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Abstract

The smoothed perturbation analysis (SPA) algorithm
is proposed for estimating the derivative of the mean de-
lay with respect to the routing probability for a routing
problem in data-communication networks. The algorithm
requires minmum knowledge about the system and is very
suitable for on-line optimization of data-communication
networks. It is shown that the SPA algorithm is unbiased.

1 Introduction

In this paper we consider the derivative estimation problem for
a single server queueing system. The system is a single server
with a switch that controls the arrival stream to the server. The
descipline is first-come-first-serve. Whenever a customer arrives,
with probability p it will get into the queue and with probability
(1 — p) it will be rejected. The switching mechanism is indepen-
dent of everything else. Both the interarrival time distribution
and the transmission time distribution are general(G/G/1}. The
mean arrival rate is denoted by A. We assume that the system is
stable, i.e., the probability that the queue content goes to infinity
is zero. We will mainly consider the the mean delay per trans-
mitted customer as our performance measure in this paper. The
decision parameter is the switching probability p. We want to es-
timate a_g:f where FL denotes the average performance measure.
This derivative, sometimes called the marginal delay, is impor-
tant in distributed optimization of data-communication networks
[6,20,1,2]. The purpose of this paper is to present an estimation
algorithm which has advantages over other algorithms. The algo-
rithm is developed based on the Smoothed Perturbation Analysis
(SPA) approach. In Poisson arrival case the algorithm turned
out to be similar to the algorithm proposed in [1], which has
been discussed in [6,20] for possible applications in distributed
optimization of data-communication networks. The algorithm
requires minimum knowledge about the system and therefore is
particularly suitable for on-line optimization purpose. However
in [1] it is concluded that the algorithm is biased even for M éM/ 1
cage. Through our derivation it is shown that the algorithm is
unbiased for general G/G/1 system. Simulation results are con-
sistent with our analysis. We will point out the error in [1] that
yields the wrong conclusion.

In the next section we briefly describe two recently developed
derivative estimators to motivate the SPA approach.

2 Derivative estimators

Derivative estimation of discrete event systems such as queue-
ing systems has recently become a very active research area
[12,8,18,16,17]. Infinitesimal Perturbation Analysis (IPA) [12,3,21]
and Likelihood Ratio method [8,18,17] are valuable accomplish-
ments in this area. For systems where IPA gives strongly consis-
tent estimate it is often the most efficient sensitivity estimator
[22,4]. IPA tries to estimate the derivative directly along a single
realization instead of approximating it by the ratio of finite dif-
ferences. For many practically important systems, however, the
IPA method does not give consistent estimates [3]. The Likeli-
hood ratio method, othe other hand, is quite general. However
the variance of the estimate goes up with the length of the sample
path, makes it more suitable for systems with short regenerative
cycles.
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Smoothed Perturbation Analysis (SPA, [9,10] is an effort to
overcome the difficulty of the IPA methol while retaining its
advantages. SPA is also an attempt to combine queueing the-
ory analysis and the knowledge gained from a realization of the
system state process to get new theoretical and practical results.

The fundamental idea of SPA, known as “conditioning”, is
to do conditional expectation before differentiation, thereby al-
lowing the smoothing property of the conditional expectation to
“smooth out” the discontinuity of the smple performance func-
tion. The motivation behind this approach stems from the dif-
ficulty of IPA that occurs in dealing with discontinunus sample
performance functions [13,3,11].

To be precise, consider a stochastic system defined on a under-
lying probability space ({1, ¥, P). A sample path of such a system
is denoted as £(f,w), where 8 is regarded as a decision parame-
ter and w € 0. The space {1 is taken to be [0,1]* and each w
interpreted as an output sequence from a “random number gen-
erator” that generates uniformly distributed random numbers;
then the function £ can be thought of as a simulation algorithm.
Sometimes we simply denote the sample path by £, Usually §is a
parameter of a cumulative distribution function G(f,-) involved
in the evolution of the system state process. A typical example is
that G(6,-) is the c.d.f. of the transmission time of a server in a
communication network and 8 is the mean transmission time of
the server. Another example of decision parameter is the routing
probability in our routing problem. Note that p is a parame-
ter of the distribution of the switch status which is a random
variable taking only two possible values (on or off). Sometimes
£(0,w) = (21(0,w), z2(0,w), ..., Tn(g,w)(f,w)) is used to denote a
sample path, where the z;(f, w) are the sample random variables
involved in the simulation. Note that for different w the number
of z;(#,w) is generally different.

The sample performance function of the system is defined
as a real-valued function L(£(6,w)). For any 6, L(£(f,w)) is
a random variable on (2, 7, P). The performance J() is the
expected value of the sample performance function:

J(0) = EL(£(9,w)).
In this paper we concerned about the estimation of
dJ d
i (@
in a routing problem. Following is a brief description of the

Infinitesimal Perturbation Analysis estimator and the Likelihood
Ratio estimator.

)]

EL

1. Infinitesimal Perturbation Analysis (IPA) Estima-

tor [12):
The IPA estimator is defined by
[‘H ] & 9L(g(6,v))
di 1pa a0
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for appropriately defined %’; and %—’bl [21,7]. Assuming er-
godicity, this estimate converges to E%‘g with probability

one as the simulation time goes to co. The IPA estimator
therefore only applies to those systems where the sample
performance L(&(f,w)) satisfies



d a
9ELE0,0) = E 2 1(€(0,0). @

Note that in contrast to the traditional finite difference es-
timator which estimate AJ/Af the IPA estimator requires
only 1 simulation run [12]. On top of that, the IPA method
avoids taking the ratio of two small numi)ers, which is an
improtant source of inaccuracy [22].

2. Score Function (SF) Estimator [18)

Score Function estimator [18] is a special case of the
Likelihood Ratio (LR) estimator [8]. It can demonstrate
the features of a general Likelihood Ratio estimator. The
SF estimator is defined by

dJ] A d
[E]SF = L(zy, o, ...,a:n)a—éln folzr, 22, ymn)  (B)

where L(z1, 22, ..., ) denotes the value of L((z; (6, w), z2(8, 0,

evaluated at 21,2, ..., 2, and f; denotes the joint ensity
of the n random variables involved. Here the value of  is

fixed at the nominal value. This estimate is unbiased due

to
dJ d
a5 = gpELlEl,w)
d
= @/L(ml,zg,...,:cn)fg(:cl,zz,...,z,,)da:
- dln fo
- [ =gy fode

(8)

The variance of the LR estimate goes up with the length
of the simulation, makes it more suitable for systems with
short regenarative cycles [4].

= E [Ld% In f,,]

Smoothed Pertubation Analysis [9,10] is proposed toc over-
come the difficulty of IPA. The variance of the SPA estimate goes
to zero when the simulation time goes to infinity. In our rout-
ing problem the SPA estimate does not require any knowledge
about the distribution of the interarrival times and transmission
times. Neither it needs the independence assumptions about the
interarrival times and transmission times. It is well known that
for a network with loops the independence assuptions are not
practical. Therefore the SPA estimate is particularly suitable for
on-line optimization of data-communication networks.

3 Smoothed Perturbation Analysis (SPA)
method

As mentioned before, the basic idea of SPA is to make use of
the smoothing property of the conditional expectation to smooth
out the discontinuity of the sample performance function, thereby
allowing the interchange of expectation and differentiation for
most practically important cases.

We first introduce an important concept in SPA: the charac-
terization of a simulation run. Let % be an increasing family of
o-algebras on (12, ¥, P), which is generated by the simulated time
t, and let T be the duration of the simulation run. The char-
acterization z is an Fr-measurable random vector. Intuitively,
#(£(6,w)) can be understood as follows, In simulation, & is a
sequence of data from which we can calculate the queue con-
tents, status of routing switches, transmission times, interarrival
times, certain kinds of residual lifetimes, etc. A characterization
2(£(6,w)) is simply a set of data obtainable from ¢. Choice of an
appropriate characterization depends on the particular concrete
problem being addressed.

We assume that for most practically important cases the fol-
lowing equality holds, due to the smoothing property of the con-
ditional expectation:
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. o ElAL(E(S,w))|2]
lim E——Ea——

8
s PLEl.w) = Jlim

whore AL(£(0,w)) £ L(£(8 + A0,w)) — L(£(8,w))). It can be
easily seen later that this assumption is valid for our routing

problem.
Thus we have the SPA estimator
K o 1 EIAL(E(8,w))]2]
], - o, T

Comparing (7) and 24} it is easy to see that in general (7)
is easier to satisly than (4], since the inner integral on the right
hand side of (7) “smooths” the function that is to be differenti-
ated. More precisely, assuming that limag_.o( E[AL|2]/Af]) ex-
ists w.p.1, we then have

. E[Al,[z])
= el : 9
E|ALJ2] ( Jim ZRLE) g4 o(a0,2) ®
If limag—o( B[r(A8, z)]/A0) = 0, then we have
EAL i BEIALIE]
A0 TAB T abso AG )
- g, AT 180
= AmE [Alé‘_“.o TAr T A
_ . E[ALj2] .. Er(A8,2)
= Blm A T AR T A
. E|ALlZ]
= —_—— 10
EAI?—% A9 (10)

i.e., {8) holds. We will see later that in our routing problem we

do have g Er(A8:2)] _ o (11)
Ai-0 Al '

It is worth noting that the IPA method is a special case of the
SPA method in the sense that, if we take 2 to be the sample path
€ itself, the SPA. estimator reduces to the usual IPA estimator.
On the other hand, if we take z as a constant, the SPA estimator
then degenerates to the theoretical calculation of the derivative
of the average performance. Between the two extremes a whole
spectrum of possibilities exists. .

A common feature of the LR and the SPA(including IPA) es-
timators is that they both seek to estimate the derivative directly
rather than approximating it by AJ/Af via repeated simulation.
This feature enables the SPA to avoid the twin evils of nonlinear
effects (when A# is large) and “noise” magnification when A#f is
small)

4 SPA algorithm for general performzymce
measure

To develop the SPA estimation algorithm we need to understand
the structure of the sample path of the system. The sample path
of our system can be generated as follows. At the instant of
the ¢th arrival an interarrival time is generated to schedule th‘e
(i + 1)th arrival. An uniformly distributed random number w; is
then independtly generated and compared with the routing prob~
ability p. If u; < p then this arrival will be accepted, otherwise
it is rejected. At the instant of a departure either & transmis-
sion time is generated to schedule the next departure time or
the server will become idle until the next arrival begin to get its
transmission. . .

Suppose the simulation run of our simple routing system tem-
inates af the nth departure. Denote the length of the run by
T(¢@,w). T f(ﬂ,ws)) is finite with probability 1 for finite n.
Now suppose that the routing probability p is decreased by Ap.
The Infinitesimal Perturbation Analysis (IPA) estimator does not
work here: any negative perturbation of p may cause the rejection
of an originally accepted customer, hence causes a d1§cont1nu1ty
of the sample performance function such as average interdepar-
ture time and average delay. IPA estimates are O here. This can



be seen more clearly from the following.

According to the perturbation analysis convention we call the
path generated at the nominal value of the decision parameter
p the nominal path and the path generated at the perturbed
value of the decision parameter p — Ap the perturbed path. For
a sample path ¢ with finite length, with probability 1 there ex-
ists a 6(£) > O such that when Ap < §(¢) the perturbed path
&(p— Ap,w) and the nominal path £(p,w) are exactly the same.
Consequently the difference of the sample performances AL(£)
is 0 w.p.1. Thus the IPA estimate

. AL(¢(p,w))
s R e—

is 0 w.p.1. Since for most performances the derivatives are ap-
parently not zero, the IPA estimates are biased in our routing
problem.

Now introduce a negative pertubation —Ap to the switching
probability. On the perturbed path there will be fewer customers
accepted by the switch. We call the path where there is one fewer
accepted customer than the nomninal path the one-removal path.
Notation PP; is used to denote the 7th one-removal path, i.e., the
path where the ¢th customer is removed from the nominal path.
The characterization of the nominal path is chosen as the switch
status (which can be either on or off) sequence, i.e., we have

2(€) & (55(€),5 = 1,--+, N(£)) (12)

where s;(£) is the switch status at the jth arrival and N(€) is the
total number of arrivals in the simulation run €. More precisely,

A
sj(£(p,w)) = 1{v;(&(p,w) < p}. (13)
In other words, s;(é(p,w)) = 1 means that the jth arrival is
accepted on the nominal path and s;(é(p,w)) = O means that
the sth arrival is rejected on the nominal path. Later on we
can see that we actually don’t need to be able to observe the
underlying u; for implementing the estimation algorithm. In the
following we use As; to denote s;((p— Ap,w)) —s;(&(p,w)) and
Asg; = —1 to mean Agy = 0,+++,Asi—1 = 0,As; = —1,Asp41 =
0,:++,As, = 0 for simplicity. .
Now the effect of —Ap to the conditional expected perfor-
mance measure E|L(£)]2], denoted as E[AL(£)]2], can be ex-
pressed as follows.

B[AL|2]

n
> P(As; = ~1|2) E|AL|As; = ~1,2]
i=1

+ 33T P(Asi=-1,As; = ~1|z) E[AL|As; = -1,
i asj=-1, 2]
+ o4 P(Asi =~-1,-++,Asp = ~1)E[AL|As; = —1,-
o "'1ASn="'l,z]
= Y PRE|AL|As; = -1,
i=1
+ Y. S PElALIAs = -1,4s; = —1,2]
T

4 et PLnB[LAs =1, 0, Asp = 1,7]

where P; 2 P(As; = —1|z) is the probability that the ith origi-
nally accepted customer is removed due to the perturbation —-Ap
given that s; = 1; E[AL|As; = —1, 2] is the change of the sample

performance caused by this removal; P;; 2 P(As; = ~12A.s_.,~ =
—1|2) is the probability that both the fth and the jth originally
accepted customers are removed simultaneously due to the per-
turbation —Ap, E[AL|As; = —1,As; = —1,2] is the effect of
the two simultaneous removals; and so on. .

Since the random variables s;,¢ = 1,---, N are independent,
we have

B

P(As; = —1]z)
P(As; = —1|s; = 1)
P(si(&(p~ Ap,w)) =0s, = 1)
P{p~Ap< u < p)
P(u,- < p)
= &r (15)
P
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where B(z) satisfies EB(z) < o0.

‘ Er(Ap, 2)]
Ap

and

P{As; = —1,48; = ~1|z)
= P(As;=—-1,As; = ~1|s; = 1,8; = 1)
= P(si({(p— Ap,w)) =0,5;(E(p ~ Ap,w)) = 0ls; = 1,5,
Plp-Ap<w <p)P(p—Ap<u;<p)
Plu; < p)P(u; < p)

2
el O

In general we have

Bioj= (—A;’)". (17)

k
Since F, is linear in Ap and E[AL|As; = ~1, 2] is independent
of Ap, limap_o %}l—;ﬂ does exist w.p.1 and can be written as

. BlALlZ] & .. B
l —_— = — $ = —
Aim Ap ,~=§ . AI;IITO A7 E[ALlAs; 1,z]. (18)
Thus we have
ElALlz) = BE[ALIAs; = —1, 2] + r(Ap, 2).  (19)

i=1

Now assume the perfromance measure EL(€) has the prop-

erty that

[BJAL| Asi=~1,-++,As; = —1,2}| < B(z) < o0 for k>2
k

(20)
We then have
1
S o BN PylB[ AL|As = ~1, As; = -1,
P i’
Zjl R PlnlE[le” ]
[ZZRjB(Z) + oo+ Pi.nB(2)

i#

1
< —F

n k-1
EB(z) 3o L —

k=2 p
n k-1
(Ap)
= BB() ()
k=2 p
- o (@)
The requirement for unbiasedness
. E[r(Ap, 2)]
Al;:x—r}o Ap (22)

is thus satisfied. Note that the above assumptions are not restric-
tive at all. For example, we will show that the mean delay in our
routing problem have the above property (20) later in section 5.

To emphasize the “trick” of SPA, which in our case is to differ-
entiate probabilities instead of conditional expected performance
measures, we introduce the notation ;—pp,- as follows.

9 2 lim i
ap™ T aphoAp
=1L (23)
14
Since
Alim0 E[AL|As; = -1,z = E{AL|As; = —1,2],  (24)
b



the SPA estimator can be written as

a L]
—F o= E —n: I f = —
[317 LJSPA =1 ap™ Alz"xfo BlALiAs = -1,4]
21
= Y -EALlAs; = -1, (25)
=P

Although E[AL|As; = —1, 2] is still difficult to calculate, it is
easy to get an unbiased estimate of this quantity. In the fol-
lowing we will see that a sample of AL cauged by removing the
#th accepted customer (As; = —~1) can be used to replace the
conditional expected value E[AL[Ag; = —1,2].

6 SPA algorithm for the mean interde-
parture time

Let us consider the SPA derivative estimator for the mean inter-
departure time first. The derivative of the mean departure time
EL(€) with respect to the routing probability p can be calcu-
lated analytically. The mean interdeparture time is apparently
;\l—p. The derivative ;,%EL therefore is —;‘%. The reason that
we derive the SPA estimator for d EL{¢)/0p here is because this
derivation can help us to see clearly why SPA algorithms should
work for this system. The calculation of E[AL|Ag; = ~1,1]
is very simple for the average interdeparture time here. The
sample average interdeparture time for the ¢th one-removal path

PP i=1,-+,n—11is
,2:_(6) (26)

and we have

il

E[AL|As; = —1,2] -B [3{(:{% - @ | Ag; = —1,z]

_— 1 8; = —1,2
- n(n__ I)E[T(f)lA 4 1, ]

e L s
= o Er@l

where the negative sign comes from the fact that the perturbation
of the decision parameter is negative. The last equality is due
to the fact that T'(£) is independent of As; for ¢ = 1,-++,n — 1.
For the case of ¢ = n the length of the perturbed path is shorter
than T'(€), since the removal of the last transmitted customer
makes the sample path terminated at the departure of the n—1th
transmitted customer. However we are going to ignore this “tail
effect”, since this effect is small when n is large.
Now we have

2 S I S
[éIBEL]spA - Zap”*n(n_l)E[T(f)l |

$=1

i

-3 ;;;(al"'—'i') E[L@]d  (20)
=1

The above estimator can be further simplified as follows.

R CIE]

E H;EL] SPA} i1 pnfn

n

i
i

1
2 on(n -~ PIET (@ 14]

1
- ZﬁE[T(f)]

= onln

I

- 1
E [" g ;;rTUaTI_)T(f)] (28)

- 1_—15’!‘(6) (29)

=i pnln

as our estimator.
The unbiasedness of the above estimate is easy to check. We
have

|

sllmrr], ] = -3 e Ee)

i=

Zpn(n—1)Xp

I

i 1
§=1 ApZ(n - 1)
L

Ap?

which shows that estimate (29) is asymptotically unbiased. Note
that for any finite run estimate (29) is biased due to the tail
effect which we ignored for the convenience of the calculation. As
mentioned before, the effect of the removal of the nth customer
should be different from others, since the simulation time is also
shortened. The “theoretical” SPA estimate (25) is unbiased as
being proved.

This result is trivial. Neverthless it demonstrates that in
estimating the derivative we need only consider one jump (in our
case this is just one removal of originally accepted customers) at
one time. This i true for quite general discrete event systems
[10] and is particularly clear in this example, since the probability
that more than one jump happen is clearly of higher order than
Ap. A more interesting performance measure in this system, the
mean delay can also be treated the same way. The only thing
that needs more consideration is the calculation of E[AL|Ag =
—1, 2], which we will discuss in the next section.

(30)

6 SPA algorithm for the mean delay

It is clear from the above that for estimating the first derivative
we only need to consider the effect of removing only one customer
at one time. The sample average delay L(¢) for sample path ¢ is
defined as

1y =28 (31)

where A(€) is the total time that all the n customers spent in the
system on the nominal path £. The total time that the (n — 1
customers spent in the system for the {th one-removal path PE;
is denoted by A;(£). We then have

E|AL(E)|As; = ~1,2] = E [@ ~ A | ag = -1,z]

1l

?) (”(—)1) (3]
A€~ 406 _A®) . _
E[(;H() n(Ffl)L?;J
AlS) - Ad€) _ L(€ _
E[ n—1 _n~1[A8£~—1’

2] )

The SPA estimator then takes the form

) 8 _
[ ELLPA = Za—pp‘lxl;llloE[AL[As‘_ 1,2]

% §=1
— L} A(f)—A‘(f)_ L(f) o
- glsE[ n—1 moAsi= l,z]

n

1 - —
= i PO - ) - L A5 =1

T L ELA©) - A0~ K@) 1. 63
i=1

The last equality is due to the independence of A(€), 4;(¢) and
L(&) with respect to As;.




Since

R N
E [ngM(a - Ai(&) - L(§) ] Asi = -1, ]]

1 n
=B [M; [A(8) - A:(8) - L(é)l] (34)

we can use

LS lAe) - Ade) - L(e)] (35)

(n - l)p i=1

as our estimator. .
To prove that the SPA estimate is unbiased we have to show
that
. E[r(A8,2)]
St el TE =, 36
Alellt-x}o Al 0 (36)
As mentioned before, to do this we only need to show that the
delay EL has property (20). This can be done as follows.
We have

BIAL(E)] Asi = —1,++-,As; = —1, 7]

- p[H0- 242

< 1328 4 mra@))

< ||+ | [550

& nz_nkL(z) for k<n (37)

where A;...; denotes the total time the n—k remainning customers

spent in the system and L(z) £ E[4|2]. It can be easily seen
that (20) is satisfied for k < n. In the case of k = n we define
E{L(¢(p — Ap,w))|Asy = —1,---,As, = —1,2] = 0 for natural
reasons. Thus we have

|E|AL|Asy = —1,+++,As, = ~1,2)| = | E[L|2]]  (38)

and (20) is also satisfied. As a consequence the SPA estimate is
unbiased. .

For implementing the SPA estimator we need to calculate
T [A(€) - Ai(€)]- This can be done as follows [20]. )

It is easy to see that removing a cust;omgr frqm one given
busy period has no effect on customers transmitted in other busy
periods, so that we only need to consider the effect of the removal
on customers from the same busy period. For the mth b‘usy
period, denoted by BPy,, let c',,(m) be the amount of system time
that the kth customer in BP,, would save if the /th customer were
to be removed. If we denote by d; Sm) and a;(m}), respectively, the
departure and arrival time of the /th customer in BFPy, relative to
the beginning of the busy period, say, then one can easily obtain
the following recursive formulas:

ck(m) =0, for k<l (39)
ck(m) = dy(m) —a(m) for k=1, (40)
¢} 41(m) = dy—mag(a141(m), di_1(m)) where we take do(m) (jlt))

and for k> 1+1
ck(m) = min(ch_1(m), di—1(m) — ai(m)). (42)

Over M busy periods, containing each n,,m=1,..., M cus-
tomers, the total effect is therefore

n M nm nm
DA ~ Al = X Z;&k(m) (43)
=1 m=11=1 k=

and the estimate is

3 = L ST - ae)) -
[%”LA‘anQWW 4:()) ~ 1(e)

|
M
v
X

1
=) 2 2 2 (m) - ;)L(f)- (44)

When the external arrival stream (before the switch) is a Pois-
son process with rate A, perturbing p is equivalent to perturbing
the “net” arrival rate Ap. In [1] an algorithm for estimating the
derivative of the mean delay per unit time (instead of per cus-
tomer as in our case), denoted by D, with respect to the net
arrival rate is proposed for the M/G/1 case. Let the derivative

be denoted by D' & 9D /3(Ap). The algorithm can be described
as

M nu nm

b= % 3 dm). (45)
™ p=11=1 k=t
Since
8EL _  3EL
a a0
17 8D
= ; [m - EL] , (48)

it can be seen that the SPA algorithm (44) and the algorithm
(45) are essentially the same for Poisson arrivals. However it
is concluded in (1] that algorithm (45) is asymptotically biased
except for M/D/1'case. In [1] even the asymptotical bias of algo-
rithm (45) is calculated for the M/Mél case. From our analysis
it is clear that the algorithms are unbiased. The simulation re
sults shown in Fig. 1 demonstrate this for the M/M/1 case. The
error in the analytical calculation in [1] can be briefily explained
aslfollo;vs. In [1] an effort was made to calculate the theoretical
value o

“ 1 M ngp n,
ED'=E= 335" d(m). (47)
™ m=1121 k=t
Conditional expectation method is used to carry out the calcu-

lation. Let Ny, be the number of customers transmitted in the
mth busy period, it is clear that

M fp nm
MEMEZZZ%WM- (48)

m=11=1 k=l

In calculating the conditional expectation, however, the origi-
nal given distributions were used as the conditional distribution.
These two distributions are different. For example, busy periods
with fewer customers tend to have shorter transmission times
than the typical transmission time. To be more precise consider
the M/M 1 case. The conditional expected transmission time
conditioned on Ny, = 1 is apparently shorter than 1/p, where p
is the transmission rate.

Another remark about the SPA algorithm presented in this
paper is one can see from the above derivation of the algorithm
that it is not difficult to get an estimation algorithm for the sec-
ond derivatives by taking into consideration the two simultaneous
removal phenomena. The estimate of the second derivatives can
se very useful in optimization of communication networks |2).

As a final remark, we want to point out that the SPA al go-
“ithm presented in this paper does not need any knowledge about
she distribution of the interarrival times and the transmission
imes, which are necessary for other derivative estimators such
1s the modified IPA estimator [14] or LR estimator. This is espe-
ially important for optimization of real systems. For example,
usually the interarrival times and the transmission times are not
independent. To apply the LR or IPA method one has to know
the joint distribution of all the random variables involved, which
is not practical. The SPA algorithm presented here sqeezes the
information about the distributions while estimating the deriva-
tive by imaginarily removing each of the accepted customers. In
other words the SPA method combines the distrbution identifica-
tion and the derivative estimation together. While in LR or IPA
approach one has to first estimate the relavent distributions and
then estimate the derivative using the estimated distributions. It
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could be difficult to decide how much time one should spend on
the identification of the distributions. Needless to say, the SPA
algorithm presented here would converge slower than the modi-

fied IPA method [14] with known distributions. This is the price

one has to pay for lacking of the knowledge about the system.

7 Conclusion

In this paper we present a smoothed perturbation analysis algo-
rithm for estimating derivative in a routing problem. The algo-
rithm is shown to be unbiased. The result can be used in the
distributed optimization of data-communication networks. The
algorithm is similar to the algorithm proposed in [1]. The error
in [1] which yield the wrong conclusion about the biasedness of
the algorithms is pointed out. The SPA algorithm requires min-
imum knowledge about the system and therefore can be used for
on-line optimization purpose,
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