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ABSTRACT

This paper has a broad purpose and a
narrow purpose. The broad purpose is to
teach some general technigues of problem
solving, and the narrow purpose is to teach a
particular approach to modeling. These
purposes are attained by presenting a
sequence of three problems and solutions %o
these problems.

Many of the techniques of problenm
solving presented are taken from, or
suggested by, the works of Polya (1957, 1973,
1981). Readers interested in expanding their
problem solving abilities should strongly
consider reading these works. The particular
modeling viewpoint advocated in this paper is
that time-oriented approaches to modeling are
frequently preferable to space-oriented
approaches. Hence, the title of this paper.
Unfortunately, for most people, space-
oriented approaches to modeling are more
natural than time-oriented approaches. By
emphasizing the advantages of the
time-oriented approach, we hope %o dbroaden
the perspective of the reader.

1. ORGANIZATION OF THIS PAPER

Section 2 is a mental "warmup exercise,"
not specific to simulation. It presents a
problem for which the solution hinges
entirely on finding a proper way of viewing
the problen. Once the problem 1s examined
from the proper viewpoint, the solution is
immediately apparent.

Sections 3 and 4 present examples which
illustrate the benefits of modeling systen
behavior from a time-oriented perspective,
rather than a space-oriented perspective.
Section 3 presents a classic problem which is
often used to teach the concept of recursion
in computer science curricula. However, when
the problem is examined from the viewpoint of
describing behavior of system components over
time, as a simulationist would do, an elegant
time~oriented solution is immediately
apparent. Sectlon 4 presents an example of a
conveyor system which is representative of a
class of real-world simulation problems. A
space-oriented modeling approach which is
frequently applied to modeling conveyors is
presented. Deficiencies of this approach are
discussed, and a time-oriented modeling

approach is developed as a sequence of
improvements upon the space-oriented
approach.
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2. TFINDING THE PROPER WAY TO VIEW A PROBLEM

2.1 Statement of the Problem

Pigure 1 depicts the problem to be
discussed in this section: can the grid
shown, a 10 X 10 array, with diagonally
opposite corners removed, be covered by
forty-nine 1 X 2 rectangles? (Rectangles
cannot be overlapped; nor can they be sawn in
half.) This problem is taken from Kline
(1953).
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98 SQUARES 49 RECTANGLES

FPigure 1: The Problem

The first step in considering this
problem is to compare the areas represented
by the grid and the rectangles. In both
cases, the total area is 98. Thus our first
conclusion is that we cannot immediately
establish infeasibility; i.e., it might be
possible to find a way to cover the grid. At
this point, the serious reader should pause
to grapple with this problem for several
minutes, before proceeding.

2.2 Solving a Simpler Problem

When confronted with a difficult
problem, we can sometimes make progress by
first considering a simpler problem, then
returning to the more difficult problem,
applying what we have learned in the process
of solving the simpler problem. Figure 2
depicts a simpler problem: if we replace the
missing corners of Figure 1 and increase our
supply of rectangles to fifty, can the full
10 X 10 grid be covered by fifty rectangles?
The answer to this problem is an immediate
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"yes!" In fact, there are so many obvious
solutions to +this problem, that one is
immediately drawn to the more challenging
problem of specifying exactly how many unique
solutions exist. Consideration of the latter
problem, however interesting, would lead us
too far afield.

100 SQUARES 50 RECTANGLES

Pigure 2: A Simpler Problem

2.% Does the Problem Remind us of Anything?

For most readers, the grid in Figure 2
is suggestive of a checker board, and the
rectangles are suggestive of dominos.
(Strictly speaking, the checker board
familiar to most of us is an 8 X 8 grid;
however, in the game of international
checkers, a much more challenging game, a 10
X 10 board is used.) In the rest of this
discussion we shall refer to the grid and the
rectangles as +the checker board and the
dominos, respectively.

At this point in our discussion, the
checker board lacks one important element of
realism: on a real checker board, alternating
squares are painted dark and light colors.
This shortcoming is rectified in Figure 3.
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100 SQUARES 50 RECTANGLES

Pigure 3: Adding Bvocative Shading

2.4 Solving a More General Problem

By examining Figure 3, we can make a general
observation about the process of placing
dominos on the checker board. (Whether the
observation is useful remains to be
demonstrated.) No matter what strategy is
chosen for placing dominos, every domino
covers a pair of adjacent light and dark
squares of the checker board. To cover two
light squares or +two dark sqguares would
require sawing a domino in half, a clear
violation of the rules. Whether we've solved
anything to this point is arguable; however,
at the very least we have made an interesting
observation about the general prodblem of
placing dominos on the checker board.

2.5 Applying What We've Learned

At this point, we're ready to apply what
we've learned. The first thing we must do is
to paint the modified checker board shown in
Figure 1. The apparently unremarkable
results of this effort are shown in Pigure 4.
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98 SQUARES 49 RECTANGLES

Pigure 4: The Solution Becomes Apparent

TLet us examine PFigure 4 in 1light of the
general observation we made about domino
placement in the previous section. We know
that every domino must cover one light square
and one dark square. Therefore, forty-nine
dominos must cover forty-nine light squares
and forty-nine dark squares. The modified
checker board in PFigure .4 contains
forty-eight light squares and fifty dark
squares. Alternatively, the board could have
been painted so that it had forty-eight dark
squares and fifty light squares. 1In either
case, the diagonally opposite squares removed
from the full checkerboard are of +the same
color.

We now have all the information we need
to solve the problem. There is no way the
forty-nine dominos can be placed on the
modified checker board, because of +the
unequal numbers of dark and light squares.
The key to solving this problem was finding
the proper way of viewing the problem. Once
the problem was properly viewed, the solution
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was immediately apparent.

A TIME-BASED SOLUTION TO A LEGENDARY
PROBLEM

The Legend

3.

3.1

Figure 5 depicts a legendary problen,
Towers of Hanoi. The rules of the game
ag follows:

the
are

(1) A group of N disks of graduated
diameters is initially situated on peg
number 1.

The objective of the game is to move the
disks, one at a time, until all disks
have been moved to peg number 2 (or 3).
At no point can a larger disk be placed
on top of a smaller disk.

(2)

(3)

According to an ancient Brahmin legend, a
group of monks works around the clock, moving
golden disks in a game where N=64. VWhen all
disks have been moved to peg 2, the world
will come to an end. This is a game of
cosmic proportions.

The Towers of Hanoi Problem

Figure 5:

With a little experimentation, one soon
discovers +that when disks are moved
optimally, completing an N-disk game requires
2%*¥N-1 moves; i.e., a 6-disk game requires 63
moves. A 64-disk game requires 2%¥¥64-1
(18,446,744,073,709,551,615) moves. If the
monks are capable of making one move per
second, completing the game will take thenm
approximately 584,000,000,000 years.

%.2 The Problem
The problem to be considered in this section

is to design a computer program to print the
steps of an N-disk Towers of Hanoi game.
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3.3 The Traditional Recursive Approach

The Towers of Hanoi problem is frequently

used in computer science curricula as a
vehicle for illustrating the utilit of
recursive algorithms. (See Dromey (1982) for

a typical treatment.) A summary of the
recursive approach follows. Suppose we face
the problem of moving N disks from peg 1 to
peg 2. This problem can be decomposed into
three subproblems:

(1) Move N-1 disks from peg 1 to peg 3.
(2) Move the disk remaining on peg 1 to peg
2

(3) Move N-t disks from peg 3 to peg 2.

Subproblem (2) is trivial. Subproblems (1)
and (3) are alike, in that they both require
moving N-1 disks. Thus, we can reduce an
N-disk problem to an N-i-disk problem. To
solve the N-disk problem, we pause to solve
an N-1~disk problem. To solve the N-2-disk
problem, we must pause to solve an N-3-disk
problem. We continue this pattern until we
have reduced the original problem %o a 1-disk

problem, for which the solution is +trivial.
When we have solved the 1-disk problem, we
can resume the deferred 2-disk problem. As

we work our way back up the list of deferred
problems, additional problems will have to be
deferred, but eventually, we work our way
back to the original problem, having
completed all deferred problems, and the game
is over.

Figure 6 traces the pattern used to solve the
problem of moving four disks from peg 1 +to
peg 2. Disks are numbered from top to
bottom; i.e., disk number 1 is the smallest.
Underscored steps are steps which are
decomposed into subproblems. Disk moves are
numbered from 1t through 15. (Recall that a
4-disk game requires 2%¥4-1 moves.)

3.4 Non-Recursive Solutions
Despite the age of the Towers of Hanoil

Problem, a great deal has been published
about the problem in the past several years

(BEggers (1985), Franklin (1984), Floriani
(1984), Hudson (1984), Konopasek (1985),
Mayer and Perkins (1984), Meyer (1984), and

Stadel (1984)). The articles cited all
present alternative, non-recursive solutions
to the problem.

3.5 A Time-Oriented Approach

In this section, a time-oriented approach to
the Towers of Hanoi problem is presented. To
the author's knowledge, this approach was
first suggested by Birtwistle (1985).

Let us consider the recursive solution to the
Towers of Hanoi Problem in broad philo-
sophical ternms. The problem was viewed as
one of describing the behavior of a
complicated system, as a whole. The
complexity of the problem was dealt with by
systematically reducing large problems into
smaller problems, until easily solvable
problems remained. The recursive solution is
a top-down approach. By contrast, the
time-based approach to the Towers of Hanoi
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problem is a bottom-up approach. Rather than
taking as an initial goal the task of
describing the behavior of the system as a
whole, we ‘take as an initial goal the task of
describing the behavior of an individual
disk. If we can describe the behavior of
each disk, we can collectively describe the
behavior of the systenm.

Move disks 1...4 from peg 1 %o peg 2

Move disks 1...3 from peg 1 to peg 3

Move disks 1 & 2 from peg 1 to peg 2

1. Move disk 1 from peg 1 to peg 3
Move disk 2 from peg 1 to peg 2
Move disk 1 from peg 3 to peg 2

Move disk 3 from peg 1 to peg 3

Move disks 1 & 2 from peg 2 to peg 3

Move disk 1t from peg 2 to peg 1

Move disk 2 from peg 2 to peg 3

Move disk 1 from peg 1 to peg 3
Move disk 4 from peg 1 to peg 2
Move disks 1...3 from peg 3 1o peg 2

Move disks 1 & 2 from peg 3 to peg i

9.
10.

Move disk 1 from peg 3 to peg 2
Move disk 2 from peg 3 to peg 1
11. Move disk 1 from peg 2 to peg 1
12. Move disk 3 from peg 3 to peg 2

Move disks 1 .& 2 from peg 1 to peg 2

13.
14.
15.

Move disk 1 from peg 1 to peg 3
Move disk 2 from peg 1 to peg 2
Move disk {1 from peg 3 to peg 2

Game Complete.

Figure 6: Trace of Optimal Solution
for a 4-Disk Towers of Hanoi Problem

disk moves are numbered from 1
Let us assume that disks can be
moved at a rate of one per second. Using
this assumption, move numbers can be
interpreted in the time domain; e.g., the Nth
move takes place N seconds into the game.
Following a common practice in simulation

let us assume an implicit time unit (secondss
and an implicit time origin (time zero).
Under these assumptions, +the Nth move is
described as "taking place at time N."
Pinally, we choose to view the disks as

In Pigure 6,
through 15.
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active objects, rather than passive objects;
i.e., we say "disk N moves," rather than
"disk N is moved." The active-~object
world-view is used in transaction-flow and
network simulation languages. For a
discussion of world-views in simulation

languages, see Henriksen (1981).

Let us consider the behavior of disk 1 over

time. By examining PFigure 6, we see that it
first moves at time 1, from peg 1 to peg 3.
At time 3, it moves from peg 3 to peg 2. At
time 5, it moves from peg 2 to peg 1. At
time 7, it moves from peg 1 to peg 3. The
behavior of disk 1 can be summarized as
follows:

(1) pDisk 1 first moves at time 1.

(2) Disk 1 moves at every odd-numbered

time; i.e., the time between moves of

disk 1 is a constant 2.

(3) Disk 1 moves in a clockwise

direction; i.e., it moves from peg 1 %o

peg 3 to peg 2 to peg 1, ad infinitum.

Next, we consider the behavior of disk 2 over
time. By examining Figure 6, we see that it
first moves at time 2, from peg 1 to peg 2.

At time 6, it moves from peg 2 to peg 3. At
time 10, it moves from peg 3 to peg 1. At
time 14, it moves from peg 1 to peg 2. The
behavior of disk 2 can be summarized as
follows:

(1) Disk 2 first moves at time 2.

(2) The time between moves of disk 2 is a
constant 4.

(3) Disk 2 moves in a counterclockwise
direction; i.e., it moves from peg 1 to
peg 2 to peg 3 to peg 1, ad infinitum.

In general, the behavior of disk N over time
is as follows:

(1) Disk N first moves at btime 2%%(N-1).
(2) The time between moves of disk N is a
constant 2%¥N.

(3) If N is odd, it moves clockwise;
otherwise it moves counterclockwise.
Note that the direction of motion
depends on the destination peg. In
table 6, the destination peg was peg 2.
If the destination peg had been peg 3,
odd-numbered disks would have moved
counterclockwise, and even-numbered
disks would have moved clockwise. The
direction of motion also depends on the
number of disks. For example, if we
wanted to move seven disks from peg t to
peg 2, odd-numbered disks would move
counterclockwise, and even-numbered
disks would move counterclockwise.

From the above description, an active object
simulation program for the Towers of Hanoi
problem can be constructed as follows:

(1) Create N active objects, one per disk.

(2) Schedule the first move of each disk I
to take place at time 2%%(I-1).

(3) Set the constant time between moves for
each disk I to 2%*I.

(4) If the number of disks is even, and the
destination peg is peg 2, or 1if +the
number of disks is odd and the
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destination peg is peg 3, set the
direction of motion for all odd-numbered

disks to be counterclockwise, and set
the direction of motion for all
even—-numbered disks to be clockwise. If
the number of disks is odd, and the
destination peg is peg 2, or if the
number of disks 1s even and the
destination peg is peg 3, set the

direction of motion for all odd-numbered
disks to be clockwise, and set the
direction of motion for all even-
numbered disks to be counterclockwise.
Schedule an end-of-simulation event at
time 2%*N-1.

(5)

A Towers of Hanoi program written in GPSS/H
(Henriksen & Crain (1983)) is shown in
Appendix A. The inner loop of the program is
four statements long. One of the four
statements prints a trace of the current
move. The elegance of +his approach is
apparent in the compactness of the program.
You can't beat the clock!

The GPSS/H program was executed on an Amdahl
5860 computer, a very powerful mainframe
machine. The program required about 7.5
microseconds of CPU time per move (with trace
output suppressed). If +the monks of the
legend were replaced by the GPSS/H program,
the world would end after 4,380,000 years of
program execution. 1In fairness to the monks,
it must be pointed out that even if a
computer could be made to run non-stop for
4,380,000 years, hardware limitations would
prevent the program from completing a 64-disk
game. To work properly, the program requires
64 bits of precision in its time calcu-
lations. GPSS/H uses a double precision
floating point clock. On the Amdahl 5860,
double precision arithmetic affords 56 bits
of precision. Once the simulator clock
reaches a value of 2¥¥56, the program will go
into an infinite loop, because adding a time
increment of 1 to 2%¥56 yields a result of
2%%¥56, due to limited precision. World
without end, amen!

4.
4.1

MODELING A RANDOM ENTRY CONVEYOR SYSTEM
DESCRIPTION OF THE SYSTEM

Figure 7 portrays a hypothetical conveyor
system. The operation of the system is as
follows:

(1) Pour pickers work along adjacent,
non-overlapping 25-foot sections of a
100-foot conveyor.

Pickers process random orders which
require them to pick (retrieve) cartons
from a storage area alongside the
conveyor. Cartons are placed on the
conveyor, to be sent to a loading dock.
The random locations from which cartons
are picked are uniformly distributed
along the 25-foot area manned by each
worker.

Cartons are 11, 17, or 23 inches 1long,
with equal probability. (The curious
reader might wonder why lengths of 12,
18, and 24 inches were not chosen. The
method behind this madness will be

(2)

(3)

(4)

~3
~1

—» CONVEYOR ———p LOADING

14
Ty

STORAGE AREA

Figure T: A Hypothetical Conveyor Systenm

revealed below.)

Adjacent cartons require a minimum of 12
inches of clearance between them on the
conveyor.

Pickers are lazy, in the sense that once
they have picked a carton from storage,
they move directly to the conveyor,
along a path perpendicular to the
conveyor, and then wait for a space
large enough to accommodate the carton
to pass by their current position.
Pickers do not roam to the left or right
along the conveyor, looking for free
conveyor space, even if the conveyor is
temporarily stopped due to blockage.
Cartons move along the conveyor until
they reach the loading dock.

The loading dock can accommodate eight
cartons, independent of carton sigze.

Two workers remove cartons from the
loading dock and place them onto trucks.
The conveyor is a non-accumulating
conveyor; i.e., it cannot slide wunder
blocked cartons. If a carton reaches
the end of the conveyor, and the loading
dock is full, +the conveyor is halted
until the next carton is removed from
the loading dock.

(5)

(6)

(7)
(8)
(9)
(10)

For the most part, details of system timing
are irrelevant to the discussion in this
paper; however, for those enterprising
readers who wish to construct models of this
system on their own, hypothetical timing
information is provided. The timing has been
chosen to provide interesting results, e.g.,
frequent blockages. The timing of the system
is as follows:

(1) The conveyor moves at a speed of one
foot per second. (Starts and stops are
assumed to be instantaneous.)

The +time required for a picker to move
from his current position %o the
location of his next order (in the
storage area) is uniformly distributed
from 1 to 10 seconds, independent of the
actual distance traveled.

The time required for a picker to pick a
carton and carry it from the storage
area to the conveyor is uniformly
distributed between 5 and 10 seconds.
When sufficient free space is available

(2)

at a picker's current position, he
places his carton on the conveyor
instantaneously.

(5)

It is assumed that cartons are removed
from the loading dock instantaneously.
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(6) The time required for a worker to move a
carton from the loading dock to a truck,
and to return to the loading dock is
uniformly distributed beftween 8 and 12
seconds.

4.2

The term "leading edge" is used to refer to
the right-hand (downstream) end of (1)
carfons on the conveyor or alongside the
conveyor, read for placement onto the
conveyor and (2¥ intervals of wunoccupied
conveyor space. Similarly, +the term
"trailing edge" is used %o refer to the
left~hand (upstream) end. When applied to
cartons and intervals of unoccupied space,
"current position™ means "the space from
leading through trailing edges." When
applied to pickers, "current position" means
"current position of the carton he is loading
onto the conveyor." The term "free space" is
used to refer to intervals of unoccupied
space- on the conveyor (between caritons, %o
the right of the first carton, and to the
left of the last carton.) If the conveyor is
empty, the entire conveyor is free space.

TERMINOLOGY AND CONVENTIONS

TRUE is used as a synonym for "1", and PALSE
is used as a synonym for "O". Saying that a
switech is "set" means "set to a TRUE-value,"
and saying that a switch is "cleared" means
"set to a FALSE-value."

Distances along the conveyor are measured as
digtances from the loading dock.

4-3

The discussion in the remainder of Section 4
will focus on two major modeling difficulties
presented by the system described above: (1)
accounting for the conveyor space consumed by
cartons and (2) implementing the rules by
which a picker waits for an adequate interval
of free conveyor space to flow by his current
position,. Both of these difficulties are
exacerbated by the fact that +the conveyor
starts and stops due to causes beyond the
control of the pickers.

MODELING DIFFICULTIES

4.4 SOME CONVENIENT MODELING TRICKS

This problem deals with spatial requirements
which are expressed in inches, and it
includes a conveyor which moves at +twelve
inches per second. If we were to choose a
time unit of one second, the time required
for <the conveyor to move N inches would be
N/12; i.e., move distances would have to be
divided by 12 to get move times. Instead, we
will use a time unit of 1/12 second. By
employing %his convention, no scaling is
required to convert move distances into move
times. ,

Modeling the 12-inch minimum separation rule
can be done by artificially extending the
length of each carton by six inches on both
ends of the carton; i.e., a 17-inch carton is

treated as requiring 29 inches of space. For
the rest of this paper, all cartons are
assumed +to be extended on each end. Thus

"leading edge” really means "six inches ahead
of the true leading edge," and "trailing

edge" really means "six inches behind the

true trailing edge."
4.5 A SPACE-ORLENTED MODELING APPROACH
4.5.1

A commonly used approach to modeling conveyor
systems of the type we are discussing is %o
partition the surface of the conveyor into
small segments. Since we are dealing with
packages whose dimensions are expressed in
inches, we will divide the conveyor into
1-inch segments. (If we had chosen carton
lengths of 12, 18, and 24 inches, all lengths
would have been evenly divisible by 6,
allowing the use of 6-inch segments.) Using
this approach, the surface of a 100-foot
conveyor is treated as 1200 {-inch segments.

Representing Conveyor Space

A simulation program to implement the above
approach to accounting for conveyor space
could use an array of 1200 TRUE/FALSE
switches, with a FALSE-value indicating a
free inch and a TRUE-value indicating an
occupied inch. In GPSS, for example, a
collection of 1200 contiguous Logic Switches
could be used. Using this representation,
placing a 17-inch carton on +the conveyor
would require 29 consecutive FALSE-values,
beginning at the leading edge of the picker's
current carton and extending upstream.
(Remember the 12-inch clearance rule.

4.5.2 Simulating Carton Placement

An algorithm for simulating the placement of
a carton onto the conveyor is shown in PFigure
8. The description is language-independent
(although evocative of the C language), and
the algorithm is easy to implement in most
simulation languages. Only a "wait-until"
capability is required; e.g., GATE LR in
GPSS. The detection of delays, for which
explicit logic is shown in Figure 8, can be

.modeled conveniently in GPSS by using a

SIM-mode TRANSFER Block.

Several alternative algorithms for searching
the switch array were implemented in GPSS.
No significant improvements were obtained
over the algorithm of Figure 8. 1In one case,
a more sophisticated algorithm (using GPSS
SELECT Blocks to search ranges of switches in
one fell swoop) performed worse than the
simple algorithm. Apparently, the setup
costs for the "improved" search were not
warranted.

4.5.3 Simulating Conveyor Motion

An algorithm for simulating the motion of +he
conveyor is shown in Pigure 9. Once again,
the description is language-independent. The
handling of conveyor stoppage is admittedly
inelegant, but probably sufficiently
accurate. (This is diseussed in detail in
Section 4.5.4.)

4.5.4 Comments on The Space-Oriented
Approach

The approach outlined above has two
deficiencies: (1) it consumes enormous
amounts of computer time, and (2) it contains
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delay_incurred = TRUE; /* Loop setup */

while (delay_incurred == TRUE) /* Until every inch of conveyor space required
to hold the carton is free at a single
instant in time */

leading edge = displacement (inches from the loading dock)
of the leading (downstream) edge of the current
carton location;

trailing edge = displacement (inches from the loading dock)
of the trailing (upstream) edge of the current
carton location;

delay incurred = FALSE; /* No delays this pass */
for (i=leading_edge to trailing_edge) /* Scan N contiguous inches */
if (switeh[i] == TRUE) /¥ This inch is occupied */
éelay incurred = TRUE; /* Not instantaneous */
wait until (switch[i] == PALSE); /* Wait for this inch to clear */

Figure 8: A Space~Oriented Algorithm for Simulating Carton Placement

while (leading edge > 1) /* Until leading edge of carton occupies
{ the very last inch of the conveyor */

wait 1 time unit; /¥ Move 1 inch ¥/

wait until (conveyor_stopped == PALSE); /¥ Conveyor may be stopped */

leading edge = leading_edge - 1; /* One inch of motion */
switch[leading_edge] = TRUE; /* Inch ahead */
switeh[trailing edge] = FALSE; /* Vacated inch */
trailing edge = trailing edge ~ 1; /* One inch of motion */

if (loading dock is full)

conveyor_stopped = TRUE; /¥ Stop the conveyor */
Yait until (loading dock is not full);

while (trailing edge > 0) /* Until the trailing edge
{ is off the conveyor */
wait 1 time unit; /% Move %1 inch */
switch[trailing edge] = FALSE; /* Vacated inch */
trailing edge = trailing edge - 1; /¥ One inch of motion ¥/

Pigure 9: A Space-Oriented Algorithm for Simulating Conveyor Motion

inaccuracies. BPBnormous amounts of computer system. Accounting fqr carton position§ to
time are consumed, because modeling the the nearest inch is almost certainly
inch-by-inch progress of cartons down the acceptable.  Recognizing conveyor stoppages
conveyor requires scheduling an event for within 1/12 second of their actual time is
every inch of motion for every object on the probably also acceptable, unless stoppages
conveyor. Inaccuracies are of +two forms: occur at an extremely high frequency, in
(1) accounting for space to only the nearest which case the cumulative error may become
inch and (2) recognizing conveyor stoppages unacceptable. (If the conveyor stops this
at points in time which are after their frequently, redesign of the real system is
actual points of occurrence. Both types of probably in order.)

errors are acceptable for the hypothetical

719
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Although +the inaccuracies inherent in the
space~oriented approach are probably
acceptable, the enormous amount of computer
time it consumes is probably unacceptable.
In the next section, we present some ways of
improving performance.

4.6 TIMPROVING UPON THE SPACE-ORIENTED
APPROACH

4.6.1 Problems With the Space-Oriented

Approach

When simulations using the modeling approach
of Section 4.5 are run, most of the computer
time wused is spent updating the data
structure used %o represent conveyor space.
For example, assume that at time 100, a
23~inch carton 1s to be placed on the
conveyor, with its leading edge 301 inches
upstream from the loading dock. Further
assume that sufficient free space is
available at the carton's current position.
The space-oriented approach would result in
the setting of switches 301...335.
(Remember, we add six inches on each end, for
clearance.) At time 101, switeh 300 would be
set and switch 335 would be cleared; at time
102, switch 299 would be set and switch 334
would be cleared; ete. This pattern would
continue until the leading edge of the carton
reached the loading dock, at which point
switches 1...35 would be set. The excessive
time spent setting and clearing switches is
required because the switch array is a
time—-dependent data structure; i.e., it nmust
be updated over time.

4.6.2 Making Switch Values Time-Independent

Let's set an optimistic goal: to develop a
data structure that requires updating only
when a carton is placed on or removed from
the conveyor. If switch settings
representing a carton are to remain unchanged
for the period of simulated +time the carton
occupies space on the conveyor, the positions
represented by the switches must be made
time-independent. To do so requires that we
modify or augment that data structure. In
trying to develop a time-~independent
representation, we will proceed as follows:

{1) We will make some simplifying assump-

) tions.

(2) We will design a modeling approach which
takes advantage of our simplifying
agssumptions.

(3) We will go back and deal with our
simplifying assumptions, one-by-one.

Our simplifying assumptions are as follows:

(1) Assume that +the switch array is of

unlimited size.

{2) Assume that conveyor stoppage can be
ignored.

(3) Assume that the simulator
integer-valued.

clock is

Using these assumptions, the following
modeling approach achieves time-independent
interpretation of switch values:

(1) Let switech number I represent the status
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of inch number I at time gzero.

Let switch number I represent the status
of inch number I-1 at time 1. In other
words, let switch number I+1 represent
inch number I at time 1.

Generalizing upon (2), let switch number
I represent the status of inch number
I-T at time T. In other words, let
switch number I+T represent inch number
I at time T.

(2)

(3)

To illustrate this modeling approach, let us
reconsider the example of section 4.5.1. At
time 100, a disbtance of 301 inches from the
loading dock is represented by switch number
401. Thus, switches 401...435 would be set
to represent the space occupied by the carton
on the conveyor. At time 401 (assuming no
conveyor stoppage), switch 401 would
represent the first inch of the conveyor,
i.e., the inch immediately to the left of the
loading dock. By revising the use of the
switch array, we have eliminated the need for
updating the array between placements and/or
removals of cartons from the conveyor.

We now turn our attentions to assumptions
(1), (2), and (3). An unlimited array
(assumption (1)) is needed, because as time
increases, successively higher indices are
used to access the array. For the 1200-inch
conveyor of the hypothetical system, if +the
simulation is to run to time T, an array of
size 1200+T is needed. We can get around
this problem by noting that after +time 7,
elements 1...T of the array are unused, i.e.,
available for reuse. This suggests treating

the switch array as a circular array, as
follows:
Let switech number (I+?) modulo L

represent the status of inch number I a%
time T, where I is the length of the
conveyor, in inches.

X modulo Y is defined as X minus the integer
portion of X Y. If X and Y are integer
values, X modulo Y is the remainder of X / Y.
Most programming languages provide a
primitive for performing modulus division
operations upon integer operands, e.g., the
MOD built~in function of Portran. If X
and/or Y are floating point values, an
analogous floating point operation must be
used, e.g., FMOD in Portran. Note that for
integer operands, the expression I modulo J
has values ranging from 0...J-1; i.e., +the
remainder after dividing by J is at most J-1.
When implementing the switch array in
languages which do not allow zero-valued
array indices, the expression (I+N) modulo L
+ 1 can be used. By introducing circular use
of the switch array, we have eliminated the
need for assumption (1) above.

We now turn our attention to assumption (2),
(ignoring conveyor stoppages). At any given
point in simulated time, the length of time
Tthe conveyor has been moving is the current
simulated time, minus the amount of time the
conveyor has been stopped. In other words,
down-time doesn't count. Down-time can be
incorporated into our revised modeling
approach as follows:
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Let switch number (I+T-D) modulo L
represent the status of inch number I at
time T, where L is the length of the
conveyor, in inches, and D is the
cumulative down-time for the conveyor.

To illustrate the incorporation of down-time,
let us once again reconsider the example of
section 4.5.1. Leaving all other assumptions
as before, assume that a conveyor blockage of
20 time units' duration occurs at time 150.
Further assume +that +this is the first
blockage to occur. At time 150, the leading
edge of the carton is 251 inches from the
loading dock. The status of inch 251 is
represented by switch (251+150-0) modulo
1200, i.e., switch 401. As long as the
conveyor is blocked, simulated +time and
cumulative down-time increase and decrease,
respectively, at identical rates. For
example, at time 160, the status of inch 251
is represented by switch (251+160-10) modulo
1200, i.e., (still) switch 401. Assuming
resumption at time 170, and no further
blockages, the leading edge of the carton
will reach inch 1 of the conveyor at time
420. At this time, the status of inch 1 will
be represented by switch (1+420-20) modulo
1200, i.e., switch 401.

We now turn our attention to assumption (3),
(an integer-valued clock). If the simulator
clock is implemented as a floating point
variable, this assumption can be dealt with
by simply +truncating time values used to
index into the switch array. For example,
switch 1 represents the status of inch 1 from
time O through time 0.99999...

An algorithm which implements the modeling
approach developed above is shown in Pigure
10. The corresponding algorithm for
simulating conveyor motion is shown in Figure
11. An inmportant assumption is implicit in
these algorithms: all time delays must be
increased by any additional down-time exper-
ienced after the start of the time delay.
Depending on the language used, this can be
difficult to do straightforwardly. For
example, in GPSS, scheduled time delays can
be lengthened by using the FUNAVAIL Block.
These statements are capable of interrupting
Transactions (units of traffic), but only if
the Transactions are in control of a single
server entity, called a Pacility; i.e.,
interruptions are server-based. In the
hypothetical system under consideration, a
GPSS program could easily be modified to have
the pickers acquire (SEIZE) a Pacility prior
to initiating their delay (ADVANCE) to wait
for free space to come by. The PFacility
could be freed (RELEASEd) upon completion of
the delay. Whenever the conveyor experienced
blockage, a FUNAVAIL Block could be used to
extend the delay times of all active pickers
currently waiting for free space.

The GPSS approach works well for extending
time delays for the pickers, but is difficult
to implement for extending travel time delays
experienced by cartons. The difficulty stems
from the fact that PUNAVAIL operates on
Pacilities. To use FUNAVAIL would require
SEIZEing a Facility for each carton on the
conveyor. Since cartons come and go, a

dynamic pool of Pacilities would have to be
managed by the GPSS program.

To overcome the difficulties in extending
delay times, the technique of optimistic

scheduling can be used. This technique works
as follows:

(1) Record any data necessary for subsequent
computation of theé amount of time by
which a scheduled event must be delayed;
e.g., record the current cumulative
down-time.

Schedule an event optimistically, hoping
that no changes will occur which affect
its scheduled time.

At the scheduled time, test to see
whether current conditions match those
recorded in step (1). Por example, if
the current cumulative down-time exceeds
that recorded in step (1), additional
delay must be accounted for. If a
change has occurred, calculate the
amount by which the time delay must be
extended, and return %o step (1).
Otherwise, the scheduled event can take
place at the present time.

(2)

A language-independent algorithm implementing
this technique is shown in PFigure 12.

4.6.3 The Payoff

GP3S models were constructed to test the
space—-oriented and improved approaches to
modeling the hypothetical conveyor system.
For runs simulating 10 minutes' operation of
the system, the space-oriented approach
consumed 54 seconds of CPU time on a VAX
11/750, and the improved approach consumed 5
seconds.

4.7 A TIME-ORTIENTED APPROACH
4.7.1

Although +the improved modeling approach
yielded a tenfold improvement in execution
time, there exists an even better modeling
approach. The major advantage of the
improved approach is the drastic reduction in
the number of times switches have to be
modified. However, even in the improved
approach, large numbers of switches must be
manipulated for each carton. Pollowing our
"frontal assault" style of solving problems,
let us assume that the switeh array is to be
completely eliminated, and consider what data
structures would be required to take its
place.

Eliminating the Switch Array

An interval of free space on a conveyor can
be represented by two quantities: its
position and its length. Accordingly, we
propose the following general approach to
representing free space:

(1) Assume that initially, a huge interval
of free space extends from the loading
dock to beyond the left end of +the
conveyor. The interval must be large
enough so that its +railing edge never
gets close to the left end of +the
conveyor during a simulation run.



J. O. Henriksen

FOREYER

leading edge = displacement (inches from the loading dock)
of the leading (downstream) edge of the current
carton location;

trailing edge = displacement (inches from the loading dock)
of the trailing (upstream) edge of the current
carton location;

FOREVER

/* Compute the index of the switch representing the leading edge of the carton */

ifirst = (leading edge + current time - conveyor_down_time) MOD conveyor length;

/* Compute the index of the switch representing the last inch of the conveyor */

ilim = (conveyon_length + current_time - conveyor_ down time) MOD conveyor,_length;

if (ifirst < ilim) /¥ No wrap-around */
find_start: for (i = ifirst o ilim)
if (?witch[i] == FALSE) /* A free inch has been found */
jlim = i + carton gize - 1; /* Last inch */
for (j = i to jlim)
if (SWitCth] == TRUE) /* An occupied inch */
ifirst = j + 1; /* Next inch */

foto find_ start;
exit the loop on i;

else

Perform search in two pieces, one scanning from ifirst

to the end of the

switch array, and the other (if necessary) from the start of the array

to ilim.

delta t = (i - ifirst + conveyor_length) MOD conveyor_ length;

/* Allow wrap-around */

if (delta t ==

exit the FOREVER loop; /* Space available NOW */
walt for delta t time units to elapse; /¥ See note in text */
} /* End of FOREVER loop => go retry the scan */

Figure 10: An Improved Algorithm for Simulating Carton Placement

wait leading edge-1 time units; /* Move to inch 1. (See note in text.) */

' wait until (loading dock is not full);

whil? (trailing edge > 0) /¥ Until the carton is off the conveyor */
wait 1 _time unit; /* Move 1 inch. (See note in text.) */
switeh[trailing edge] = FALSE; /¥ Vacated inch */
trailing edge = trailing_edge -~ 1; /¥ One inch of motion */

Figure 11: An Improved Algorithm for Simulating Gonveyor Motion
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FOREVER

saved_down time = cumulative down_time;

wait scheduled delay time units;

exit the FOREVER loop;

if (cumulative down time == saved_down_time)

scheduled_delay = cumulative down time - saved down_ time;

/¥ Optimistic delay */

/¥ Make up difference */

Pigure 12:

(2) Represent each interval of free space
with an object having -position and
length attributes. Position can be
defined as either the leading or
trailing edge position.

Place these objects in a list sorted by
position.

When a carton is to be placed on the
conveyor, search the list to find an
interval whose trailing edge is at, or
to the left of, the trailing edge of the
carton, and whose leading edge is ab, or
to the right of, the leading edge of the
carton. Remember that leading and
trailing edges have been adjusted by six
inches, to implement the 12-inch
clearance rule. By assumption (1), an
interval of free space will always exist
beyond the left end of the conveyor.

If the leading edge of the selected
interval has already reached or passed
the leading edge of the current carton,
proceed to step (8).

Wait until +the leading edge of +the
interval passes the position of the
current carton.
Return to step (4),
selected interval.
delay of step (6),
have been
free space.
Alter the length attribute of the object
representing the interval of free space,
to take into account the space consumed
by the current carton. If the current
carton is being placed in the middle of
an interval of free space, create a new
object to represent the interval of free
space ahead of the current carton, and
place the new object into the list of
intervals of free space.

(6)

(7 t0 retest the
(During %he time
other cartons may

laced into the interval of

(8)

4.7.2 Making the New Data Structure
Time-Independent

The above approach to representing free space
has a major disadvantage: it is ftime-
dependent; i.e., the data which represents
intervals of free space must be updated over
time. We've temporarily taken a giant step
backward. Our new data structure
incorporates the worst feature of the switch
array of the space-oriented modeling approach
presented in Section 4.5.

To find a way to make the list representation
time-independent, let wus reconsider our

The Optimistic Scheduling Algorithm

choice of attributes wused to characterize

intervals of free space. Because the
pogition of an interval of free space is
time-dependent, the "position" attribute is

not what we really need. What we'd like to
have is a current position attribute. We can
calculate the current position of an interval
of free space if we know a past position and
how much time has elapsed since it was at
that position. This suggests adding a
"time-stamp" attribute to our data structure,
where the time-stamp records the time at
which +the position attribute was recorded.
Current position can then be expressed as old
position - (current time - time stamp). (As
time increases, position decreases, following
the convention of measuring distance as
distance from the loading dock.)

The above formula for determining current
location fails to take conveyor stoppage into
account. This is because our statement of
how to calculate current position was overly
simplistic. We should have said that current
position can be calculated if we know a past
position and how far the conveyor has moved
since 1t was at that position. The time the
conveyor has actually been moving since i%
was at a previous position is the elapsed
time, less down-time incurred since it was at
the previous position. This suggests adding
a "down-time-stamp" attribute to our data
structure, where the down-time-stamp records
the cumulative down-time observed at the time
at which the position and time-stamp
attributes were recorded. Using all three
attributes, the current position of an
interval of free space can be expressed as
0ld position - (current time - time stamp) +
(cumulative down time - down time stamp).
Since neither the attributes used to compute
position nor the 1length attribute require
updating over +time, the data structure for
describing intervals of free space is
time~independent.

4.7.%3 Improving the Search

The search of the list structure requires the
following comparison:

Compare: required space position

to: free_interval_ old position
- (current_time - time stamp)
+ (cumulative down_time

- down_time Stamp)
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Removing parentheses and regrouping yields
the following equivalent comparison:

Compare: required space position
to: free_interval_old position
~ current time
+ time_ stamp
+ cumulative down_tinme

down_time stamp

Regrouping once more yields the following
equivalent comparison:

Compare:
+

required_space_position
current time
cunmulative down time

to: free_interval_old position
time stamp

down_time_sbtamp

+

Note that "free_interval_ old_position,"
"time stamp," and "down_ time stamp" are all
known at the time a position is recorded.
Therefore, rather than storing these three
attributes separately, we can store the
expression free_interval old position -

time_stamp + down_time_stamp. Thus, a
time-independent representation of an
interval of free space can be entirely

characterized by +two values, the above
expression and the length of the interval.

The list structure for representing intervals
of free space can be implemented in virtually
any simulation language. In the worst case,
lists of objects could be built "by hand,"
using two-dimensional arrays. In Simscript
I1.5 (TM) (Russell 1983), the list structure
could be implemented directly as a ranked
In GPSS, User Chains could be used;
User Chains are used for holding
called Transactions. As
presented above, the search algorithm is
designed for searching passive objects. The
approach is easily modified to allow use of
PTransactions to represent intervals of free
space. Purthermore, the BV-form of the
UNLINK Block can be used to locate a suitable
interval of free space in a single statement.

set.
however,
active objects,

4.7.4 Optimizing the Search

Despite our improvements, the use of a list
to represent free space has one disadvantage,
compared to the use of a switch array. The
switch array is a data structure which is
directly indexable. Thus the starting
position for any search can be calculated.
When the list representation is used, it
would appear that the list must be searched
from the beginning. A list of objects
ordered by a particular common attribute is
referred to in computer science literature as
a priority gueue. Event lists in simulation
languages are an example of this class of
problens. A great deal has been written
about priority queue and event 1list
algorithms. (See Jones (1986) and Henriksen
(1983), for example.) By replacing the
linear search with an appropriate algorithm,
gearch times can be significantly reduced.

4.7.5 Eliminating the Free Interval List,
Per Se

An alternative to maintaining a separate data
structure for intervals of free space is to
augment the set of attributes used to

characterize cartons on the conveyor, to
include additional attributes which
characterize intervals of free space. In

other words, every carton on the conveyor can
carry a description of the free space ahead
of it. To avoid special cases, an imaginary
carton can be placed on the conveyor at an
arbitrarily large distance from the loading
dock, with an "infinite" interval of free
space in front of it. The large distance
guarantees that +the imaginary carton will
never reach the real conveyor, and the
infinite size guarantees that there will
always be at least one carton with space in
front of it sufficient to hold any carton.

4.7.6 The Payoff

A GPSS model was constructed to evaluate the
effectiveness of the approaches presented in
Section 4.7. For a run simulating 10
minutes' operation, the model consumed 1.75
seconds of CPU time on a VAX 11/750 computer.
Recall that the space-oriented model of
Section 4.5 consumed 54 seconds of CPU time,
and the improved model of Section 4.6
consumed 5 seconds.

Due to space limitations, program listings
have not been included herein; however,
listings of the models are available from the
author on request.

Section 4.7 has presented a detailed analysis
of one aspect of modeling conveyor systems.
Readers interested in further exploring
technigues for modeling conveyor systems
effégiently should see (Henriksen & Schriber,
1986).

5. CONCLUSIONS

Section 2 demonstrated +the
finding the

importance of
right way of looking at a
problem. Section 3 presented a problem for
which viewing the problem from a
simulationist's time-oriented perspective led
directly to a solution. The example of
Section 3 is remarkable, in that the
time-oriented perspective has rarely been
employed to solve this problem. In Section
4, the problem-solving philosophy developed
in Sections 2 and 3 was applied to a
representative simulation problem. in
simulations of the type presented in Section
4, one models the behavior of objects in
space and time. A modeling approach commonly
used to simulate such systems was illustrated
in Section 4.5. The modeling approach

overemphasized the spatial aspects of
describing system behavior and
underemphasized the timing aspects. The

major shortcoming in the modeling approach
was the use of time-dependent data structures
which required frequent updating, resulting
in intolerably large execution times for
simulation runs. In Section 4.6,
time-independent data structures were derived
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from the data structures developed in Section
4.5, resulting in a significant improvement
in execution time. In Section 4.7, a
modeling approach was presented, for which
the major objective was to develop the best
possible time-independent data structures.
Expressions including time-dependent
variables were carefully constructed so as to
minimize the amount of computation required
to compare positions of objects in space.
The superiority of this time-oriented
approach was clearly demonstrated.
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A GPSS/H PROGRAM FOR THE TOWERS
OF HANOI PROBLEM

APPENDIX A:

GPSS/H VAX/VMS RELEASE 0.96 (UG206) 14 AUG 1986 17:49:27 FILE: HANOI.GPS
LINE# STMT# IF DO BLOCK# ¥LOC OPERATION A,B,C,D,E,F,G  COMMENTS
1 1 SIMULATE
2 2 *
3 3 * TOWERS OF HANOI - TIME-DOMAIN SOLUTION
4 4 *
5 5 TARGET SYN 2 DESTINATION PEG
6 6 NDISKS SYN 4 NUMBER OF DISKS
7 7 DONE SYN 15 2%y
9 9 1 GENERATE AC1,,1,,1,4PF AT TIME 1,2,4,8,...
10 10 2 Top ASSIGN IMT,AC1+AC1,PF TIME BETWEEN MOVES
11 1 3 ASSIGN DISKNO, N$TOP, PF DISK NUMBER
13 13 4 (PF$DISKNO_ ALTERNATES
14 14 4 +(TARGET-2) ALLOW FOR TARGET DISK #
15 15 ) +(NDISKS€2))_ ALLOW FOR ODD OR EVEN N
16 16 4 82+1 EVEN/ODD: 1/2 OR 2/1
18 18 5 DLOOP  BPUTPIC FILE=SYSPRINT,(_
19 19 5 ACT, TIME = MOVE NUMBER
20 20 5 PF$DISKNO, _ DISK NUMBER
21 21 5 PF$PEGNO+1,_ CURRENT PEG
22 22 5 (PF$PEGNO+PF$PEGINC)€3+1) NEXT PEG
23 23 5 MOVE NUMBER *: MOVE DISK * FROM PEG ¥ TO PEG *
25 25 6 ASSIGN PEGNO, (PF$PEGNO+PF$PEGINC)@3,PF NEXT PEG
26 26 7 ADVANCE PF$IMT TIME UNTIL NEXT MOVE
27 27 8 TRANSFER ", DLOOP LOOP FOREVER
28 28 *
29 29 * TIMER SEGMENT
30 30 *
31 31 9 GENERATE »»DONE, 1, ,4PF MOVE ALL N DISKS
32 32 10 TERMINATE 1 SHUT DOWN
33 33 *
34 34 * RUN CONTROLS
35 35 ¥
36 36 START 1,NP SUPPRESS DEFAULT OUTPUT
37 37 END
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