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ABSTRACT

A weighted least squares regression method
is proposed for fitting cumulative
probability distributions to data. This
technique is illustrated for the Johnson
translation system of distributions. The
least squares procedure minimizes the
distance between the vector of uniformized
order statistics and its corresponding
expected value to identify the Johnson
distribution that provides the best fit.
This least squares procedure is shown to be
numerically robust and to provide a good
fit of the data when compared to the
empirical distribution. Two examples
illustrate the use of the procedure.

1. Introduction

A common problem sncountered by simulation
practititoners is the choice and estimation
of probability distributions to describe
random variates, While theoretical modsls
are sometimes preferred where they are
sufficiently accurate, many “"real world"
data sets are not readily fit by the
standard one- and tuwo- parameter
theoretical distributions. Flexible systems
of distributions such as the Johnson
translation system [1] are often used for
fitting in those cases where fidelity to
the data and parsimonious representation
are desired, and an exact theoretical
distribution is not required. In the case
of the Johnson family, the distribution can
be specified using one of four functional
forms and up to four parameters.
Representation by an empirical distri-
bution, even using grouped data, would
require many more parameters to specify the
distribution.

A least squares method is proposed for
fitting Johnson distributions to data.
Fitting of distributional families is most
often performed by matching sample moments
to the moments of the distributional family
to obtain a particular representation.
However, even when the sample is suffi-
ciently large toc ensure that the sample
moments are accurate, fitting may be
difficult and the resulting fit may be
infeasible: the fitted distribution may
have a lower (upper) endpoint which is
larger {smaller). than the corresponding
extreme value observed in the sample [2].
Let Xi, e ,xn denote a random sample from

the distribution Fx that is to be
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estimated. We propose using weighted least
squares to fit each uniformized order
statistic of the sample, U(J)zFX(x(j))’ to

the expected value of the associated
uni form order statistic, E[U(J)]=j/(n+1)

for j=1,...,n . This method is shown to be
numerically robust and to provide an
accurate approximation of the both the
empirical and exact sampling distributions.

The Johnson family is based on four trans-
formations to the normal distribution, so
that Fx(x) can be represented by

Fx(x) & Q{ *1 * ?zf[(x—¢4)/*3] }’ (1)

where ${z) is the cumulative distribution
function of the standard normal and f{u) is
one of the following transformations

log{u) for 5 family
sinh_i(u) for 8, family

S loglus{i-u)] for Sg family ° (2)
u for SN family

The four families represent the lognormal,
the "unbounded” distribution, the "bounded"
distribution, and the normal. As shown in
Figure 1, these four families cover the
entire (31,82) plane, assigning a unique

distribution to sach point. Points in the
plane fall either on the normal point
(0,3), on the lognormal line, above the
lognormal line for bounded distributions,
or below the lognormal line for unbounded
distributions. The parameters
¢=(¢1,¢2,¢3,¢4) complete the specification

of the distribution. Note that generating
random variates from each Johnson distri-
bution, where required, is straightforward
[s].

2. Least Squares Distribution Fitting

The least squarses methed for fitting a
Johnson distribution seeks to minimize the
distance {in n-dimensional space) between
the uniformized order statistics and their
corresponding expected values. This proce-
dure is based on the observation that the
sample order statistics X(j)’
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Figure 1: Regions Defining the Johnson
Distributions in the Bl’ 82 plane.

X(1)< X(Z) < vee £ X(j) < ... < X<n) B

from a sample of n observations can be
converted to the (approximately)
uniformized order statistics

RjCe) = ofyy + v fl (X y-v,)/¥51h, (3)

so that RJ(¢)~U(J), the Jth smallest in a

sample of n random numbers. These variates
can be represented for fitting as

RJ(¢)=pJ+sj, where pJ=E[U(J)]=j/(n*1),
j=t,...,n. The random error £, is a

translated uniform order statistic with
mean E[sJ]=0. The covariance between the

errors SJ and LR is given by

Cov(sj,sk) = —Eiffggiigég—, Jgkgn. (4)

Letting R(¢)=[R1(*),R2(*)»v--Rn(f)]T >

T .
p=(pi,p2,...pn) . £=R{¥)-p and letting
V=HCov(sj,ek)H denote the n x n covariance

matrix of £, we see that the least squares
estimation problem becomes

minimize s{y) = eT(v)V—is(v)
¥
subject to:
¥,20
2 (5)
[ 20 for s
¥a ZX(n)—¢4 for SB
| =1 for SN and SL
*4 SX(i) for SL and SB
=0 for SU

Note that mimimization by weighted least
squares is reasonable, since the errors sJ
are all approximately normally distributed
except for the extreme order statistics,
i+t and j=n. The correlation among the
errors presents no problems, since the
variance matrix is known and can be used to
form the weighting matrix for the least
squares estimation,

The general problem can be simplified

somewhat since the weighting matrix v! has

a tridiagonal form

2 -t g 0 e 0
o -1 2 -1 0 ... O
Vv "= (n+1)(n+2) o -1 2 -1 - 0
o ... -1 2 -1
o ... 9] -1 2
and can be readily factored using the
Cholesky decomposition LLT, where L is
lower bidiagonal matrix given by
Tiq 0 0 o ... 0
Toy Too o ..
L= s} T30 T33 g ...
0 0 0 0 .. Tn’n_1 Ton
where
{net)(ne2) o) 713" agi=jen
Ty ~{(ne1)(n+2)(i-1)71}%  2<i=j+idn
0 otherwise

The weighted sums of squares function s(¥)
can be expressed as an unweighted least
squares problem in terms of the weighted
residuals, s(%):U(?)TU(¢), where the
weighted residuals are given by
U(¢)=LTs(v). In either formulation, s(¥) is
easily evaluated with computing formula
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n n
={n+ n+ 52 - E €

which can be minimized using any general
purpese optimization package.

The transformation function f{u) can be
specified in a number of ways., A common
procedure is to compute sample statistics
for JBi and 8, to determine which family is

to be used. Given the variability of higher
order sample moments, it is usually
preferable to fit the data using each of
the transformations and to make the choice
based upon the minimum sum of squares or
perhaps upon the minimum chi-square
goodness-of-fit statistic.

3. Examples

Two examples are presented to shouw the
effectiveness of the Johnson translation
system when estimation is performed by
least squares estimation. The first problem
is a risk assessment in structural relja-
bility and the second involves a
description of the sampling distribution of
parameter estimators arising in a nonlinear
statistical model. In each case, the
results from the Johnson system are
compared to empirical results and to the
analytic solution, when it is knouwn.

The sampled results were obtained using
FORTRAN V on a CDC CYBER 855 computer, with
random numbers obtained using IMSL
subroutines [4]., Each set of runs was
independently seeded. The numerical results
for the fitted Johnson distribution were
all performed on an IBM PC using Microsoft
FORTRAN version 2.0 . The Nelder-Mead
Simplex search algorithm [5] was used to
solve the minimization problem {5). The
Johnson curve fitting package [2] is a
portable, ANSI FORTRAN 77 program design to
perform all aspescts of fitting, including
data summary, fitting by moment matching to
sample or exact moments, estimation through
weighted least squares, ordinary least
squares, or percentile matching, and
comparison between empirical and fitted
distributions,

3.1 Structural Reliability Problem

Ayyub and Haldar [6] present a several
methodologies for evaluating structural
reliability and give an example for a
particular case. The general problem is to
determine from mechanical considerations
and wind loadings whether a structure is
likely to fail. Both the external wind
loadings and several of the structural
parameters are treated as random variates.
In the latter case, nonhomogensities of the
materials and uncertainties in exact
parameters are modeled through random
variation.
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For the particular case of a 120 ft high, 6
ft diameter cylindrical pressure vessel,
the equation for the failure surface Z is
given by

144 = X, F, -.0241344 C_ X_ V 2

z = 1y f %2 Vag ?

in which X, and X, are lognormally
distributed, Fy
distributed, and Vao is Weibull
distributed. T Fy’
Cf, X2, and V30 are alsoc assumed to be

and Cf are normally
The random variates X

mutually independent. The structure is
reliable if Z>0. It is desired to estimate
the risk probability, P{Z<0).

Ayyub and Haldar present a number of
approximate and simulation results,
including direct simulation and simulation
with variance reduction using antithetic
variates and conditional expectations,
alone and in combination, to get precise
estimates of the reliability of the
structure as a function of the nominal
thickness of the vessel walls of the
pressure vessel. It is important to note
that direct simulation does not work well
as the thickness of the vessel increases:
since as the risk decreases, fewer obser-
vations of Z<0 will be generated. For
instance, in two of the four cases
presented, no negative Z-values are
observed in random samples of size 5000.
The direct empirical estimates that
P{Z<0)=0 offer limited information about
the actual magnitude of the risk in these
cases.

Te illustrate the Johnson distribution fit
using weighted least squares, two Monte
Carlo samples of n=500 observations of Z
were generated. The two fits are compared
to the empirical distributions in Figures 2
and 3., The first sample was fit using the
SU family of distributions. The second

sample was fit using the Sy distribution

with a lower bound of -42,242 and a range
of 97,875. As illustrated, the fit in both
cases appears to be quite good. This is

confirmed numerically by the x2 goodness-
of-fit statistics for the two cases, 18.85
(p=17%) for the first case and 7.1 (p=93%)
in the second case.

The Johnson distribution can also be fit
using ordinary least squares, where the
covariances among the errors are not taken
into account. Since the weighted formu-
lation assigns more importance to the
extreme tails, there is reason to think
that the ordinary least squares fit could
give a better overall fit, except possibly
in the tails, This is illustrated for the
first case in Figure 4. Note that the
larger residuals near the center of the
dietribution in Figure 2 are reduced when
ordinary least squares is used as shown in
Figure 4.
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Figure 2: Weighted Least Squares Fit for Reliability Data Set it
(Smooth line is fitted curve).
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Figure 3: Weighted Least Squares Fit for Reliability Data Set 2
(Smooth line is fitted curve).
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Figure 4: Ordinary Least Squares Fit for Reliability Data Set 1

(Smooth line is fitted curve).

The least-squares fits can be contrasted to
the fit by moment matching. This is the
usual methed for choosing and fitting a
Johnson distribution. One selects the
appropriate family from the sample moments
using Figure 1, Dnce the family is
selected, the particular distribution is
chosen by matching its moments to the
sample moments. The standard algorithm of
Hill, Hill, and Holder [7] converged in the
first case but required coversion to double
precision operation to converge for the
sample moments in the second case.

The two cases also illustrate the use of
the Johnson fitted distributions for makin
estimates of the risk probability P{z<0).
The empirical estimate in the first case is
0, since the smallest observation in this
case is 65.7 . The risk estimate using the
fitted Johnson distribution is 0.00108. In
the second case the empirical estimate is
0.004, while the fitted Johnson distri-
bution estimate is 0.00205., A direct
estimate of the risk probability based on
20,000 Monte Carlo samples is 0.00505 (s.e.
.000897).

3.2 A Nonlinear Estimator Problem

Swain [8] presents a number of Monte Carlo
investigations of the sampling distribution
of estimators t for models nonlinear in the
parameters 6. The sampling distribution is
difficult to characterize for finite

samples when the model is nonlinear in the
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model parameters. For instance, even when
errors are normal, the sampling distri-
bution is typically only asymptotically
normal, and may be distinctly nonnormal
small samples.

in

As an example, consider the problem of
estimating © when observations are of the
form

yi = x; + o€ i=1,2

and X=(x1,x2)=(1,§). The errors £ are
independent random variates with zero means

and common variance 02. Least squares
solutions can be readily computed in this
problem, since t:log(y2gllog(§). Numerical

soclutions for the distribution of t can be
obtained for a number of error distri-
butions, including the {truncated) normal,
gamma, and uniform,

The versatility of the Johnson family of
distributions is illustrated by three sets
of samples for this nonlinear problem. Each
set contains 500 observations for a
particular error distribution for g£: the
first set has (truncated) normal errors,
the second has gamma errors, and the third
has uniform errors. The empirical distri-
bution function and Johnson fits using
weighted least squares are compared for the
three sets of observations in Figures §, 6,
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Figure 5: Weighted Least Squares Fit for Nonlinear Model! with Normal

Errors {Smooth line is fitted curve).

and 7. Somewhat better fits were obtained
overall using ordinary (unweighted) least
squares {not illustrated here?

4. Discussion

The figures illustrate the versatility and
quality of approximation using the Johnson
family of distributions when fit by
weighted least squares. The weighted least
squares method was also compared to the
methods of moment matching, percentile
matching [2], and ordinary least squares.
Heighted least squares fitting had two
noteworthy features: it always worked and
the fits obtained were generally good. In
this sense weighted least squares is a
robust procedure, since it aluways converged
to an acceptable solution. While other
procedures sometimes did a little better,
they were not uniformly superior; and in
particular, they did not aluays converge to
an answer. Ordinary least squares
solutions, for instance, generally required
many more jterations of the Simplex search
procedure than the weighted least squares
method; and sometimes ordinary least
squares failed to converge. On the other
hand, the ordinary least squares fit seemed
qualitatively to be a better fit over the
entire distribution when convergence uwas
obtained. Several goed fits were also
obtained using either percentile matching
or moment matching, but there appeared to
be somewhat more variability in the quality
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of the fits, and convergence was not aluways
obtained. Finally, it appears that the
moment matching algorithm converges more
reliably when the computations are
performed in double precision.
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