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ABSTRACT

We give an overview of simulation modeling and
analysis from the perspective of prospective users
wanting to use simulation as a decision aid. Important
considerations in building simulation models and
analyzing their outputs are discussed. A brief overview
of available software is given. At the end of this
tutorial, you should have a general understanding of
simulation and an understanding of its applicability to
your situation.

1. INTRODUCTION

In today's competitive business climate, careful
planning and analysis of alternative strategies and
procedures is essential. In an effort to derive maximum
benefit from available resources, engineers and business
planners have made performance analysis an important
part of their planning activities. Among performance
analysis tools, simulation has experienced a particularly
dramatic increase in popularity due to its broad range of
applicability.

We frequently hear of simulation being used for
tasks like driver training, rocket flight analysis, and
weather prediction. These simulations describe how a
system changes continuously over time in response to
controls (such as the turning of the car's steering wheel)
that may vary smoothly through time. In contrast,
discrete event simulation (the topic of this tutorial)
describes systems that are assumed to change
instantaneously in response to certain sudden or discrete
events. For example, if we were to model an inventory
system, the arrival of a batch of raw materials could be
modeled as a discrete event that caused a sudden change
in the system. When we choose to model a real world
system using discrete event simulation, we give up the
ability to capture a degree of detail that can only be
described as smooth continuous change. In return, we
get a simplicity that allows us to capture the important
features of many systems that are too complex to capture
with continuous simulation.

These discrete event simulations are generally used
to develop an understanding of the performance of a
complicated system over time. For example, we may
want to understand how the number of operators working
at a phone bank affects the percent of callers getting a
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Table 1: Some questions that can be answered by
simulation.

Capacity and Feasibility Questions
How large must the factory be?
Does the building design include enough elevators?
How many robots are needed?
Will the conveyor deliver food before it is cold?

Comparing Alternatives
Should we process jobs according to first-come-first-
served priority or shortest-processing-time-first?
Should we use MRP or just-in-time?

Trouble Shooting and Fine Tuning
Is the bottleneck caused by the grinder or the mill?
What is the optimal buffer capacity?
What should the inventory reorder point be?

busy signal and the average time a caller spends on hold.
To arrive at this understanding, we would first build a
computer model representing the arrival and handling of
calls. In this model, the arrival and completion of
individual calls would be described as discrete events.
The model would use random variables to replicate
variability in quantities such as the time between calls,
the time speaking with an operator, and the time between
getting a busy signal and calling again. Then we would
run the model (i.c., operate the simulated phone bank),
accumulating data on the individual simulated callers.
This data would then be used as a basis for determining
how many operators to use.

1.1. Questions Answered by Simulation

For simulation to be effective, it must be focused
on some previously defined problem (otherwise we do
not know what elements of the system to include in the
model and what information to collect) . Using
simulation before a specific problem is articulated may
lead to a large number of unfocused simulation runs that
use inappropriately designed models, and produce little or
no information of value.

Different questions arc asked at different stages of
a study, and they are answered by models with different
levels of detail. For example, questions about overall



Table 2: Some recent applications of simulation

Performance
Application area Measure
Air traffic control Delays

Bank teller scheduling Waiting times

Electric car Battery usage

Computer networks Delays
Robot Scheduling rules Throughput/day
Harbor management Delays

Location of Fire stations Response times

Social systems of wasps Nest building

plant capacity are frequently asked early in the project
when few details about the design are available and fairly
rough answers may suffice. In this case a simple model
is appropriate. On the other hand, questions about the
efficiency of different scheduling rules in an automated
manufacturing line can only be answered when the
detailed design of the system is finalized and precise
speeds, capacities and part routings are known. In this
case a detailed model is required and a fairly sophisticated
analysis of the simulation output is called for. Some
typical questions that can be answered through
simulation are given in Table 1.

While our subject is simulation, we should point
out that many of the questions that arise at the early
stages in a design project may be answered with
sufficient precision using simpler models and specialized
computer packages. For example a simple Lotus 123
model may be used to balance production lines so that
each station works at approximately the same rate.
Also, quick modeling tools such as Manuplan (Suri and
Tomsicek (1988)) make use of analytical models and
numerical approximation to estimate the average time
required to get a product through a factory. The
advantage of these approaches is that they are easy to
use, and they provide very fast answers to "what-if" type
questions in comparison to the weeks that may be
required if simulation analysis is used. The disadvantage
of these simpler analytic models is that their models are
often inexact representations of the phenomena of
interest, and even the most expertly formulated model
may give results that are off by an indeterminate amount,
perhaps 10-20% or more. Even these rough answers can
be quite valuable, however, if obtained early in the
planning of a project.

1.2. Applications Areas

The military services were among the first to use
simulation analysis, and simulations ranging from
evaluations of maintenance policies to large scale war
games are routinely used to guide defence policy.
Simulation is rapidly growing in popularity and
examples of successful simulation applications are found
in a surprisingly eclectic range of ficlds (Table 2).

Table 3: Some pitfalls to avoid

1. Failure to state a clear objective

2. Failure to frame an answerable question

3. Using simulation when an analytic model would suffice
4. Analysis at an inappropriate moment

5. Inappropriate level of complexity

6. Bad assumptions in model

7. Poor output analysis

8. Budget overruns

The most recent growth in simulation applications
has been in the manufacturing area. Almost all major
new construction projects and many manufacturing
process redesigns currently benefit from some sort of
simulation analysis of the proposed design.

1.3. Some Common Pitfalls

Simulation analysis is not without drawbacks.
First, the quality of the analysis depends on the quality
of the model; model building is an art. Second, it is
often difficult to determine if an observation made during
a simulation run is due to a significant underlying
relationship in the system being modeled or due to the
built-in randomness of the run; simulation results are
hard to interpret. Finally, simulation analysis is usually
a time-consuming and expensive process, and an adequate
analysis may not be feasible within the time available;
analytic methods may be better for "quick and dirty"
estimates.

Some common pitfalls are listed in Table 3.
Perhaps the most important of these is the failure to
clearly state the objective of th. ject before it is
undertaken, and to be guided by this purpose throughout
the life of the project.

2. BUILDING SIMULATION MODELS

When beginning a simulation, it is often
tempting to build a model of phenomena that are easily
observed and understood. For example, if we want to
understand the effect of the reliability of one machine on
overall throughput in a plant, we may be tempted to
describe in detail how the machine works. However, this
may be inappropriate, as the level of detail and time
resolution required to completely describe machine
operation is different from that of describing the general
pattern of machine failure. It is therefore a good idea as
a first step in the modeling process to develop the
simplest possible model that provides the necessary
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Figure 1: A simple production process

information. Starting with such a rough model enables
the modeler to describe some of the important
relationships in the system without excessive detail.
The insights gained from this simple model can then be
used to aid in the effective development of a more
detailed model.

2.1. The Role of the Simulation Model

To illustrate how simulation models are used as
decision aids, consider the simple production process
shown in Figure 1. We want to improve the efficiency
of our system by specifying appropriate buffer sizes
between the different work stations. Large buffers tend
to result in higher utilization as no machine is starved
for work. However, there is a point beyond which
additional buffers add to overall cost without
significantly improving utilization. To determine the
overall effectiveness of having different buffer capacities
at different locations, the analyst would like to know
how buffer sizes affect machine utilization. The analyst
would therefore like to have a model such as the one
shown in Figure 2.

Our task would be greatly simplified if we had a
mathematical formula giving utilization as a function of
buffer sizes and other parameters, but since we do not
usually have prior knowledge of any such relationship,
we use a simulation model that mimics the dynamic
operation of the facility. As this model is running, we
collect data about machine utilization, and at the end of
the run the computer produces a report giving the average
utilization for the run. So the simulation gives
information about utilization for a given buffer size, but
it does not compute optimal buffer size, or even give us
a general rule for describing utilization as a function of
buffer size. In other words, the model does not
explicitly describe the relationships thal we want, rather,
it describes how the system operates. It is the job of the
analyst to determine how the information needed for
decision making can be obtained from the model.

Failure Buffer Part
Rates Sizes Routings
Model
Utilization

Figure 2: Model for analysis of effect of buffer size on
utilization.

2.2. Elements of Simulation Modeling

Our ability to develop simulation models of a wide
range of different phenomena is due to the fairly
universal nature of the building blocks on which the
models are based. In particular, the representation of
dynamic behavior and the use of random variables are
fundamental to all discrete event simulations. These two
concepts are discussed in this section.

Modeling Elementary Random Processes.
Regardless of the simulation package used, our goal is to
replicate real life phenomena in the computer. For
example, if we are studying the effect of different repair
policies we need to generate intervals between machine
breakdowns that model the intervals observed in the
factory. Instead of carrying out a detailed analysis of the
state of each machine in the system so that we can
predict the exact time of breakdowns, we use random
variables to represent the pattern of breakdowns
regardless of cause. The time of any one simulated
breakdown will be different from what we observe in real
life but the long range pattern of breakdowns should be
indistinguishable from the real life process.

Most simulation models use random variables this
way to compensate for our lack of detailed knowledge of
what is going to happen at any onc instance in a real
life process. Phenomena modeled this way include
choices, quanlities, frequencies, intervals and durations.
Probability distributions describing these phenomena arc
readily available. Some frequently modeled random
processes and their recommended distributions are given
in Table 4.



Table 4: Phenomena frequently described by random

variables.
Phenomena Example Typical
Distrib.
Choice Tossing a coin Bernoulli
Turning right or left
Frequency Breakdowns per hour Poisson
Takeoffs per day
Quantity Age of a victim Normal
Actual weight of product
Interval Time between breakdowns Expon.
Time between arrivals
Durations Time to complete a task Erlang
Time to repair a lathe Gamma

The selection of appropriate probability
distributions is critical to the art of model building. We
use the phrase fitting of distributions to empirical data to
describe the process of finding a probability distribution
with the property that random observations drawn from it
are indistinguishable from empirical observations of a
phenomenon of interest. The procedure for fitting data
to distributions typically includes goodness-of-fit tests
such as the Chi-square or Kolmogorov-Smirnov test and
techniques for parameter estimation. Several software
systems are available for this analysis (Thesen (1985),
and Law and Vincent(1987)).

In addition, we are frequently asked to simulate
situations about which we have limited knowledge -- we
cannot fit a distribution to the data when there is no
data. For example, we may be asked to evaluate the
effect of different scheduling policies in a not-yet-
constructed production system. In the absence of
information other than the mean service time, it is
convenient to specify an exponential distribution for the
random variable representing service time. This choice
is considered attractive because using the exponential
distribution only forces the modeler to specify one
parameter and hence we do not need any additional
information once the mean is specified. However,
exponential distributions tend to over-estimate the
variability of a process. Similarly uniform distributions
tend to under-estimate variability. While incorrect
variability may seem like a minor oversight when the
mean of the distribution is correct, it can in fact cause
extremely misleading results. Systems with lower
variability tend to run much more smoothly and have
fewer bottlenecks than systems with higher variability,
so using distributions with inappropriately high
variability can lead to pessimistic models and wasteful
recommendations. Selecting appropriate distributions in
the absence of good data requires a great deal of
experience and judgement, or the gathering of additional
information.
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In sum, we use random variables to replicate
events in the computer. The choice of probability
distributions for these random variables involves
collecting data on the real world processes and fitting
distributions to this data. Since the choice of these
distributions has a large impact on the validity of the
model, it is well worth the modeler's time and effort to
collect good data.

Describing Dynamic Behavior. Discrete event
simulation models are run by tracing the sequence of
events that change the state of the system of interest
over time. However, since we do not normally think of
models of systems in terms of events and state changes,
the modeler usually uses a "friendlier” representation.
The computer then translates this to an event oriented
approach to actually run the model. One such "friendly"”
approach, the transaction flow approach will be discussed
here.

Many simulations describe how transactions flow
through a block diagram representing a system of
interest. For example, transactions may represent
subassemblies and the block diagram may show how
these subassemblies flow through an assembly process,
or transactions may represent customers and the block
diagram may show how these customers progress through
multiple stages of being served. Using a limited number
of standardized building blocks to describe what happens
to transactions, these languages are able to represent the
behavior of a wide range of different systems.

The first block (or statement) in a model generates
transactions. For example, transactions representing
individual customers in a waiting line or queuing system
might be generated at random time intervals. Each
transaction immediately flows through the diagram until
it hits some obstacle that causes it to be delayed.
Eventually, conditions change and the delayed
transaction is allowed to move again. Two important
mechanisms that cause the flow of transactions to be
impeded are:

Explicitly specified delays - the transaction waits
in a block while being served, and

Blocking - the transaction is refused entry to the
next block.

Blocking usually occurs when a transaction wants
to use a resource that is currently unavailable. For
example, the transaction may want to receive the
attention of a server that is busy serving somebody else.
Since many transactions may be waiting for service or in
service, a running model may contain a large number of
transactions simultaneously.

A feature of the transaction-flow approach to
model representation, is that resources are not always
explicitly shown in the model. Instead, we show how
the resource and the transaction interact. Accordingly,
languages using the transaction-flow approach (such as
GPSS) provide blocks to request the use of a resource and
blocks to release control of the resource. A diagram of



Block Diagram Explanation of
Blocks
GENERATE
Generates
¢ customers
SEIZE
Requests attention
¢ of server
ADV ANCE Delays customer
during service
Frees server for
RELEASE next customer
Terminates customer
ERMINAT transaction

Figure 3: Graphical representation of a single server
queuing model in GPSS.

a single server queuing model written using five lines of
GPSS/PC code is shown in Figure 3. Instead of
explicitly showing the server, a request for service is
represented by the SEIZE block and the release of the
server is represented by the RELEASE block.

The resulting models would be identical if other
dialects of GPSS such as GPSS/H (Henriksen and Crain
(1983)) were used, and similar if any of the other major
languages such as SIMSCRIPT (Markowitz et al (1987)),
SIMAN (Pegden(1986)), and SLAM(Pritsker(1986) were
used. These simulation languages all use similar
approaches for modeling dynamic behavior. Other
approaches to model representation are discussed in the
following section.

Commonly Used Modeling Packages. While it
often easy to describe a situation to other humans, (for
example by using graphs and/or analogies), it can be
exceptionally difficult to capture its detail on a computer.
We therefore try, whenever possible, to design models
that draw upon previously developed models and
programs.

The more choices that the model builder must
make, the more difficult the modeling process becomes.
On one extreme, with special purpose simulation systems
such as Sandie (Thesen (1986)) and StarCell (Steudel

Table 5: Four approaches to model representation.

Model Inter- User Typical
Type face Input Tool
Template Menus Parameters StarCell
Sandie
Network Graph- Structure XCell
ical Parameters Simple 1
Simulation Text Structure GPSS,
Language editor/ Parameters SIMAN,
graph- Performance SIMSCRIPT
ical measure SLAM
Programming Text Structure C
Language editor Parameters FORTRAN
Performance GASP
measure Modula-2
Time PASCAL
keeping

(1987)), users are shown a model template giving model
structure and default parameters. For example the model
we saw in Figure 3 is a standard feature in both Sandie
and StarCell. After changing a few parameter values, it
is ready to run. Although convenient if the pre-
programmed model accurately reflects the problem at
hand, this approach is unable to describe many special
circumstances.

Users of many of the emerging interactive
network based simulation environments with graphical
user interfaces (for example Corbin (1987) and Conway
(1987)) have more flexibility in specifying model
structures. Mice and pop-up menus are often used for this
purpose. As with the template models the accessibility of
these environments comes with the disadvantage of
limited flexibility. The benefit is a fairly short model
building time and some reasonable assurance that the
model works as intended.

As we saw in the previous section, users writing
their simulations in a simulation language use model
building blocks such as GENERATE, ADVANCE,
TERMINATE, SEIZE, to specify the flow and logic of the
model. While statements in a simulation language
correspond to activities in the system of being modeled
(WAIT, QUEUE) rather than to activities in the computer
(multiply, divide), these languages have much of the
structural flexibility of programming languages.
Simulation languages therefore are appropriate when the
modeler requires more flexibility than provided by
template packages, and has some programming expertise.
Some of these languages can be used with graphical user
interfaces and animation, and although these features
radically change what the model builder views on the
computer screen, they do not change the underlying logic
or level of detail of the model. Graphical interfaces and



animation may cause model building time may be
shortened (or perhaps in the case of animation
lengthened), but the modeler still requires the same
dctailed knowledge of the model.

Occasionally a situation is so unique that it
cannot be effectively modeled using any of the
approaches listed above. For example, this might occur
when complex material handling systems using fairly
elaborate control schemes are simulated. In these cases
general purpose programming languages must be used.
Thesen (1987) gives an overview of how such programs
can be written in Pascal. Approximately 1000 lines of
Pascal code would be required to implement the simple
model depicted in Figure 3.

Finally there are certain simulation systems that
fall outside the classification scheme listed above. For
example simulation models can be integrated with a
factory's production scheduling system to aid in day-to-
day scheduling by running simulations using current
information from the shop floor. (MacFarland (1987)).

3. OUTPUT ANALYSIS

3.1. Analysis of a Single Design

Simulations are used to develop some sense of the
performance of a system over time. We may want to
know the average waiting time in a facility or we may
want to know the expected demand during a stock-out
period. While this type of summary information is not
usually used in the simulation model, one of our tasks is
to accumulate it during the run.

For example, we can easily record the length-of-
stay for each individual customer during a run, and at the
end of the run we can compute the average length-of-
stay. Since random variates are used to replicate real life
in service times and arrival times, the resulting average
length-of-stay will also be a random variable. In other
words simulation follows the RIRO principle -- random
input, random output. It is essential to keep this in
mind when interpreting your results. If we were to run
the same simulation model again, we would in all
likelihood observe a different average length-of-stay.
We would like to draw conclusions and make decisions
based on the average length-of-stay, but every time the
model is run a different value results. We are observing
values of a random variable whose distribution we do not
know (see Figure 4). The purpose of most simulation
runs is to estimate the true mean of the distribution of
these averages and to develop an understanding of its
variability

Simulation Data
on average
length-of-stay
(Averages from
individual
simulation runs)

overall
average
(estimate of
true mean)

Actual distribution
of average
length-of-stay
(not known to
simulator)

A

true
mean

Figure 4. Simulation is used to gain information about
an unknown distribution.
3.2. Comparing Designs
Simulations are often used to compare the
performance of different potential solutions to a
problem. This requires careful planning. Since the
observed value of a performance measure for any single
simulation run may be thought of as a random variable,
the observed difference between the performance of
multiple systems will also be a random variable. If other
words, say we are interested in comparing system A to
system B, and we run a computer simulation of each. If
the simulated performance of system A is slightly better
than that of system B, can we conclude that this
difference is due to a genuine difference between the
systems, or might it be a chance event caused by the
inherent randomness of our simulation runs? Careful
analysis is therefore necessary to see if this performance
difference 1is statistically significant. This type of
analysis can answer questions such as the following:

One decision variable
- Which system has the fastest response time?
- Is throughput increased if the buffer size is
increased 10%?

Two decision variables
Does throughput change when scheduling
rules and buffer sizes change?
- What is the best combination of order-point
and order-quantity ?

Many decision variables
- What factors affect throughput?
- What staffing pattern, truck routing and fire
station territories minimize response time?
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Figure 5: Three station Flow Shop

An Example. A simulation study was conducted to
compare two possible decision rules for determining the
order in which jobs were processed in a simple three
station job-shop (Figure 5). The goal was to select a
processing rule to minimize mean time in system for the
jobs. The First Come First Served (FCFS) and the
Shortest Processing Time First (SPT) dispatching rule
were compared. The two models were run 10 times each.
The following results are shown in Table 6.

Table 6: Mean time in the system for 10 replications of
two different scheduling policies for a three station flow-

shop.
Average Time in System
Replication FCFS SPT
1 113.9 115.2
2 121.7 112.8
3 117.5 114.1
4 121.14 110.8
5 114.5 117.5
6 118.6 114.3
7 118.8 114.9
8 113.2 113.9
9 113.9 118.1
10 118.1 113.9
Overall
Average 117.2 114.6
Standard
Deviation 3.1 2.1

The observed difference in average throughput
time is 117.2 - 114.6 = 2.6 time units. If we were to
repeat these simulations, we would be likely to observe a
different difference. However, if we are justified in
assuming identical variability in the process producing
the two data sets, then we can use classical statistical
inference to estimate the 90% confidence interval about
the difference between the two truec means as

-200 < (My-Hg) £ 724

Since this interval includes zero, we are unable to
reject the hypothesis that the two service policies result
in identical performance.

This inconclusiveness is either due to the fact that
there indeed is no difference in performance, or, it is due

to the fact that the variance in the observed data was too
high (i.e., the data was too "noisy" for us to extract

Table 7: Differences between mean time in the system for
10 replications of two different scheduling policies for a
three station flow-shop using identical arrival times for

each pair of replications.

Average Time in System
Replication FCFS SPT Difference

1 113.9 110.8 3.1
2 121.7 117.5 4.2
3 117.5 114.3 3.2
q 121.4 114.9 6.5
5 114.5 113.9 0.6
6 118.6 112.8 5.8
7 118.8 114.1 4.7
8 113.2 115.2 =2.0
9 113.9 118.1 -4.2
10 118.1 113.9 4.2

Average 2.61

Standard Deviation 1.86

useful information). If the observed difference were due
to the built-in randomness of the model, then we could
use either preform many more (perhaps expensive)
simulation runs or we could use variance reduction
techniques to reduce the variability in the data and
improve the conclusiveness of the study.

One approach to reducing variability is to operate
the two different models under identical random
conditions. For example we could generate a single set
of random numbers to represent arrival times of jobs, and
use this set for both models. This process would be
repeated several imes. Performance differences between
the models in any one replication would then not be due
to random differences in arrival times. We then make
pair-wise comparisons between the models for each
replication. The resulting differences are of course
random variables, and their true means must be the same
as the difference between the true means estimated before.
However, since we have eliminated a source of
variability, it is likely that their variance is smaller.
we show in Table 7 this indeed is the case for our
example.

As

The corresponding confidence interval is

059 < (H1-Hg) < 4.68

Since this confidence interval does not include
zero, we reject the hypothesis that the two policies result
in identical performance, enabling us to recommend one
policy over the other. Using this common random
numbers technique we reduced the inherent randomness in
the modeling process by employing common random












