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ABSTRACT
The method of antithetic variates is a well-known technique for reducing the

variability of estimators in computer simulation experiments.

However, the

usually suggested way of using the method, if incorrectly applied, can lead to an
increase in the variance of estimators of certain quantities, such as percentiles.
A procedure, based on two non-standard methods of generating samples from the

normal distribution, is suggested which does not suffer this weakness.

Numerical

examples are given showing the ease of implementation and the effectiveness of the

procedure.

1. INTRODUCTION

There has been much recent interest in developing
computer methods for generating random variates
from specified distributions such as the normal,
gamma and beta. However, as has been pointed out
by Andrews (in the Discussion of Atkinson and
Pearce's paper, 1976), the cost of generating
variates is often very small relative to the
total cost of the simulation experiment. Variance
reduction methods which apply to the cost of the
simulation as a whole therefore offer much longer
savings.

In this paper a variance reduction procedure is
suggested, using antithetic variates, which might
be applied in a simple and automatic way in a
number of computer simulation situations. The
procedure is based on two novel algorithms for
generating random samples of specified size n from
the standard normal distribution: RSNA and RSNB,
The procedure and the two algorithms are described
in section 3. In section 4, two numerical
examples are given making use of the procedure,
which illustrate its effectiveness.

This work is an extension of that of Cheng (1981)
where similar methods are applied to control
variables which are sums of independent and
identically distributed random variables.

2. ANTITHETIC CONTROL VARIABLES

Before describing the proposed antithetic
procedure, it will be of help to look at its
motivation. Its basis is the fairly well-known
method of antithetic variates as applied to
control variables (see, for example, Tocher 1963),
whose rationale is as follows.

Suppose a run of a computer simulation model yields
a response y whose mean u is to be estimated. If
two runs are made yielding response values y and
y' , then their average

y=3(y+y")

estimates n. If the two runs are independent then
the variance of y is

var(y) = 3 var(y).
The method of antithetic variates aims to reduce

this variance by introducing negative correlation
between the runs. Then var(y) becomes

var(y) = 3(1 + r)var(y),

where r < 0 is the correlation between y and y'.
This negative correlation can be obtained by first
selecting a variable x which is highly correlated
with y but whose distribution is known, and whose
sampling can be controlled directly in the
simulation. Such a variable is usually called a
control varjable. The idea is then to

negatively correlate the control variables x and

x' in the two runs, rather than correlate y and y'.
Because y and x are highly correlated, the
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negative correlation between x and x' will induce
a similar correlation between y and y'.

The most frequently suggested way of correlating
x and x' is the inverse distribution function
transform (IDFT) method. If F({.) is the c.d.f.
of x, set

x=F ), x =F 1 (1-u) (2.1)

where u is a uniform U(0,1) variable. The degree
of negative correlation, p, obtained between x and
X' in this way depends on the shape of the density
function of x. It is best (i.e.it is most
negative) when x is symmetrical distributed, when
p = -1. If X is not symmetrical then p > -1.

For example Page (1965)shows that, if x is

negative exponentially distributed, then p = -0,645.

In many simulations it is not just u, the mean of
y, that is of interest. Its variance, certain
percentiles of its distribution, or even its
distribution as a whole may be required. To
estimate such quantities-a set of runs is needed,
It is tempting to apply the IDFT method of negative
correlation in blanket fashion by making a set of
runs divided into two blocks each of n runs, and
to correlate corresponding pairs of runs from the
two blocks. Thus if x; and x'; are the controtl
variate values in the Jth run 8f the first and
second blocks respectively, then the same U(0,1)
variate va1ue,uj , is used in calculating xj and

x.' as
J -1 .
‘= F (]'”j)’ J= 152540090,

(2.2)

_ el
X = F (uj), X;
This is a bad policy however.

Firstly, though this poTicy reduces the variance
in the estimate of u , it tends to increase the
variance in the estimate of ¢2 , the variance of
y. For example, when x is symmetrically
distributed, both the first and second blocks of
runs yieTd exactly the same value for the sample
variance of the x's. In other words no
additional information on the variance of x has
been obtained from the second block. As y is
assumed highly correlated with x, this means that
1ittle, if any, additional information has been

. obtained about the variance of y either, The
second block of runs has thus been made without
improving the estimate of o and in effect the
antithetic procedure (2.2) has led to variance
increase not variance reduction. As percentiles
depend on both the mean and variance, the blanket
use of the IDFT method can thus lead to variance
increase in the estimation of percentiles,
particularly for those near the tails of the
distribution.

'Secondly, even if the estimation of u is being
considered, though use of (2.2) will usually Tead
to variance reduction, the degree of reduction
may not be the best achievable. This is because
the overall level of correlation between the two
blocks will not exceed that achieved between
individual pairs of runs. It turns out that one
can do better if runs are not correlated in pairs,
but if the two blocks are considered as a whole.
The procedure described in the following section
does this.
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3. THE PROPOSED PROCEDURE.

The antithetjc procedure suggested below makes use
of two alternative ways of generating a random
sample Z1, Zoseess zn'of size n from the standard

normal distribution. These will be described first.

The first algorithm : RSNA, has the following
property, If 215 22500052y i$ a random sample of

standard normal variables, then it is well-known
that the sample mean Z is normal with mean zero
and variance equal to n~! , i.e. Z ~ N(O,n""), and
that the sample variance .

V= (2 z2 - nz2)/(n-1)
is independent of Z, with w = (n-1)y a x? variable
with n-1 degrees of freedom i.e. w ~ xzn-l .
Algorithm RSNA allows the values of Z and v to be

sampled first, then constructs exact N(0,1)
variables zj, Zps...5Z in such a way that their

sample mean and variance are equal to these
sampled values,

Agorithm RSNA. Inputs : z_ ~ N(0,n'} ,

L2
Wo V' X7pa1

Constants : (These need only be set ance.)

v=nel, ag s [3/(3+1) 7% 3= 0,1,...,v.
1. Generate v NID(0,1)variates: vi,Vos...sV
'(independentvof z, and wo)

v

= 2 %- = j =
2. Seta (w04§1viv) H tj avy, J 1,2,.005v.
3. Set z, =12, -yt

= -1 = yav-

Zj = Zj+-l + aj tJ- - (lj_-ltj_'lg J = v,V ],
ves 1.

4, Return with zy, Zy, ...,z ,Which are exact
NID(0,1) variables with mean = 2=z, and
wriance v = wo/(n-l). ]

A detailed derivation of the Algorithm is given in
Cheng (1981). The key is that the t.'s of step 2
are NID(0,1) variates with the.prope}ty Etj2= W

The variates zj, 22,.h.,zn are merely a linear

transformation (actually the inverse of Helmert's
transformation, see Kendall and Stuart,1968) of
z, and the t's. It is readily verified that

21, Zp 5...5Zp 8re exact NID(0,1) variates, with
sample mean and variance as claimed.

The second algorithm : RSNB, has the following
property. If a1, 2, ...s3p is a set of constants

such that Eai2 = 1, then clearly z= za;z; will be
a standard normal variable if Z15235-4452, rE
NID(0,1) variables. RSNB allows the value of z to
be sampled first, then constructs zj, Zs,...,2z, in
such a way that Taz, equals the sampled z value.
Algorithm RSNB, Input : z ~ N{0,1).

‘ (These need only be $et once;aj,j=1,2,

Constants ¢
...sn are assumed given with
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n
22 = 2y} po=a./b., s.=b,
zaj 1.) bJ (g a;2)%,ri=a. /by s bJ/b

=] NI Mt R j+1°
J=1,2,...5v 2 n-1,
T. Sett, =1z
2. Set zy = rjtj ts5vy tj+1 = (tj-rjzj)/sj ,

J= 15250000y
where vj, V2seeasV are v NID(0,1) variables
(independent of z).

3. Set z, = tn

4. Return with z;, z5,...,2_, Which are exact
NID(0,1)variables satisfying the condition
2agZy = Z. 0

Clearly 21, Z3,...,z_ are Tinear combinations of

n

z and Vi, Vos...sV. , and so are normal.
calculation shows that they are independent
standard normal and moreover that Ta;z; = Z.

In what follows, the simulation is assumed to be
set out in two blocks of runs each consisting of
n independent but identical runs. Assume first
that the control variable is a standard normal
variable which will be denoted by z. This
assumption will be considerably relaxed Tater.

Direct

The value of z is recorded in each run of the first

block of runs as : zj, Z2s.eesZp 0
their sample mean and variance

=z = 2 _ pz2 -

z, =2, v, (?zj nz2)/n-1)

to be obtained at the end of this block of runs.
It is Ye]]-known that z_ is normally distributed
Ngo,n' ) variable, whil®t (n-1)v_(=w_,say) is a
x4 variable, with (n-1) degrees 8f fPeedom, that
is independent of Zy-

The basic idea is to apply the antithetic
technique to z_ and w, only. Antithetic
versions of z_"and w_~can easily be obtained
using the 10F? method of equation (2.1). Because
z_ is symmetrically distributed about zero, this
y?e1ds

This allows

zo' = -z, (3.7)
whilst
_ -l
wo' =6 [1 - G(wo)J. (3.2)

where G is the c.d.f of a x2 variable with (n-1)
degrees of freedom. (Here and in what follows, a
prime will indicate a quantity associated with
the second block of runs). The functions G and
G-! are awkward to obtain explicitly. An approx-
imation for (3.2) is

W' o= v{201-2/(99)] - (wo/v)l/a}3

where v = n-1. This formula is explained in
Cheng (1981). It makes use of the Wilson-
Hilferty approximation twice in such a way that
errors tend to cancel so that it is accurate down
to small values of n. For example, when n=4 the
probability for which w ' is a quantile is never
in error from the exact probability by more than
0.004.

Once z_ ' and w_ ' are obtained, the second block of
runs mist be m3de with control variate values

(3.3)

Z1's 23',...52,' generated in the n runs in such
a way that thelr sample mean Z'=z_' and variance
v,'=w,'/(n-1). The point of algoPithm RSNA is
n8w'evidqnt, as it allows precisely such a set of
antithetic z! variables to be obtained, using z
and wo' as inputs.

This method of correlation has the effect of
correlating both the means and the variances of
the responses in the two blocks. This Teads to an
improvement not only in the estimate of the mean
of y but in estimates of quantities which depend
on the variance of y, such as percentiles.

The above procedure is only a prototype, as it is
restricted by requiring the control variable to
be normally distributed. A more general assump-
tion is that a control variable x can be found
which is itself dependent on p input variables
X1sXzee s Xt )

X = f(xl,xz,...,xp}

'
o]

(3.4)

The x,'s will not be required to be normal or
even i&entica]]y distributed; but they will need
to be independent.

The prototype procedure cannot be appiied to x
directly. However it can still be applied if a
normal variable z is first constructed fromx-.
This variable will be called the "normal version
of x". A simpie way to do this is to find an
approximation to f that is Tinear in Xj,Xp,....X
(using a Taylor series expansion for example) anf
then to replace each x. by a normal variable with
the same mean W and vdriance “iz as X;. Thus

X f(ul,uz,---,up) + 2(§f/axi)xi (3.5)

i%q
¥ = f(p) + ZLof (u)/9%; Jugto;24) .
This 1is of the form z = €y *+ IC5Za3 for the

purposes of antithetic correlation it is easiest
to work with the standardised normal variable,

z = (;-c Y/ (zc? )% = a.z., say (whereza? = 1
] i i%? 1(3.6

and replacing X; by (“i+°'z‘)’ where z; is N(0,1)

The prototype procedure can now be applied with

z replacing x as the control variable. When x..,
the ith input variable in the jth run, is 1
generated, a normal version z.. of x,. must also
be produced that is strongly Worreldted with
X::. At the end of the jth run the control
vatiate z, is obtained from the z.. using (3.6).
The proto%ype procedure can then pd applied to
produce anantithetic set of z.' for the second
block of runs. In this second Block the process
of going from x.. to z. is reversed. In the jth
run, z=z.' is uddd as 4nput to Algorithm RSNB to
produce “a set of normal variates z..' satisfying
Eaif.-=z-'. The z..' are then used “as normal
versidnsdof the 1nBﬁt variates x..' actually used
in the runs. Strong correlation Ybetween z..' and
X:.' is obtained by using z..' to produce a
uhdform variate u,.' = B(z;:'"') (where & is the
standard normal Jc.d.f) "ywhich is then used to
generate X..' by the IDFT method. The whole
procedure 'Yis as follows:
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Procedure A

1. Make the first block of runs. Generate input
variates and normal versions by the IDFT method.

e -1 _ =1 s Tl

= F'i (uij), Z_iJ- = @ (uij),'l-],Z,...,P,
J=1,2,..450,

Set zj = zaizij, J=1,2,...,0.

2. Calculate the sample mean and variance of z,
and find their antithetic versions by (3.1)

and (3.3). Then use Algorithm RSNA to produce a
set of antithetic zj',j=1,2,..,,n.

x'ij

3. Make the second block of runs. In the jth
run use z.' as input to Algorithm RSNB to construct
z,:. The input variates of x;;' are

z .,z v
tﬁ%n’ogiéihédpgs J

Xy = F{H@(zij')J i=1,2, .. 0ap
where F, is the c.d.f. of x; and  is the standard
normal d.d.f. ! 8]
4, EXAMPLES

The two examples described below have been kept
deliberately simple as they are intended to be
illustrative only, There is no difficulty in
using the methods for more complicated and
realistic examples of the same sort.

Exam?]e 1. Bury (1975, §15.24) describes the
simulation of the current gain of a certain tran-
sistor amplifier defined as

-1

G = BRO(R0+RC) s
where g and R are characteristics of the tran-
sistor and R “is an external resistance. The
quantities g, R and R are assumed to be random
variables with °distributions as given in Table 1.
It is desired to find the c.d.f. of the current
gain G.

The simulation was organised as follows, A run
consisted of sampling a set of 8,R_,R_ values and
calculating G for this amplifier "specimen”.
A block of n such determinations constituted the
first block of runs. A second block of n was then
obtained. However, for comparison two different
versions of the second block were carried out.

Version A of the second block was obtained using
Procedure A. The control variable was a normal
version of G itself. Expanding G in a Taylor
series about the mean values of s,RbAand Rc giveés

G ~ (3G/88) B + (3G/3R )Ry + (96/3R )R,

values.
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The normal version of this is

-1
(my+m.) "sgz o+ Mg

b - .
[mcsozo moscch

Substituting in the values of the parameters and
standardising the normal variate gives the control
variable used in Procedure A as :

zZ= .‘9692B + .2212o - .111zc.

LY
z m_+m

-2
o)

constant + My

Version B of the second block consisted of an
independent block identical to the first block.

The means and variances of the G's of each block
will be written as

G, Gp» Gp» V = 2G2/n-G2, Vp= 26y2/n-Gy2,
=7G.2/n-0.2
VB—ZGB /n GB .

Conbined estimates Tike (§+8,)/2 and (V4V,)/2 can

then be obtained by pooling the first block with
each version of the second block. Also the c.d.f.
of G can be estimated by pooling the values of G
obtained from the first block with those from
version A or version B of the second block. To
see the effect that Procedure A has of reducing
the variance of pooled estimators it is necessary
to replicate the entire above experiment a number
of times. Table 2 shows the means and variance
of pooled estimators obtained from 1000 replicates.
As will be seen the variance of the estimates of
the mean of G is reduced from 1.9 to 0.01, and of
the variance of G is reduced from 637 to 28.

From each replicate two empirical c.d.f.'s can be
obtained by pooling the first block with each
version of the second block. For each replicate
the values of the two c.d.f.'s were calculated at
a selection of G values. Table 2 summarises
these results by giving the mean values of these
c.d.f.'s (averaged over the 1000 replicates) at
different G values and also the sample variances
of the c.d.f.'s about these means. As is seen,
use of the antithetic procedure A leads to a
variance reduction over most of the range of G
Thus for example, the proportion of
gains under 40 is estimated, with 95% confidence
Timits, as

'PA(4O)= L1410+ 1.96X(.000435/1000)é=.1410j .0013
if procedure A is used,compared with
Pa (40)=.1411+ ]-96x(.00119/1000)%=w141]t .0022

= mo(mo+mc)']B + mB(m0+mc)"2[mcR0 - mR.3. if independent second blocks are used.
Table 1.
Mean (m) L
Variable Distribution & Method of Generation Parameters Standard Deviation (s)
. Lo ‘ 1/A _ =

B Weibull : B—:cB[-log(1-u)] ) 9g= 110 mg= 100
where u~ "U(0,1) Ag= 4,3 sg= 26.3

R Lognormal : R.= explu +o_z] p= 9.2 m_= 10,0000

° where 2% N(0,1§ ° o9= 0.12 s0= 1,2009

R Normal  : R.= p% 0.7 u_= 10,000 m_= 10,0000

¢ where %0 NC(O,%) cﬁ: 600 sg= 6000
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Table 2. Results of 1000 replicates of a simulation experiment estimating the gain of a
transistor amplifier. Block size n=50.
3(G+Gy) 3(GHGp) 3(V+Vy) 3(V+Vp)
Mean of 1000 values. 49,847 49,827 180.1 180.2
Variance of 1000 values .011 1.88 28. 637.
Mean of Variance of
) 1000 Empirical C.D.F. Values 1000 Empirical C.D.F. Values
" With Second Block : Antithetic Independent Antithetic Independent
G x 100 x 100
10 . . .0000 .0001 .000020 .000079
20 .0042 .0041 .0038 .0042
30 .0358 .0355 .020 .036
40 1410 141 .043 119
50 .3581 .3591 .075 .226
60 .6414 .6425 .083 .234
70 .8661 .8672 .043 .123
80 .9710 .9709 .017 .030
90 .9967 .9961 .0033 .0039
. .100 .9998 .9998 .00020 .00027
Example 2. Battersby(1970)described an oil refinery in blocks of three : the first block and two

mantenance problem involving critical path analysis.
The 18 jobs and their durations are

Job A B CDETFGHI KTILM
Duration 16 16 8 6 16 40 24 16 16 24 8

Job RS TU
Duration 8 16 8 24.

The duration of the project can be written as
Y= max(J+P, E+Q, F4+R, G+W+S)+T+ U

where J= max(A+max(B,C) + D,E),

W= max(N, Htmax{K,L)+ M) and where for simplicity
the duration of jobs have been denoted by their
letters. Suppose that job durations are random.
As the example is for illustration only, suppose
for simplicity that they are all lognormally
distributed with means as shown,but all with the
same skewness. The ith job duration can then be
sampled as d.=m; expl[-02/2+ oz;],where m; is the
mean of the "ith job duration, o is the "same for
all jobs and z. is a standard normal variable.

In the simulation o = 0.3.

As in the first example simulation runs were made

NP Q
436 12

versions of the second block. A simple control
variate to use is the sum of the job durations on
the critical path obtained when job durations are
set equal to their means. With the parameter
values as given this yields the control variate as

X=6GH + L+ M+ S+ T+ U,

A normal version of X is obtained by replacing
each job duration in X by a normal variate with
the same mean and variance. As all the normal
versions of the d.'s used in forming X have
variances proport%ona] to their means(with same
constant of proportionality)it is easily seen
that the standardized normal version of X is

z= xm m.(zm.2)'% zZ,
z; on c.h. T !
= .493(zG+zL+ z, )+ .329(z ¥z )+ .]64(zM+zT).
Table 3 gives results analogous to those of Examplel
appearing in Table 2., Again it is seen that
procedure A is very effective in reducing estimates

of the mean,variance and c.d.f.of Y, the overall
project duration.

Table 3.
the duration of a project.

Results of 1000 replicates of a simulation experiment estimating,Y,
Block size n =

50.

3(Y+Yp) %(Y+Y%) 3(V+Va) 3(V+Vp)
Mean of 1000 values 122.99 123.0 199. 199.
Varijance of 1000 values 42 2.04 425. 1004.

Mean of 1000

Empirical C.D.F. Values

Variance of 1000
Empirical C.D.F Values

With Second Block Antithetic Independent Antithetic Independent
Y x 100 x 100
90 .0005 .0004 .00047 .00042
110 .0899 .0895 .052 .076
120 .3036 .3024 d12 .201
125 4456 L4443 120 242
130 .5858 .5876 13 244
135 .7108 .7109 .093 .200
140 .8096 .8095 .078 160
150 .9306 .9298 .038 .068
160 .9781 .9776 .016 .023
180 .9982 .9985 .0019 .0016
190 .9996 .9996 .00038 .00041
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5.  CONCLUSIONS.

Procedure A offers a simple method of general
applicability for reducing the variance of
estimates of both the mean and variance of a
response variable. This Teads to improved
estimation of the c.d.f. of the response variable
as a whole. The procedure does depend on being
able to generate certain input variates by the
IDFT method. Moreover variates in the antithetic
block will take Tonger to be generated using
Procedure A than if an independent block identical
to the first is taken and this must be set against
the reduction in variance of estimators.  Two
features tend to reduce this effect however,
Firstly, input variates often require normal
variates to be generated as an intermediate step
so that generation of normal versions of certain
variates in Procedure A is not always disadvantag-
eous, Secondly, as remarked in the introduction,
often the generation of variables is a relatively
small part of the simulation experiment as a
whole, so that the increase in variate generation
time is far outweighed by the improvement in
overall cost.
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