, XK. Bringsrud, and E. qudal, The use
of Simula for real time system implementation,
Simula Newsletter, vol. 6, no. 3, 1978.

Larson, I. Lekteus, I. Sjors, Condis class
basic flying, Simula Newsletter, vol. 9, no. 3,
198%.

Helsgaun, Disco a simula based language for
continuous combined and discrete simulation,
Simulation, vol. 35, no. 1, 1980.

McQuade, A. M. Salih, and H. J. Gray, Simula-
tion of a telecommunications multiprocessor
switching system, Simulation, vol. 36, no. 5,
1981, '

BIRTWISTLE

