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ABSTRACT

An object-oriented style of computation is especially well-
suited to simulation in domains that may be thought of as consist-
ing of intentionally interacting components. In such domains, the
programmer can map the constituent domain components onto ob-
jects, and intentional interactions (e.g. communications) onto mes-
sage transmissions. However, some events or interactions between
real world objects cannot be modeled as naturally as we might like.
Improper modeling of these interactions inevitably leads to incon-
sistent simulation states and processing errors.

The research reported in this paper identifies two categories of
simulation activities that are unnatural and difficult to implement in
object-oriented simulations: (1) scheduling events which depend on
the continuous aspect of time; and (2) presenting a graphical
display of a simulation so that any changes in the simulation state
are immediately visible.

Following a discussion of these deficiencies, we present a
methodology for performing these tasks that is transparent to the
simulation programmer. Qur approach utilizes extensions to the
Ross object-oriented language allowing a programmer to declara-
tively specify characteristics of the simulation dealing with time
dependent attributes and graphics display strategies. The example
presented in this paper demonstrates the many advantages of our
declarative approach to maintaining consistency. With these capa-
bilities, we expect object-oriented simulation languages to become
increasingly attractive for modeling dynamic systems.

1. INTRODUCTION

The object-oriented programming paradigm suggests a natural
way to model dynamic systems. Object-oriented languages (Stefik
and Bobrow 1986) encourage a simulation designer to model physi-
cal entities by building software objects analogous to real world en-
tities, and endowing those objects with methods and behaviors for
responding to model stimuli. The programming tools and tech-
niques supporting object-oriented languages have produced simula-
tion systems which are far more comprehensible and analyzable
than those developed in conventional simulation languages
(McArthur, Klahr and Narain 1984).

Since 1982, RAND researchers have been building and using
object-oriented languages for military modeling and simulation.
Through our experiences we have garnered much information about
the programming needs of simulation modelers and analysts.
Although an object-oriented message-passing language is powerful
for simulating discrete, synchronous events, it lacks flexibility for
modeling other types of integrated processes in a convenient and
natural fashion. The work described in this paper focuses on tech-
niques for simulating continuous processes in an object-oriented
simulation language. The products of this work are prototype ex-
tensions to the Ross (McArthur, Klahr and Narain 1985) language
for modeling such activities.

In an object-oriented simulation system, the program entities
and processes correspond closely to those objects and activities
which are being simulated. Interactions between the various objects
are represented in the simulation as messages that are passed
between simulated objects. Nevertheless, many additional compu-
tational tasks must be programmed which have no analogy in the
modeled world. For instance, in most object-oriented simulations,
mobile vehicles such as aircraft or tanks have an associated
behavior for prescribing how the vehicle’s location should be com-
puted. This computation is most often based on parameters such as
the vehicle’s previous location, its velocity, and the amount of time
which has elapsed since the previous position computation. Clearly,
in a live scenario with moving objects, the vehicle’s driver never
invokes an activity analogous to computing one’s position. Instead,
one’s position is always changing (as long as the velocity is greater
than zero). Although a pilot may notice or record the aircraft’s
current position, the physical characteristics of the scenario result
in a continuously changing position. Therefore, in a computer
simulation, updating position is one kind of computational activity
which has no corresponding analog in the world being modeled.
We refer to these activities and the simulation code required to ef-
fect these physical phenomena as artifactual. Most simulation
languages require a programmer to develop many artifactual pro-
cedures, necessary only because of the limitations of our current
methods for computer simulation.

The goal of the work presented in this paper is first to identify
and categorize some of the artifactual activities which must be
maintained by a simulation programmer. Secondly, we describe
some automatic programming aids we have developed which
reduce the programmer’s burden of handling artifactual processes.
The methodology we have developed enables a programmer to de-
claratively specify the parameters and routines which are necessary
for artifactual activities. These declarations are included with the
class, subclass, and property declarations localized in the class
hierarchy specifications of an object-oriented simulation. This tech-
nique eliminates the need for a programmer to procedurally
manage processes which do not correspond to modeled activities.

’

In the next section we discuss the background and motivation
for this work. Section 3 describes the deficiencies and problems of
current object-oriented simulation systems which we are focusing
on. Declarative programming techniques addressing two prob-
lematic situations are presented in section 4. The two areas include
attribute dependencies and approaches for interfacing to a graphical
display. Section 5 provides a comprehensive example of the use of
these techniques, and in the final section we conclude with some
benefits of this work.

2, BACKGROUND AND MOTIVATION

The development of RAND’s object-oriented simulation
language, Ross, was motivated from two arenas: the military simu-
lation work conducted as part of RAND’s Project Air Force divi-
sion, and the advent of object-oriented and message passing
languages such as Smalltalk (Goldberg and Robson 1982), Flavors
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(Symbolics 1984), and CommonLoops (Bobrow et al. 1986),
among Artificial Intelligence research centers. Because existing
simulation models in Fortran proved to be extremely unwieldy in
many respects, military analysts were searching for better ways to
represent and simulate their complex battle management models.
The introduction of object-oriented languages suggested a para-
digm which would make these simulations easier to build, use, and
understand. In an effort to achieve these goals, Ross was patterned
after the Director (Kahn 1979) system and initially used for the
Swirl simulation model (Klahr, McArthur and Narain 1982). Since
1982, many of RAND’s simulation projects have been implement-
ed in Ross or a variation or Ross, including Twirl (Klahr et al.
1984), Identification: Friend or Foe (Callero, Veit and Rose 1985),
Distributed Fleet Control (Steeb et al. 1986a,b), and Armor-
Antiarmor (Steeb 1986). In addition, Ross has been distributed to
research sites outside of RAND where it has been used for a variety
of applications (Nugent 1983, Dockery 1982, Conker et al. 1983,

and Hilfon 1986).

Ross has achieved its initial objective; however, we and other
researchers have observed that more advanced object-oriented
simulation tools are desperately needed (Overstreet and Nance
1985, Elzas 1986, Rothenberg 1986, and Ulgen 1986). The lack of
suitable state/time-based constructs in object-oriented simulation
languages presents particular difficulty for simulating certain kinds
of events. Radiya and Sargent (1987), and McFall and Xlahr (1986)
propose integrating rules and objects for overcoming this
deficiency, and McArthur (1987) addressed this issue in his work
utilizing object-oriented simulations as training and tutoring aids.
Other efforts (Lavery 1986, and Helman and Bahuguna 1986) are
applying techniques from Artificial Intelligence to enhance user in-
terface and explanation capabilities in simulation environments.
The work presented in this paper is one aspect of RAND’s
Knowledge Based Simulation (KBSim) project which is devoted to
providing an effective development environment for building
discrete event object-oriented simulation models (Rothenberg, et
al., 1987).

Although this work extends the Ross simulation language, the
methodology we discuss is equally applicable to any object-
oriented simulation language. We characterize an object-oriented
simulation language as an object-oriented programming language
which has been augmented with primitive simulation objects, such
as a "clock” object, and a "tick" behavior for advancing the time of
the clock. Other simulation primitives include behaviors for
scheduling future events and processing an object’s event queue.

In Ross, both classes and instances are "objects" because both
can send and receive messages. However, our use of class objects
for sending and receiving messages is minimized. Our objective
was to develop this work so that it could be applied to other
object-oriented languages which do not treat classes as objects.
Therefore, in this paper we refer to class objects as classes or gen-
eric classes, and instance objects simply as objects or instances.

3. PROBLEMATIC ARTIFACTUAL ACTIVITIES

As the development and implementation of an object-oriented
simulation system evolves, new objects (including classes and in-
stances) and simulation behaviors are continuously being added and
modified. Although an object-oriented message-passing paradigm
appears natural and direct, there are, nevertheless, data consistency
issues which must be maintained by the programmers. Blissfully ig-
noring these issues will result in inconsistent simulation processing
and incorrect results. In this section we detail two categories of
simulation processing which, if not handled correctly, will result in
conflicting simulation cormputations.

3.1. Maintenance of Time-Varying Attributes

In general, object-oriented simulations are discrete, event-
based models; time is advanced as the result of future scheduled
events. Therefore, the passage of time is, in a sense, a side effect of
the occurrence of events. This event-driven strategy has far reach-
ing implications for simulation processing. The effects are most no-
ticeable when simulating objects that move continuously with time.
The motion of such an object is not considered an event, as such,
but rather a side effect of the passage of time. Simulated moving
objects do not normally move by themselves; rather, they must
have their positions updated whenever some event occurs which
advances time. Attributes, such as position, vary autonomously
over time and must be updated implicitly before their values are
consumed for subsequent processing. We categorize these attributes
whose values depend continuously on time as autonomous attri-
butes. An important characteristic of autonomous attributes is that
they are not set explicitly by simulation objects modeling real
world entities. Rather, it is necessary to simulate the implicit up-
dating of antonomous attributes as simulation time advances.

It is important that autonomous attributes, such as position, be
current for a number of reasons. First, from a software engineering
point of view, the data and knowledge associated with a simulation
entity should be current at any point in time during the simulation.
Clearly, an object’s location is a piece of data which must be kept
updated. For instance, if a symbolic snapshot or dump of the simu-
lation is produced for simulation time ¢, it is imperative that the da-
tabases of all simulation objects reflect information which is accu-
rate for time ¢. Second, this concern becomes more apparent when a
two-dimensional graphical display is generated and driven by the
simulation processing. When the graphical display is updated, it
must present accurate and current data for all simulation objects.
Therefore, it is necessary that the locations of all displayed objects
be current. If their positions do not correspond to the displayed
time, then the locations must be updated before the objects are
displayed. A third critical consideration for properly maintaining
values of autonomous attributes pertains to other uses of an object’s
database. In a given simulation it is likely that many computations
depend on an object’s location. Whenever any autonomous data,
such as position, are used as parameters for other simulation pro-
cessing, that data must be assured to be current.

The considerations described above hold for all autonomous
attributes. The underlying requirement is to ensure one of two si-
tuations: (1) whenever the simulation clock is advanced, all time
dependent data is updated or (2) whenever time dependent data is
accessed, it must be updated if it is not current. In theory, these re-
quirements are stated easily; however, in practice, realizing either
goal burdens the development and programming staff and under-
mines the original goal of the simulation exercise. The programmer
is required to be aware of all autonomous attributes and have avail-
able procedures for maintaining these attributes. That is, the pro-
grammer must invoke code to execute the corresponding update
procedures. Depending on which of the above maintenance stra-
tegies is adhered to, the simulation developer must procedurally in-
voke the appropriate update routines whenever the clock is ad-
vanced or an autonomous attribute is retrieved.

Through our experiences developing object-oriented simula-
tion models, we have concluded that these required bookkeeping
and maintenance tasks are rarely performed with diligence. As the
size of the simulation system grows, and more intelligence is ad-
ded, it becomes very-difficult to manage these artifactual activities.
Failure to provide consistency maintenance of the type we have
been discussing results in both blatant and subtle imperfections in
the simulated world. Inconsistencies are most obvious when a
graphical display is plotting the progression of the simulation. A
fleet of vehicles which should be adhering to a given formation is
sometimes displayed with one or more of the vehicles out of syn-
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chrony with the rest of the fleet. This behavior usually indicates
that some, but not all, of the moving vehicles were updated. A less
obvious manifestation of an inconsistency occurs when the graphi-
cal display shows position information which does not coincide
with the simulation’s database, although the time of the graphical
frame matches the simulation clock. Inconsistencies can also occur
strictly within the simulation processing if time has advanced
without updating an autonomous attribute accessed for a subse-
quent computation.

One goal of this research has been to try to eliminate the pro-

gramming tasks of updating autonomous attributes and invoking ar-.

tifactual procedures. In section 4.1 we discuss our approach to this
problem: the declarative specification of autonomous attributes sup-
porting transparent update-on-demand.

3.2. Interfacing Simulation and Graphics

In the previous section we identified artifactual simulation ac-
tivities necessary for maintaining consistency within the state of the
simulation. The second aspect of consistency maintenance which
we consider concerns the consistency between the simulation and a
graphical presentation of the simulation as a coexisting process.

One of the primary means of observing and understanding a
simulation is to view a graphical manifestation of the simulation’s
processing. A simulation should display its simulated world with
appropriate detail and continuity to allow visual comprehension of
the behavior of the underlying model. It is tempting to think of the
display as a window into the state of the simulation, whereby when-
ever anything is changed by the simulation, it is immediately visi-
ble on the display. Unfortunately, producing this illusion in a
sequential object-oriented simulation system requires considerable
effort. Based on our experience with various strategies supporting a
graphical display, we have analyzed two traditional approaches for
keeping a display up to date with respect to the simulation: (1) the
display processor approach and (2) the incremental graphics ap-
proach. In this section, we characterize each approach, and identify
their strengths and weaknesses. We conclude this section by intro-
ducing a new strategy which we developed to provide the benefits
of both approaches.

The display processor approach views graphical display as an
independent process which redisplays the entire state of the simula-
tion for each new graphics update. Conceptually, the simulation
runs at its own pace with no awareness of any graphics output. The
simulation maintains the state of various graphic attributes of
simulation objects, which are retrieved by the display processor
when generating a new graphics frame. The attraction of this ap-
proach is that the simulation need not concern itself with producing
graphics output; it simply executes and keeps its state current. The
display processor keeps the simulated world displayed by
redisplaying its entire state at regular graphic update intervals,
However, the display processor must access graphic attributes of
the model only when they are in a consistent state. This require-
ment necessitates synchronization between the model and the
display processor. The frequency of frames, that is, of graphic up-
dating, is essentially determined by the display processor. The
simulation, however, must also have some control over when new
frames occur, both to ensure consistency and to allow explicit con-
trol over the interval between new graphics frames. The main
disadvantage of this approach is that every new frame requires
redisplaying the entire simulation state. Previous Ross simulations
have taken this approach; however, the efficiency of the approach is
directly related to the dynamics of the graphical display.

In the display processor approach discussed above, the graph-
ics processing is decoupled, either physically or conceptually, from
the simulation. The display processor simply queries the simulation
for necessary data. We now contrast the display processor with the

509

incremental graphics approach. In this strategy, the simulation
model generates graphics output as it executes. The simulation,
therefore, controls when and how changes are made to the graphics
image. Because the simulator knows when it is necessary to modify
the graphical image, this approach results in greater efficiency,
which in turn may improve the appearance of the display. For ex-
ample, if a given graphic attribute is not affected between frames, it
will not be redisplayed. This strategy reduces redundant updating,
which in turn reduces both graphical processing and potential visu-
al distraction. It may also result in better graphical dynamics; when
an event in the simulation causes graphics output, the simulation
can use special graphic techniques to highlight the meaning of the
event for the user. These techniques are more difficult to accom-
plish with the display processor approach because the semantics of
an event is usually lost by the time the display processor produces
its next graphic update. The disadvantage of incremental graphics
is that the model must perform its graphics output explicitly.
Designers and programmers of the simulation must be aware of the
integrated graphics processing and must contend with the decisions
concerning graphical display, such as what simulation changes
should affect the graphical image and how those changes should be
manifested graphically.

In section 4.2, we present our alternative to the display proces-
sor and incremental graphics approaches described above. Our
graphics-delta approach combines the merits of the other two by
providing automatic facilities for maintaining the display history of
graphical attributes. The graphics-delta approach allows a user to
declaratively specify simulation objects and attributes, and define
corresponding graphical images which support the simulation’s
graphic display.

In this section we have presented two problematic situations
facing the development of object-oriented simulation systems: (1)
maintenance of autonomous (time-dependent) attributes and (2) in-
terfacing the simulation model with its graphical presentation. In
the next section we present the methodology and techniques we
have developed to help reduce the amount of artifactual processing
which simulation programmers must perform to address these is-
sues.

4. DECLARATIVE FACILITIES FOR ARTIFACTUAL PRO-
CESSING

The results of this work are object-oriented simulation facili-
ties to automate the artifactual programming tasks we have
identified above. Although the artifactual tasks we have described
are necessary, our objective is to make this type of processing as
transparent to the designer, programmer, and user as possible. To-
ward this end, our methodology supports a declarative rather than
procedural approach to maintaining object-oriented simulations.
The artifactual programming activities we have discussed are based
on procedural routines. That is, the person producing the simulation
code must consider the consistency issues we have raised
throughout the entire software development and implementation
stages, and provide procedural methods for maintaining consisten-
cy. The declarative approach we are advocating allows the simula-
tion developer to declare those attributes, behaviors, and dependen-
cies which must be managed. Once the declarative specification is
provided with the simulation class structure and object schemas,
our simulation facilities automatically perform the proper updating
of autonomous attributes and display of new consistent graphics
frames. Below we describe the declarative mechanisms facilitating
these automatic processes.

4.1. Update-on-Demand

Many problems of maintaining consistent values for simula-
tion objects stem from the dependencies among attributes, especial-
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ly time. As discussed earlief, autonomous attributes need to be as-
sured of currency. We have developed update-on-demand facilities
to help automate dependency management. Update-on-demand as-
sures that whenever an autonomous attribute is referenced, the attri-
bute is automatically and transparently made current before a value
is returned. This approach therefore ensures consistency of all time
dependent attributes throughout the simulation. It also eliminates ad
hoc artifactual code from the simulation which must otherwise per-
form explicit updates of attributes whenever there is any chance
that they may be consumed.

To enable update-on-demand processing, the simulation
developer must declare the autonomous attributes of each object,
that is, those attributes which are dependent on time. The imple-
mentor must also supply a procedural behavior dictating how the
updated value of an autonomous attribute is computed. This
behavior, however, is never invoked explicitly in the simulation
code. Instead, during simulation processing whenever an auto-
nomous attribute is retrieved, Ross simulation facilities recognize
the reference to an autonomous attribute and transparently invoke
the supplied routine to update the autonomous attribute being ac-
cessed. In this fashion, the invocation of the update behavior is au-
tomatic; the implementor need not be concerned that an auto-
nomous atiribute may need updating before it is used in subsequent
computations.

We have optimized our update-on-demand facility to perform
the necessary update only when the value of the autonomous attri-
bute is out of date. Therefore, for each autonomous attribute re-
trieval, the computational overhead is minimized if the attribute
value is already current. In section 5, we demonstrate the use of the
update-on-demand facility by providing a comprehensive example
comparing simulation code with and without automatic updating,
Because the example described in section 5 explains the use of both
of our declarative Ross extension packages, we postpone our de-
tailed discussion of the example until we have described the
remaining extension in subsection 4.2.

Identifying Second-Order Dependencies on Time. New
values for autonomous attributes generally depend on time as well
as the values of other atiributes. If an autonomous attribute is a
function of only the instantaneous values of other attributes, there is
no problem: recomputing the autonomous attribute (on demand)
will always produce the right value by using the current values of
the .attributes on which it depends. If, however, an autonomous at-
tribute depends on the Aistory of past values of some other attribute,
then a second-order dependency exists. For example, position
depends on previous values of speed and, in particular, on when
speed was last changed. That is, position can be thought of as a
function of the initial position and the sequence of previous values
of speed along with the times at which speed changed.

Attributes, like speed, on whose history other attributes
depend are referred to as history-affecting-attributes because their
history affects the value of other attributes. In our work, such histo-
ry dependencies are assumed to be among attributes of the same
object. Note that those history-dependent attributes, such as posi-
tion, which depend on past values of history-affecting-attributes are
always autonomous attributes. Because non-autonomous attributes
are set explicitly by the simulation code, the dependencies con-
sidered here do not apply to them.

Normally, changing a history-affecting attribute like speed
should not cause its history-dependent position to be updated im-
mediately. Only at a later time when the object has moved using the
new value of speed should position reflect the new speed. However,
if an object’s position is out of date when its speed is changed and
its position subsequently gets updated within the same simulation
time, then the new position will erroneously reflect the new speed
even though that speed has been in force for zero time. If, on the

other hand, the position has already been updated at a given simula-
tion time before the speed is changed, then the new position will
correctly reflect the old speed. The simulation must therefore up-
date position (whether or not it is about to be retrieved) before up-
dating speed to prevent speed from affecting position until after
time has advanced.

A history-affecting attribute can be changed several times
within a single simulation time without updating its history-
dependents more than once. This situation holds because such
dependencies are always functions of time; a history-affecting attri-
bute only affects its history-dependents when time has elapsed.
Multiple settings of a history-affecting attribute, such as speed,
within a single simulation time are instantaneous events and have
no effect. Only the final value counts and only after some time has
clapsed. However, to behave properly, history-dependent auto-
nomous attributes must be updated before the first update of one of
their history-affecting attributes at a given simulation time.

Maintaining Second-Order Dependencies. The above prob-
lem can be thought of as a limited form of constraint propagation.
In the example discussed above, every time speed is updated, posi-
tion should be updated first. One solution for maintaining history-
dependent attributes is to represent pairs of dependent attributes
such as speed and position, so that whenever speed is modified, the
value of position is updated first. This approach represents depen-
dencies explicitly; its disadvantage is that these lists must be main-
tained as the simulation code evolves.

We have noted, however, that only autonomous attributes re-
quire automatic update as a result of second-order effects. There-
fore, second-order inconsistencies can be avoided by automatically
updating all autonomous attributes before updating any attribute on
whose history an autonomous attribute may depend. In this way,
the simulation developer declares autonomous attributes (as
described in section 4.1 facilitating update-on-demand), and addi-
tionally declares history-affecting-attributes  during  object
specification. During simulation processing, whenever a history-
affecting-attribute is modified, the object’s autonomous attributes
are first updated using the supplied update behaviors. This approach
represents attribute dependencies implicitly, and therefore does not
require keeping lists of such dependencies up to date as the simula-
tion code evolves. Using this approach, some extra overhead may
be incurred because not all autonomous attributes depend on the
history of all history-affecting attributes. However, one overriding
objective of this work is to reduce the bookkeeping load of the
simulation programmer and, to this end, our experience has shown
the overhead to be minimal. The examples detailed in section 5
will provide a concrete demonstration of update-on-demand for au-
tonomous attributes and the transparent interaction triggered by up-
dating history-affecting attributes.

4.2. Delta Approach Interfacing Graphies and Object-Oriented
Simulations

In section 3.2 we discussed two methods for graphically
displaying the execution of an object-oriented simulation. In the
display processor approach, the simulation runs without performing
explicit updates, but uses a conceptual display processor to continu-
ally redisplay the entire state of the model. The second alternative,
incremental graphics, forces the model to update the display expli-
citly whenever any graphics-related event occurs. In this section,
we describe a third alternative which we call the graphics-delta ap-
proach. Graphics-delta is a compromise between the other two ex-
tremes in which the simulation performs no explicit graphics pro-
cessing, but in which (1) the conceptual display processor deter-
mines what graphical changes are necessary to produce a new
graphics frame, and (2) incremental graphic updates are generated
as needed. The operation of our graphics-delta approach is detailed
below and exemplified in the next section.
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In the graphics-delta approach, the simulation performs no ex-
plicit graphics output, but simply updates attributes as in the
display processor approach. During simulation development, the
programmer declares frame-triggering attributes, that is, those at-
tributes which affect the display. Identifying an attribute as a
frame-triggering attribute indicates two things to Ross: (1) that the
value of those frame-triggering attributes will be mapped to ap-
propriate display attributes for generating a graphical display and
(2) whenever the value of one of those frame-triggering attributes
changes, a new graphics frame should be displayed. Therefore, de-
claration of frame-triggering attributes implicitly identifies graphi-
cally significant events, and changing the value of a frame-
triggering attribute transparently invokes the display processor.
Frame-triggering attributes keep a history of their value at the time
they were last displayed. In this way, the display processor, rather
than redisplaying the entire simulated world (as in the traditional
display processor approach), instead uses the history of the
simulation’s frame-triggering attributes to construct a graphics-
-delta between the current graphic state of the simulation and the
last displayed frame. This graphics-delta is used to apply incremen-
tal graphic updates, thereby retaining the efficiency of the incre-
mental approach.

The recording of history for frame-triggering attributes makes
this approach reasonably efficient and further reduces redundant
updating. Only those attributes whose values actually differ from
frame to frame will cause graphic updates. The graphics-delta ap-
proach retains the conceptual simplicity of the display processor
approach because each displayable object is simply asked to
redisplay itself; however, this redisplay exhibits the efficiency of
the incremental approach due to the maintenance of frame-
triggering attribute history. Synchronization is afforded by expli-
citly invoking the display processor whenever a graphically
significant event occurs. These events are recognized by Ross’s
event scheduling mechanism and force the model into a consistent
state before each graphic update.

From the programmer’s point of view, the only necessary
tasks are to declare the frame-triggering attributes of an object and
define procedural attributes called primary-image and secondary-
image. These attributes, when evaluated, call specific hardware-
dependent graphics routines to display an icon corresponding to the
simulation object. Our graphical interface package automatically
maintains the history of the frame-triggering attributes, schedules a
new graphics frame when a frame-triggering attribute is modified,
and transparently evaluates a frame-triggering object’s primary and
secondary images thereby displaying a new graphical frame. Exam-
ples of the use of frame-triggering attributes and automatic frame
generation are presented in the next section,

5. AN EXAMPLE SCENARIO DEMONSTRATING ROSS
SIMULATION EXTENSIONS

In this section we present a small simulation implemented in
the Ross language. Our goal in presenting this example is twofold.
First, we hope to give the reader a sense of how our declarative
object-oriented extensions (implemented in Ross) are used within a
simulation system and of the functionality provided by these capa-
bilities. Second, we want to contrast the traditional procedural ap-
proach for maintaining consistency with the declarative methodolo-
gy we are advocating. For these reasons, we begin this section by
presenting and tracing through parts of a scenario employing the
procedural methods. We follow this discussion by two subsections
in which we show how capabilities provided by each of the two ex-
tension packages are integrated into our scenario. We also describe
the implications of the new capabilities.

The example scenario is as follows: Two Remotely Piloted
Vehicles (RPVs) fly through hostile territory containing two enemy
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radars. The RPVs traverse the air-space on a fixed trajectory. Upon
sensing an enemy radar, an RPV sends a warning communication
to its partner; and upon receipt of a warning communication, an
RPV increases its speed and, therefore, velocity, Each RPV con-
sumes fuel as it flies, and it crashes if it runs out of fuel in mid-air.

The entire class and instance hierarchy for this scenario ap-
pears in figure 1. The classes something and nclock are classes built
into the Ross system similar to the vanilla flavor in the Flavors
object-oriented package. The bold-typed objects in figure 1 are the
domain classes and instances. The bold-typed leaves of the tree in
figure 1 represent instances. The simulation contains two instances
representing RPVs (Rpvl and Rpv2), and two radar instances (Ra-
darl and Radar2). Rpvl and Rpv2 are members of the class RPV,
which in turn is a subclass of the class Moving-object. Radarl and
Radar2 are members of the class Radar, which is a subclass of
Fixed-object. Warning communications are represented as tem-
porary objects created as instances of the Communication class.
Each instance of the RPV class has the following attributes: posi-
tion, speed, trajectory, velocity, mpg, fuel-level, flight-status, and
sensed-defenses. The mpg atiribute specifies the rate of fuel con-
sumption, and sensed-defenses represents a list of all objects the
RPV is currently sensing. Flight-status indicates whether an RPV is
in-flight, refueling, or crashed.

something
nclock
Moving-object Fixed-object
RPV Communication Radar
, ’ 1 ~ N
’ 1) ~

# v N
Rpvl Rpv2 MO00001 M00002 M00003 Radarl Radar2

Figure 1: Class and instance hierarchy

In figure 2, we show the values of the attributes of Rpv2
throughout the course of a simulation executed from time 0 to time
15. The dashes in figure 2 indicate that those attribute values were
not computed for the corresponding times. Notice an additional at-
uibute, plans, a Ross default attribute, which maintains a list of
ez(_mts which are scheduled to be executed by the corresponding
object.

Figure 3 presents a representation of the simulation at simula-
tion times 0, 1, 3, and 9. Time 0 is the initial configuration. At
times 1, 3, and 9, the significant events listed below occur in the
simulation. These events (and others) are reflected in the attribute
values of Rpv2 shown in figure 2.

* At time=1, Rpv2 detects Radarl and continues sensing it
until time=3.

* Asaresult of the sensing, Rpv2 sends a warning communi-
cation to Rpv1 which is received at time=3. Rpv1 subse-
quently increases its speed.

* At time=9, Rpv1 runs out of fuel and crashes.
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fuel- sensed- flight-
$stime trajectory speed mpg velocity position level defenses status plans
0 (1.0 1.0) 5.0 10.0 (3.5 3.5) ( 0.0 3.0) 7.0 () in-flight ()
1 - - - (3.5 3.5) { 3.5 6.5) 6.5 (radarl) - ({2 {(react to sensed radarl)})
2 - - - (3.5 3.5) (7.0 10.0) 6.0 - ({3 (send warning communication}})
3 - - - (3.5 3.5) (10.6 13.6) 5.5 () - 0
4 - - - (3.5 3.5) (14.1 17.1) 5.0 (radar2) - {(5 (react to sensed radar2}))
5 - - - (3.5 3.5) (17.6 20.6) 4.5 () - ((6 {(receive communication m00002))
(6 (send warning communication)))
6 - 6.0 - (4.2 4.2) (21.2 24.2) 3.9 - - {)
7 - - - (4.2 4.2) (25.4 28.4) 3.3 - - -
8 - - - (4.2 4.2) (29.6 32.6) 2.7 -~ - -
9 - - - (4.2 4.2) (33.9 36.9) 2.1 - - -
10 - - - (4.2 4.2) (38.1 41.1) 1.5 - - -
11 - - V- (4.2 4.2) (42.4 45.4) 0.8 - - -
12 - - - (4.2 4.2) (46.6 49.6) 0.2 - - -
13 - 0.0 - (4.2 4.2) (50.9 53.9) 0.0 - crashed =~
14 - - - (0.0 0.0) (55.1 58.1) 0.0 - -
15 - - - (0.0 0.0) (55.1 58.1) 0.0 - - -
Figure 2: History of attribute value changes for Rpv2
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Figure 3: Representation of the simulation at times 0, 1, 3 and 9

The simulation code contains a control loop which invokes
time-driven events. During each iteration of this loop, the simula-
tion clock is advanced, and several messages are sent to the RPVs.
Each RPV receives a message to update its time-dependent attri-
butes (fuel-level, position, velocity), and then to check whether its
flight status has changed (i.e. whether it has run out of fuel and
crashed). The control loop also instructs each RPV to determine
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which objects it is currently sensing by computing its distance to
every radar object.

A control loop of this nature is typical in object-oriented simu-
lations. The control loop tries to create the effects which phenome-
na such as continuous moving objects would produce. However,
there are several drawbacks and problems with implementing the
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simulation using such a control loop. First, it is unnatural to send
messages to RPV objects telling them to update their attributes. Ex-
plicit updating of time-dependent attributes has no direct correlate
in the real world, and therefore is unnatural in the simulation code.
Second, the value of each time-dependent attribute is recomputed at
every tick of the simulation regardless of whether or not its value is
consumed by another computation. Frequently, this duplicated pro-
cessing is wasteful. Third, even though we have been careful in
ordering the computations for time-dependent attributes, these
values will still not always be computed in exactly the correct ord-
er, and therefore the simulation will not be completely accurate.
Qur control loop computes velocity after it computes position be-
cause if the velocity of an object changes at a certain time, its posi-
tion for that same time must be computed using the previous velo-
city since the new velocity hasn’t actually taken effect yet. Similar-
ly, we need to make sure that fuel level is always computed before
speed is changed because fuel level depends directly on speed.
However, Ross and most object-oriented simulation languages will
not allow this processing sequence. When the simulation clock is
advanced, Ross executes the plans for each object before executing
thé control loop. Thus, if an RPV is scheduled to “receive a warn-
ing communication” at time ¢, and it reacts to the communication
by increasing its speed, it will proceed to change its speed before its
fuel level has been computed using the previous value of speed.
Careful examination of the fuel levels computed for Rpv2 in figure
2 (beginning at time 6) shows that they are incorrect. Without a
way of specifying that certain computations must be performed be-
fore scheduled events are processed, it is not possible to build a
completely accurate simulation. In addition, each RPV’s position is
updated one too many times. Position should not change after an
RPYV has crashed.

In the next two subsections, we describe modifications to the
control loop and object declarations needed to incorporate our Ross
extensions. In section 5.1, we add update-on-demand processing to
eliminate explicit updating of each autonomous and history-
affecting attribute. In section 5.2, we include our graphics exten-
sions illustrating how graphics frames can be generated automati-
cally, either for each update of the simulation clock or only for
user-declared graphically significant events.

5.1. Update-on-Demand Processing

As we have just seen, the simulation programmer cannot
always control the order in which computations are performed in a
simulation. It is not possible to guarantee that they will be carried
out in the correct order. However, by including update-on-demand
extensions and by specifying attribute dependencies, we can ensure
that computations will always be performed in the correct order. In
addition, the burden of explicitly updating each time-dependent at-
tribute at each update of the simulation clock is eliminated.

To include update-on-demand processing in our simulation,
we must first declare all autonomous and history-affecting attri-
butes. As we detailed in section 4.1, autonomous attributes are
those attributes whose values vary as a consequence of the passage
of time. They may be directly or indirectly dependent on time.
History-affecting attributes are those attributes whose history af-
fects the values of autonomous attributes.

In our simulation, RPVs are the only active objects so we need
only consider their attributes. Because RPVs are moving objects,
their positions change as time advances. They also consume fuel as
they move; therefore, their fuel levels depend on the passage of
time. Although velocity is not directly dependent on time, velocity
is regarded as an attribute which stores an intermediate computa-
tion, subsequently used for computing position. Therefore, velocity
must be categorized in the same way as position, namely, as an au-
tonomous attribute. Because position, velocity, and fuel-level are
classified as autonomous attributes; we must also supply "update"
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functions to bring these values up to date.

Next we must determine which attributes are history-affecting.
Position is defined in terms of velocity, another autonomous attri-
bute. However, velocity is defined in terms of speed and trajectory;
therefore, speed and trajectory are history-affecting and their values
are only changed when the simulation code modifies them expli-
citly. The other autonomous attribute, fuel-level, is defined in terms
of speed and mpg. Therefore, mpg is also a history-affecting attri-
bute. (We assume that mpg does not depend on speed.) It is often
helpful to map out the relationships between various attributes by
drawing a value dependency graph. Figure 4 contains such a graph
to depict the dependencies between the attributes we have just ex-
amined.

trajectory
velocity
speed position
mpg fuel-level
simulation
time
History-Affecting Autonomous

Figure 4: Attribute dependency graph

To add update-on-demand processing to the example simula-
tion, we simply declare that fuel-level, position, and velocity are au-
tonomous attributes of instances of the RPV class. Similarly, we
declare that mpg, speed, and trajectory are history-affecting attri-
butes of this class. As before, we supply methods to update the
values of autonomous attributes, but we can now remove all expli-
cit calls to these methods from our simulation control loop. The
update-on-demand extensions will invoke these methods automati-
cally when, and only when, it is necessary. Thus, our control loop is
reduced to advancing the simulation clock and sending a message
to each RPV to check its flight status and to determine which radars
it is currently sensing.

Upon execution, autonomous attributes will be updated
correctly. Figure 5 shows a record of the attribute values of Rpv2
for the simulation using update-on-demand processing. By compar-
ing figure 5 with figure 2 (without automatic updating), we see that
the history of fuel level values in figure 5 is correct. All computa-
tions were forced to be performed in the correct order (i.e. fuel-
level was always updated before speed was changed), and fuel lev-
els for the RPVs were not computed after they crashed. The values
of the other autonomous attributes are still recomputed at each tick
only because the simulation code references them. We emphasize
that these artifactual processes are enabled simply by the declara-
tions described above. Procedural calls for updating autonomous or
history-affecting attributes are no longer necessary. Furthermore,
this improvement did not require any modifications to the method
code associated with the simulation objects.

5.2. Graphics-Delta Processing

We have just shown how utilization of update-on-demand pro-
cessing enables us to eliminate artifactual programming tasks for
consistency maintenance of time-dependent attributes. In this sec-
tion, we show how the graphics-delta approach we described in
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fuel- sensed-

£light-

$stime trajectory speed mpg velocity position level defenses status plans

0 (1.0 1.0) 5.0 10.0 (3.5 3.5) ( 0.0 3.0) 7.0 Q) in-flight ()

1 - - - (3.5 3.5) ( 3.5 6.5) 6.5 (radarl) - ((2 (react to sensed radarl)))

2 - - - (3.5 3.5) (7.0 10.0) 6.0 - - ((3 (send warning communication)))

3 - - - (3.5 3.5) (10.6 13.6) 5.5 () - %)

4 - - - (3.5 3.5 (14.1 17.1) 5.0 (radar2) - ((5 (react to sensed radar2)))

5 - - - (3.5 3.5) (17.6 20.6) 4.5 0 - ({6 (receive communication m00002))
(6 (send warning communication)))

6 - 6.0 - (3.5 3.5) (21.2 24.2) 4.0 - - )

7 - - - (4.2 4.2) (25.4 28.4) 3.4 - - -

8 - - - (4.2 4.2) (29.6 32.6) 2.8 - - -

9 - - - (4.2 4.2) (33.9 36.9) 2.2 - - -

10 - - - (4.2 4,2) (38.1 41.1) 1.6 - - -

11 - - - (4.2 4.2) (42.4 45.4) 0.9 - - -

12 - - -~ (4.2 4.2) (46.6 49.6) 0.3 - - -

13 - 0.0 - (4.2 4.2) (50.9 53.9) 0.0 - crashed -

14 - - - (0.0 0.0) (50.9 53.9) - - - -

15 - - - (0.0 0.0) (50.9 53.9) - - - -

Figure 5: History of attribute value changes for Rpv2 with update-on-demand processing

section 4.2 eliminates the need for artifactual code to perform
graphics tasks. In the remainder of this section, we demonstrate
methods for generating a graphics-delta frame at each update of the
simulation clock. We also show how to limit the graphical output to
only those user-specified graphically significant events.

Graphical Output for Each Update of the Simulation
Clock. We extend our example simulation to generate a graphics-
delta frame at each update of the simulation clock by declaring
which simulation objects are to be displayed graphically, and by
specifying how to display each object. We provide procedures for
constructing primary and, optionally, secondary images of each ob-
ject that is to be graphically displayed. We supply these procedures
as values of special reserved Ross attributes. In addition, we invoke
the built<in Ross "gtick and display" behavior from our control
loop (instead of the usual Ross "tick" behavior) to advance the
simulation clock. The graphical output produced by executing the
control loop 13 times is shown in figure 6. We purposely chose to
have our graphics output produced for this example in the form of
character strings written to a file to emphasize that this facility is
not dependent on specific graphics hardware or software packages.
Further, it is beneficial to have the option of generating textual out-
put in place of graphical images as this enables a simulation to be
run from a terminal without graphical capabilities.

Figure 6 shows the graphics-delta frames produced throughout
execution of the simulation. Note that the radar icons are displayed
initially, but are not redisplayed after time 0. This situation is desir-
able because radars are static objects. Their positions do not
change, and they do not have any time-dependent attributes; there-
fore, their graphical manifestations remain the same. RPV’s, how-
ever, are dynamic objects. Until they run out of fuel, their positions
change as the simulation progresses. Therefore, until they crash,
their icons should be redisplayed at each update of the simulation
clock. In figure 6 we have shown that Rpv1 crashes at time 9 and
Rpv2 crashes at time 13. For simplicity in this example, the explo-
sion icons are redisplayed for every graphical update following the
explosion. In the next section, we describe how graphically
significant events, such as an explosion, are used to control the
display of graphics frames, thereby producing an explosion icon
only at the time of impact.

Graphical Output for Graphically Significant Events. We
have just shown how the graphics-delta processing facility can be
used to generate a delta frame at each update of the simulation
clock. Clearly, the frequency at which graphics-delta frames are
generated depends on the increment size of the simulation clock.
Suppose, however, that we are interested only in showing

Time 0: Display radarl’s gray radar icon at (4.0 9.0)
Time 0: Display radar2’s gray radar icon at (16.0 16.0)
Time 0: Display rpvl’s blue icon at (5.0 2.0)

Time 0: Display rpv2’s blue icon at (0.0 3.0)

Time 1: Display xpvl’s blue icon at (8.5 5.5)

Time 1: Display rpv2’s purple icon at (3.5 6.5)

Time 1: Display rpv2’s sensing-range icon of range 4.0
Time 2: Display rpvi’s blue icon at (12.0 9.0)

Time 2: Display rpv2’s purple icon at (7.0 10.0)

Time 2: Display rpv2’s sensing-range icon of range 4.0
Time 3: Display m00001’s message icon from rpv2 to rpvl
Time 3: Label m00001’s icon ’speed-up’

Time 3: Display rpvl’s purple icon at (15.6 12.6)

Time 3: Display rpvl’s sensing-range icon of range 4.0
Time 3: Display rpv2’s blue icon at (10.6 13.6)

Time 4: Display rpvl’s purple icon at (19.1 16.1)

Time 4: Display rpvl’s sensing-range icon of range 4.0
Time 4: Display rpv2’s purple icon at (14.1 17.1)

Time 4: Display rpv2’s sensing~range icon of range 4.0
Time 5: Display m00002‘s message icon from rpvl to rpv2
Time 5: Label m00002’s icon ‘speed-up’

Time 5: Display rpvl’s blue icon at (23.3 20.3)

Time 5: Display rpv2’s blue icon at (17.6 20.6)

Time 6: Display m00003’s message icon from rpv2 to rpvl
Time 6: Label m00003’s icon !speed-up’

Time 6: Display rpvl’s blue icon at (27.6 24.6)

Time 6: Display rpv2’s blue icon at (21.2 24.2)

Time 7: 'Display rpvl’s blue icon at (31.8 28.8)

Time 7: Display rpv2’s blue icon at (25.4 28.4)

Time 8: Display rpvl’s blue icon at (36.8 33.8)

Time 8: Display zpv2’s blue icon at (29.6 32.6)

Time 9: Display rpvl’s explosion icon at (41.7 38.7)
Time 9: Display rpv2’s blue icon at (33.9 36.9)

Time 10: Display rpvl’s explosion icon at (41.7 38.7)
Time 10: Display rpv2’s blue icon at (38.1 41.1)

Time 11: Display rpvl’s explosion icon at (41.7 38.7)
Time 11: Display rpv2’s blue icon at (42.4 45.4)

Time 12: Display rpvl’s explosion icon at (41.7 38.7)
Time 12: Display rpv2’/s blue icon at (46.6 49.6)

Time 13: Display rpvl’s explosion icon at (41.7 38.7)
Time 13: Display rpv2’s explosion icon at (50.9 53.9)

Figure 6: Graphics-delta generated by advancing
the simulation clock

highlights of the simulation. That is, we wish to generate graphical
output only when significant events take place, rather than at regu-
lar time intervals. Graphics-delta processing enables us to do this
through-specification of graphically significant events.

Suppose we wish to show the following events involving
RPVs: initiation and termination of sensing, change in velocity,
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and crashing. At any given time, the objects which an RPV is sens-
ing are contained in its sensed-defenses list. Therefore, whenever
the value of an RPV’s sensed-defenses list changes, we want a
graphics frame to be generated. Similarly, we need to monitor the
values of the velocity and flight-status attributes. Declaring the
flight-status, sensed-defenses, and velocity attributes of the RPV
class as frame-triggering will cause the desired graphics output to
be produced. Additionally, to display each communication as it is
transmitted, we declare its content attribute to be frame-triggering.
We supply these declarations together with the declarations
described earlier in this section, and call the built-in Ross "gtick"
behavior from our control loop to advance the simulation clock and
generate graphics-delta frames only when graphically significant
events occur. Execution of the control loop 13 times generates the
graphical output shown in figure 7. Note that graphics frames are
only generated for those ticks in which a graphically significant
event has taken place. Note also that update-on-demand processing
guarantees that autonomous attributes affecting the display of ob-
jects are brought up to date automatically when the object is
displayed and their values are recalled. This guarantees that the
graphical display will present the simulation in a consistent state.

Time
Time

Display rpv2’s blue icon at (33.9 36.9)
Display rpv2’s explosion icon at (50.9 53.9)

Time 0: Display radarl’s gray radar icon at (4.0 9.0)
Time 0: Display radar2’s gray radar icon at (16.0 16.0)
Time 0: Display rpvl’s blue icon at (5.0 2.0)
Time 0: Display rpv2’s blue icon at (0.0 3.0)
Time 1: Display rpvl’s blue icon at (8.5 5.5)
Time 1l: Display rpv2’s purple icon at (3.5 6.5)
Time 1: Display rpv2’s sensing-range icon of range 4.0
Time 3: Display m00001’s message icon from rpv2 to rpvl
Time 3: Label m00001’s icon ’speed-up’
Time 3: Display rpvl’s purple icon at (15.6 12.6)
Time 3: Display rpvl’s sensing-range icon of range 4.0
Time 3: Display rpv2’s blue icon at (10.6 13.6)
Time 4: Display rpvl’s purple icon at (19.1 16.1)
Time 4: Display rpvl’s sensing-range icon of range 4.0
Time 4: Display rpv2’s purple icon at (14.1 17.1)
Time 4: Display rpv2's sensing-range icon of range 4.0
Time 5: Display m00002’s message icon from rpvl to rpv2
Time 5: Label m00002’s icon ’speed-up’
Time 5: Display rpvl’s blue icon at (23.3 20.3)
Time 5: Display rpv2’s blue icon at (17.6 20.6)
Time 6: Display m00003’s message icon from rpv2 to rpvl
Time 6: Label m00003’s icon ’speed-up’
Time 6: Display rpvl’s blue icon at (27.6 24.6)
Time 6: Display rpv2’s blue icon at (21.2 24.2)
Time 9: Display rpvl’s explosion icon at (41.7 38.7)

9:

1

w

Figure 7: Graphics-delta highlighting graphically significant events

In this section we have presented a comprehensive example
whereby we isolated artifactual procedural tasks and have replaced
them by declarative specifications. This declarative methodology
encourages a modular approach to programming; artifactual tasks
can be localized and encapsulated. By removing detail from the top
level control processing, we have made the simulation code con-
ceptually cleaner and therefore, easier to maintain and modify.

6. CONCLUSIONS AND FUTURE WORK

The product of our work has been the development of a
methodology and support tools to aid the implementation of
object-oriented simulations. We have developed a strategy for
maintaining consistency among the entities of an object-oriented
simulation. Maintaining consistency includes: (1) enforcing con-
sistency within a given state of simulation processing and (2) con-
trolling a graphical display of a simulation to reflect, as accurately
as possible, the simulation’s processing. In this paper we have dis-

cussed two problematic implementation issues facing consistency
maintenance. We have provided a methodology whereby declara-
tive specifications of desired simulation behavior provide automatic
consistency updating. In this section we discuss some of the
benefits and advantages of this approach.

One main advantage of our declarative facilities is the reduc-
tion of artifactual message scheduling and transmission. Artifactual
messages are those events or activities which have no analogy in
the world being modeled, but are necessary for computationally
simulating this world. Procedurally invoking update behaviors and
generating consistent graphics displays are distracting program-
ming tasks.

A second advantage of automatic updating is a reduction in
the amount of control code written by the user. As exemplified in
the previous section, a simulation control block using a version of
Ross without our simulation extensions must iteratively bring up-
to-date all objects whose attribute values are related to time.

Both of the previous benefits also suggest a third result: im-
proved object-oriented programming style, in general, promoting
good software engineering practices. The data abstraction and
modularization techniques advocated by object-oriented program-
ming languages cannot be employed effectively if programmers
must maintain global autonomous and history-affecting attributes
and invoke procedures for updating them. Also, changes or addi-
tions to autonomous, history-affecting and frame-triggering attri-
butes involve only a change in the declaration of objects and their
attributes; no perturbations to the actual behavior code is required.

Establishing a standard, device-independent interface to the
specific graphics drawing routines is another benefit of our ap-
proach to graphics updating. The Ross extensions enabling the
graphics-delta approach does not make any assumptions about
graphics output devices. Instead, we use the function-valued attri-
butes, primary-image and secondary-image, as the slots which a
programmer fills with device dependent code or foreign function
calls to invoke graphics display routines. Therefore, these reserved
attributes are viewed as graphics hooks from which a programmer
can hang graphics procedures. The built-in behavior requesting an
object to display itself simply evaluates the primary-image and
secondary-image attributes, thereby producing the desired graphical
picture. Our Ross-based simulation systems reside on Sun mi-
croprocessors, therefore, we utilize the SunCore graphics package.
Communications between Ross and SunCore is enabled through the
Hose interface facility (Rothenberg 1987).

Another improvement with respect to graphics processing ad-
dresses efficiency. Our simulation extensions monitor the history of
frame-triggering objects and attributes; therefore, display of redun-
dant or duplicate icons is eliminated. For instance, in the scenario
described in section 5, the radar objects are stationary in space.
Our graphics facilities optimize the display processing by recogniz-
ing that a radar’s position attribute remains the same throughout the
simulation. Therefore, the display processor generates a radar icon
only once, rather than redisplaying the radar object each time a new
graphics frame is produced. Of course, some extra overhead is re-
quired for recording and checking the history of frame-triggering
objects; however, our initial investigations indicate that if the ratio
of static to dynamic objects is high, then a time improvement is
realized.

In this paper we have presented a methodology for improving
the design, development, and implementation of object-oriented
simulations. Our initial goal was to reduce the level of effort re-
quired to model artifactnal phenomena. However, we have ob-
served that the techniques we have developed promote a more
thorough learning and understanding of the semantics of applica-
tions, thereby resulting in more perspicuous and valid simulation
systems.
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