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ABSTRACT

In typical stochastic simulations, randomness is pro-
duced by generating a sequence of independent uniform
variates (usually real-valued between 0 and 1, or integer-
valued in some interval) and transforming them in the
appropriate way. In this tutorial, we examine practical
We
compare them in terms of ease of implementation, effi-
ciency, flexibility, theoretical support, and statistical ro-
bustness. We look in particular at the following classes

ways of generating such variates on a computer.

of generators: linear congruential (in scalar and matrix
form), lagged-Fibonacci (including generalized feedback
shift register) and combined. We also mention others
and give a bibliographic survey of the most recent pa-
pers on the subject.

1. INTRODUCTION

In the mind of the average computer user, the prob-
lem of generating uniform variates by computer has been
solved long ago. After all, every computer system offers
one or more function(s) to do so. Many software prod-
ucts, like compilers, spreadsheets, statistical or numeri-
cal packages, etc. also offer their own. These functions
supposedly return numbers that could be used, for all
practical purposes, as if they were the values taken by
independent random variables, with a uniform distribu-
tion between 0 and 1. Many people use them with faith
and feel happy with the results. So, why bother ?

Well, other (less naive) people do not feel happy
with the results and with good reasons. Despite re-
newed crusades, blatantly bad generators still abound,
especially on microcomputers (see e.g. L’Ecuyer (1987),
Modianos et al. (1987), Park and Miller (1988), Ripley
(1988), Wichmann and Hill (1987)). Other generators
widely used on medium-sized computers are perhaps
not so spectacularly bad, but still fail some theoretical
and/or empirical statistical tests, and/or generate easily
detectable regular patterns (L'Ecuyer (1988), Marsaglia

(1985)).
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Fortunately, many applications appear quite robust
to these defects. In the words of Marsaglia (1985), “a
random number generator is much like sex: when its
good its wonderful, and when its bad its still pretty
good”. But with the fast increase in desktop computing
power, increasingly sophisticated simulation studies are
being performed that require more and more “random”
numbers and whose results are more sensitive to the
quality of the underlying generator (Marsaglia (1985),
Ripley (1988)). Sometimes, using a not-so-good gener-

ator can give totally misleading results. Carrying on

wr

with Marsaglia’s analogy, perhaps we could add: “in
both cases, careless behavior may lead to disaster”. As
suggested by the list of references at the end of this pa-
per and in L’Ecuyer (1989), researchers in the field (of
variate generation) are actively studying “proper mea-
sures to reduce the risks”. The goal is to design more
robust generators, without having to pay too much in

terms of portability, flexibility and efficiency.

In the next sections, we give a quick overview of this
ongoing research. We focus mainly on efficient and re-
cently proposed techniques for generating uniform pseu-
dorandom numbers. Stochastic simulations typically
transform such numbers to generate variates according
to more complex distributions (Bratley et al. (1987), De-
vroye (1986)). Here, “uniform pseudorandom” means
that the numbers behave from the outside as if they
were the values of i.i.d. random variables, uniformly dis-
tributed over some finite set of symbols. This set of sym-
bols is often a set of integers of the form {1,...,m — 1}
and the symbols are usually transformed by some func-
tion into values between 0 and 1, to approximate the
U(0,1) distribution.

Other tutorial-like references on uniform variate gen-
cration include Bratley et al. (1987), Knuth (1981), Law
and Kelton (1982) and Marsaglia (1985).



&

VIEWS OF RANDOMNESS

[

.1. Classical definitions

In the classical (Kolmogorov) sense, a string of bits
is random if it cannot be described by a shorter string
than itself. A generalization is that it cannot be pro-
duced efficiently (e.g. in polynomial time), by a program
smaller than itself. For references and other definitions,
see e.g. Golreich et al. (1986) and Knuth (1981). These
definitions are certainly not practical enough for simu-
lation applications, since k truly random bits would be
necessary for outputting & “random” bits in this sense.

In the early days, physical devices (like noise diodes,
Geiger counters, etc.) have been attached to comput-
ers with the aim of producing such “true” random bits
(see references in Chor and Goldreich (1988)). These
methods were abandonned for many reasons, e.g., us-
ing such specialized hardware is not convenient, a se-
quence of numbers cannot be repeated without storing
it and, more importantly, the numbers produced are not
uniformly distributed (Bratley et al. (1987), Chor and
Goldreich (1988)).
to extract “random-looking™ bits from imperfect physi-
cal sources of randomness (Chor and Goldreich (1988),
Vazirani (1987)), but for the moment, these techniques

Work is still being done on ways

are still not practical enough for standard simulation
applications.

2.2. A framework for PRNGs

The so-called “random number generators” that are
used in practice are in fact deterministic functions that
produce a periodic sequence of numbers. When their
initial state (called the seed) is truly random, they can
be viewed as eztensors of randomness, whose purpose is
to save “coin tosses”. They stretch a short truly random
seed into a long sequence of values that is supposed to
appear and behave like a true random sequence. For
this reason, they are often called pseudorandom. We
now set up a framework for studying such generators. In
L’Ecuyer and Proulx (1989), a pseudo-random number
generator (PRNG) is defined as a family {Gn, n > 1}
of structures, increasing in size. In this paper, we adopt
a simplified definition, in which we fix the size (as is
always the case in practice). We simply use the term

generator.

DEFINITION 1. A Generator is a structure G =
(S, u f,U,g), where S is a finite set of states, p is a
probability distribution on S, called the initial distri-
bution, U is a finite set of output symbols, f:8—S
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is the transition function and g : S — U is the output
function.

A generator operates as follows:

(1) Select the initial state so € S according to p; let
uo := g(0);

(2) fori:=1,2,..., let 8, := f(si—1) and u, := g(s:).

The sequence of observations (uo, u1,u2,...) is the
output of the generator. The initial state 3¢ is called the
seed. We assume that efficient procedures are available
to compute f and g and to generate the seed so accord-
ing to u. Of course, the aim of a generator will be to
output a much longer sequence than its input seed so.
The output sequence should also look to some extent
as if the u;’s were the values of i.i.d. random variables,
uniformly distributed over U. In practice, this should
be supported by a sound theoretical basis and assessed
empirically by powerful statistical tests (see sections 3
and 5).

2.3. PT-perfect generators

An ideal generator would be such that nobody, us-
ing reasonable computing resources and reasonable time,
could distinguish between the generator’s output and a
sequence of truly i.i.d. uniform variates over U better
than by flipping a fair coin to guess which is which. Note
that this is reminiscent of Turing’s test for intelligence.

L’Ecuyer and Proulx (1989) (and other references
given there) give a more precise definition, based on
computational complexity, which applies to a family
{Gn, n > 1} of generators. Informally, the family is
called PT-perfect if G, “runs” in polynomial-time (in
n) and if no polynomial-time (in n) statistical test can
distinguish the output of the generator from a truly ran-
dom sequence (or equivalently, no polynomial-time algo-
rithm can predict w,41 from (uo,...,u,) better than by
picking a value uniformly from U.

The generators mostly used in simulation (linear
congruential, multiple recursive, GFSR, ...) are not
PT-perfect. Efficient algorithms have been designed to
infer their sequence by looking at the first few numbers.
See the references in L Ecuyer and Proulx (1989). But
in practice, they remain the most useful generators for
simulation. They are efficient and show good statisti-
cal behavior with respect to most reasonable empirical
tests, especially when combined.



Binary (or m-ary) expansions of algebraic numbers
(roots of polynomials with integral coefficients) or of
some transcendental numbers (including 7) do not de-
fine either PT-perfect generators. Kannan et al. (1988)
give efficient algorithms to compute further digits given
a long enough initial segment of the expansion.

PT-perfect generators were introduced by research-
ers in cryptology. These people proposed various gener-
ators that are conjectured to be PT-perfect. Typically,
these generators are much too slow for simulation use.
Also, the very existence of any PT-perfect generator has
not been proven.

3. GENERATORS ON FINITE FIELDS

Most generators used in practice are in fact based on
finite field arithmetic (IXnuth (1981), Lidl and Nieder-
reiter (1986), Niederreiter (1986)). Typically, they are
special cases or variants of the following matrix formu-
lation.

3.1. Matrix congruential generators

Let GF(n) denote the Galois field with n elements
(usually identified with the set of integers {0,1,...,n ~
1}). Let m = p* be some integer which is a power of a
prime p, and S be the set of k-dimentional vectors with
components in GF(m), ie. S ={X = (z1,...,5)" | 2.
integer and 0 < r, < m for 1 < i < k}. Let A = (ay,)
be a k x k matrix with elements in GF(m). It defines a
linear transformation f: S — S by f(.X) = AX mod m
(where the mod operation is taken elementwise). Let S*
be the set obtained by removing the vector 0 from S and
let g be an initial distribution on S*. Choosing U and
g : S — U defines a generator (we will examine ways io
do that later on). Here, the generator’s state evolves as

XNp:=AX,_1 mod m, (1)
with \\o being the initial state (or seed).
When m is prime (e = 1), the maximal possible
k

period for the X, ’sis the cardinality of S* i.e. 1 = mF—
1. It is attained iff A is a primitive element of G F(m*)
(i.e. iff all powers of A in arithmetic mod m, plus the
matrix 0, generate a vector space with m* elements,
isomorphic to GF(m*)). A sufficient condition is that

the characteristic polynomial

f(r) = |rI— Al mod m
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where the coefficients a, are elements of GF(m), is a
primitive polynomial modulo m. Let r = (m*—1)/(m -
1). Knuth (1981) gives the following sufficient condi-
tions for f(r) to be primitive modulo m:

(a) ((=1)**'ax)'™ /9 mod m # 1 for each prime

factor ¢ of m — 1;
(b) ((x” mod f(z)) mod m) = ((—1)**'ax) mod m;

(c) (("/9 mod f(r)) mod m) has degree > 0 for each
prime factor gof r, 1 < g < r. 1

For large values of m*, factorizing r is often very
hard. It becomes the bottleneck in checking the above
conditions (L’Ecuyer and Blouin (1988a, 1988b)). A
good idea then is too seek couples (m, k) such that r is
prime, since checking primality is much easier than fac-
toring (Morain (1988)). Given m, k and the factoriza-
tions of m —1 and r, it is relatively easy to find maximal
period generators, simply by random search for proper
a.’s. For prime m, there are exactly

N(m, k) = (M =10 = l/qx)(lk— 1/g2) -+ (1=1/qn)

choices of (a;,...,ax) that satisfy the above sufficient
conditions, where g¢1,...,gn are the distinct prime fac-
tors of m* — 1 (Knuth (1981)).

If m is not necessarily prime (m = p® for e > 1),
the maximal possible period is (p¥ — 1)p®~!, except for
p = 2 and k = 1, where it is 272 (Knuth (1981)).
Eichenauer-Herrmann et al. (1989) give sufficient condi-
tions under which this period is attained and describe a
simple method for constructing matrices A giving max-
imal period generators. (The exception p—1 =k = 1
is treated in Knuth (1981).) The case where p = 2 can
have some interest in terms of implementation, but the
cost in terms of period length, for a given approximate
size of m, is important. For example, for p = 2 and
k =1, the maximal period is about one-fourth of m* —1.
For m = 2% and k = 5, the longest possible period is
(2°=1)2%1=1 = 235230 yhile mkF—1 = 2155 _ 1s about
212% times longer ! For this reason, it is recommend to
use only prime values of m.

It is possible, though, to obtain a period length of
m* by using a slightly more general class of transition
functions, of the from

Nn = (AXno1 +C) mod m, (3)

where ' € S is a constant vector. Equation (3) defines
a linear congruential generator (LCG) in matrix form.



When C = 0 (as above), the generator is called multi-
plicative (MLCG). The most widely used generators in
practice are multiplicative with prime m. Indeed, us-
ing C # 0 is interesting only when e > 1 (e.g. if m is
a power of 2). Maximal period conditions for the case
k=1 and C # 0 are given in Knuth (1981). Of course,
the case k = 1 corresponds to the usual linear congru-
ential generators.

3.2. Multiple recursive generators

For a given prime m, whether a MLCG has full pe-
riod or not depends only on the characteristic polyno-

mial of its matrix. Any polynomial of the form (2) has
a companion matrix

0 1 ... 0

A= . . . . (4)
0 0 R |
Ak Ak-1 ai

whose f(r) is the characteristic polynomial. When the
matrix A has this special structure, the first &k —1 com-
ponents of .\, are obtained by shifting the last k — 1
components of X,_1, and the last component of X, is
a linear combination of the components of X,,_;. This
can be viewed as producing a sequence of integers, each
one defined as a linear combination modulo m of the k
previous ones. This kind of generator is called mult:-
ple recursive (MRG). With a matrix of this form, and

denoting
‘\’n = (In‘uwrn-{-k—l )’» (5)
equation (1) is equivalent to the recursion
Tp:=(a1Tn-1 4+ -+ + axTn_x) mod m. (6)

Restricting our search to generators of this class
is certainly supported by their ease of implementa-
tion. It is further reinforced by the following property
(Grothe (1988), L’Ecuyer and Blouin (1988b), Nieder-
reiter (1986)): for any generator defined by (1) with
the characteristic polynomial of A defined by (2), the
sequence of states obeys the recursion

Nni=(a1Xn-1 4+ axXn-x) mod m. (7)

In other words, each component of X, evolves according
to the same recursion (6), which means that we just have
in fact k copies of the same MRG evolving in parallel
(hopefully, with different and “far apart” seeds). This
gives a good argument supporting the direct use of (6).

Another interesting special case in terms of imple-
mentation is when the characteristic polynomial f(zr) is
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only a trinomial, of the form f(z) = z*¥ — a,z*77 — ax,
for 1 < j < k. Primitive trinomials of this form are
easy to find (L’Ecuyer and Blouin (1988a, 1988b)). The
corresponding recursion can be written

Xn:=(a;Xno; + akXn_x) mod m.

(8)

The generator can be implemented directly in this form,
but then, its state should be redefined as s, = (Xn-1,

.., Xn—x) (which is a matrix), or as the vector (z,-1,
... Zn—k) in the case of the MRG.

Still more interesting is when m is a “representable”
integer on the target computer and a,(m mod ai) < m
for each ¢, because then, there is an efficient and easily
implementable way to compute a;z mod m (Bratley et
al. (1987), L’Ecuyer (1988), Park and Miller (1988)).
Generators of this form are proposed by L’Ecuyer and
Blouin (1988a, 1988b). Techniques for computing a;z
mod m in a high level language for the more general
case are studied in L’Ecuyer and Coté (1987).

Jumping ahead in the sequence of a MLCG can be
done efficiently using

Xnt; = (A’ X,) mod m = (A’ mod m).X, mod m.

The matrix (A7 mod m) can be precomputed using the
divide-to-conquer algorithm:

A ify=1;
A’ modmz{AxAJ_l mod m if 5 > 2,7 odd;
A% % A2 mod m if§ > 1, j even.

Such “jumping ahead” facilities are useful for some sim-
ulation applications (Bratley et al. (1987), L’Ecuyer
and Coté (1987)).
tained, A must be nonsingular in arithmetic modulo

For the maximal period to be at-

m, since otherwise AX mod m = 0 for some vector

X # 0.

a\'n -1 =

Then, if A~! denotes its inverse, we have
A7'X,, mod m, so that the sequence can be
generated in reverse order.

3.3. Tausworthe, GFSR, lagged-Fibonacci

When a, = |ax| = 1, the recursion (8) is a special
case of the so-called lagged-Fibonacci generator (LFG).
A LFG is defined by

Xni=(Xno; 0 Xn_k) mod m

(9)

where o is any componentwise binary operation (sum,
product, subtraction, etc.) and X, is a vector of any
size, with components in GF(m). These generators are
analysed in Marsaglia (1985) and Marsaglia and Tsay

(1985) for different operators o and m = 2°. For such



values of m, their maximal period lengths are typically
much smaller than m* — 1.

Increasing the period of a LCG can be done by tak-
ing a larger m or a larger k. Typical MLCGs use m
near 2°! and small k. At the other extreme lies the
case m = 2 (with large k). In this case, X' is a vec-
tor of k bits. For b < k, one can interpret, say, the
last b bits of .\, as a b-bit integer. The generator thus
obtained is called Generalized Feedback Shift Register
(GFSR) (Fushimi (1988), Fushimi and Tezuka (1983),
Lewis and Payne (1973), Marsaglia and Tsay (1985)).
For the “efficient” special case (8), with a; = ax =1,

it becomes a special kind of lagged-Fibonacci generator,
with operator ¢ denoting the bitwise XOR. Since the
first k — b bits (if any) are unused, X', can be viewed as
a b-bit vector. The generator’s state s, is a b x k matrix
of bits. Examples of suggested values in practice are say
b = 31 and k somewhere between 64 and 512.

For b = 1, one gets a MRG called a Tausworthe
(or simple shift register) generator, which produces a
sequence of bits (also called a M-sequence, for maxi-
mal period generators). Tausworthe (1965) suggested
regrouping blocks of successive bits to form integers of
reals. These generators are rather slow and are almost
not used any more in practice. GFSR generators are
faster but use more memory. Since a GFSR generator
corresponds in fact to b copies of the same Tausworthe
generator evolving in parallel, efficient algorithms are
needed to compute an initial matrix of bits so that these
b bit-generators have their seeds far enough apart (Arvil-
lias and Maritsas (1978), Collings and Hembree (1986)).
Marsaglia and Tsay (1985) and Marsaglia (1985) argue
strongly against the use of GFSR generators, for effi-
ciency reasons and because thay fail miserably some sta-
tistical tests.

3.4. Transforming into U(0,1) variates

Coming back to the general MLCG (1), there are
different ways of using the state vector X, = (zn1,...,
Iak) to produce real values between 0 and 1 (i.e. to
define U and g).

can be simply divided by m, yielding a result in [0, 1).

When m is large, a component z,,

But it is often necessary to make sure that the result
lies strictly between 0 and 1. This can be accomplished
by dividing instead by m + 1, replacing first z,, by m
when z,, = 0. Other slightly more involved techniques
are proposed in Marse and Roberts (1983) and Monahan
(1985).

Afflerbach and Grothe (1988) and Grothe (1987,
1988) use all the components of X'n to obtain & U(0,1)
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variates at each iteration. L’Ecuyer and Blouin (1988b)
use only znkx (the last component), which is equivalent
to using a MRG. The former could eventually generate
variates at a faster rate using parallel processors. An-
other approach in that case could also be to run different
MRGs in parallel.

When dividing =, by (m + 1), the mesh size (or
“granularity”) of the output is 1/(m + 1). For some
applications, a smaller mesh size might be necessary (see
e.g. the example in Eichenauer and Lehn (1986)). One
can then use a digital method, in which a value u, €
(0,1) is produced by

t
up =p '+ ((Zp_'rm.,.;_]) mod 1 |,
1=1

where p < m + 1 and t > 1 are integers (p could be for
instance a power of two), and {z., ¢ > 0} is the sequence
of all used vectors components (or a sequence produced
by (6)). Other variants are discussed in Niederreiter
(1986, 1988). Tausworthe and GFSR generators use a
In the MRG case, the

period of the u,’s always divides m* —1. When m* — 1

similar technique with p = 2.

and ¢ are relatively prime, it is almost always m* — 1.

3.5. A class of generators by inversion

Eichenauer and Lehn (1986) and Eichenauer et al.
(1987) introduced a class of “non-linear” generators in
which the sequence {zn, n > 0} obeys (6). Let %,
be the i-th non-zero value z, in that sequence. De-
fine zp = (Zn41%,°) mod m, where ;! denotes the in-
verse element of Z, in GF(m). The z,’s can be used to
produce the u,’s exactly as the z,’s were in the previ-
ous subsection. A version of Euclid’s algorithm, whose
average running time is approximately 12(1n 2)(In m)/x
((Knuth (1981)), can be used to compute the inverse
il

For prime m, the maximal possible period length for
k=1 Eichenauer et al. (1987) give sufficient
conditions for it to be attained. Maximal period gener-
ators are easy to find. For k = 2

the zp’s is m

or 3, one can write a
recursion directly for the z,’s. For k = 2, it is

={

The main motivation behind these

(a1 + a2z7};) mod m
ay

if zp_1 #0;

lf In—1 = 0.

generators is that
the sequence they produce does not share the lattice
property of the usual LCGs (next subsection).



3.6. Lattice structure and spectral test

Consider a maximal period MRG, of the form (6)
and let

)

T ={(zn,. -, Tntt—1), n > 0} u {0}

be the set of all overlapping t-tuples of successive values,
plus the zero vector. It is well known (Grube (1973),
Knuth (1981), L’Ecuyer and Blouin (1988b), Marsaglia
(1968)) that the periodic continuation of T, with period
m,

Lt = Tg +'l7th,

forms a lattice with unit cell volume of max(1, m*~*).
Recall that a t-dimensional lattice is a set of the form

t
L={
1=1

where V7, ..

Vi, each z, integer}

., Vi is a set of linearly independent vectors
., Wi such that the
scalar products obey V, - W, = §,; form a basis of the

called a basis. A set of vectors Wy, ..

dual lattice.

For t < k, the lattice contains all possible integer
For t = k&,
each vector except the zero vector occurs once and only

vectors and the unit cell volume is one.

once over the period. For t > k, the unit cell volume
can be huge compared to 1, which is the value that one
would expect from truly random integer vectors. This
can be viewed as a strong limitation of simple LCGs
(with & = 1) and suggests using larger values of k. A
unit cell of the lattice is determined by the vectors of
a Minkowski-reduced lattice base (MRLB) (Afflerbach
and Grothe (1985, 1988), Grothe (1988)). It is tradi-
tionally accepted that “better” generators are obtained
when the unit cells of the lattice are more “cubic-like”,
i.e. when the vectors of the MRLDB have about the same
size. The ratio of the sizes of the shortest and longest
vectors of the MRLDB is called the Beyer-quotient. It
can be used to assess the quality of the lattice. Values
near one are said to be more desirable. Note however
that reducing the unit cell volume (by increasing m, or
k, or both) can be much more effective in improving the
quality than getting a larger Beyer-quotient with fixed
m and k. Afflerbach and Grothe (1985) and Grothe
(1988) give efficient algorithms to compute the MRLB
and Beyer-quotient of a given lattice.

The lattice structure also means that all points of
T, lie in a family of equidistant parallel hyperplanes.
Among all such families of hyperplanes that cover all
the points, choose the one for which the successive hy-
perplanes are farthest apart, and let d. be the distance
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between them. The smaller that distance, the better,
since this implies thinner empty “slices” in the lattice.
Dieter (1975) and Knuth (1981) give an algorithm to
compute d¢, which is in fact equal to the length of the
shortest vector in the dual lattice to L, (it is also the
shortest vector in the MRLB of that dual lattice). For
given m and k, the number of hyperplanes in the chosen
family cannot exceed (t!(m* — 1))/t and there is also a
theoretical lower bound df on d.. One can define the fig-
ures of merit S¢ = df/d and M, = ming<,<¢ Si, which
lie between 0 and 1. For k = 1 and using Ms as a crite-
rion, computer searchs to find good generators have been
done by Fishman and Moore (1986) (for m = 231 — 1),
L’Ecuyer (1988) (for different values of m near 2°! and
a? < m), and by Park and Miller (for m = 2! — 1 and
a1(m mod a;) < m). More extensive searchs using Mz
as a criterion, for 1 < k < 7 and different values of m,
up to near 2!?7, have been performed by L’Ecuyer and
Blouin (1988a, 1988b).

A similar lattice structure appears when all compo-
nents of .X,, are used at each iteration (Afflerbach and
Grothe (1988) and Grothe (1987, 1988)). It can be ana-
lyzed in a similar way. When the generator is not mul-
tiplicative (C # 0), the lattice is shifted by a constant
vector, yielding what is called a grid (which can be ana-
lyzed in the same way). When T; is replaced by the set
of non-overlapping t-tuples, L, does not form a lattice
in general (Afflerbach (1986)).

LCGs can be generalized to quadratic generators of
the form

Xn:i=(X,_1AX,_1 4+ BX,_; + C) mod m,

where A and B are k x k matrices, or more generally to
Xn = P(X-1) mod m

where P i1s some multivariate polynomial. For k =1,
quadratic generators are analyzed in Knuth (1981) and
Eichenauer and Lehn (1987). The latter authors show
that for maximal period generators (1 = m*), the non-
overlapping t-tuples determine a union of grids.

4. COMBINED GENERATORS

To get rid of the regular patterns displayed by
LCGs, it has often been suggested to combine differ-
ent generators to produce a “hybrid” one, with the
aim of getting better “scrambling” (Collings (1987),
Haas (1987), Knuth (1981), L’Ecuyer (1988), Marsaglia
(1985), Nance and Overstreet (1978), Wichmann and
Hill (1982, 1987)).



Such combination is often viewed as completely
heuristic and sometimes discouraged. Ripley (1988), for
instance, associates it to a “better the unknown than
the devil we know” attitude. But the fact is that besides
being strongly supported by many empirical investiga-
tions, combination has theoretical support. Firstly, in
most cases, the period of the hybrid is much longer than
that of each of its components, and can be computed.
Secondly, there are theoretical results suggesting that
some forms of combined gencrators generally have bet-
ter statistical behavior. IFor instance, suppose two ran-
dom sequences {z,, n > 0} and {yn, n > 0} are com-
bined elementwise to form a third sequence {zn, n > 0},
where z, = =, ¢ y» and o denotes some binary opera-
tor. Assume that the three sequences are defined over
the same finite set. Then, under fairly reasonable condi-
tions, the t-tuples of successive values are “more” (or at
least as much) uniformly distributed in some sense for
the third sequence than for any of its two constituents.
See Marsaglia (1985).

An efficient and portable combined generator is pro-
posed in L’Ecuyer (1988). No structure is apparent in
its geometric behavior even if the lattice structure of
its individual MLCG components can be made visible.
Marsaglia (1985) suggests alternative ones. They should
be easy to code in some low level languages, but not so
easy in high level languages with strong typing. Collings
(1987) and Wichman and Hill (1982) suggest others.
All these generators were submitted to heavy statisti-
cal testing.

Other combination approaches are based on shuffling
(Bratley et al. (1987), I\nuth (1981), Law and Kelton
(1982), Nance and Overstreet (1978)).

variants, two simple generators are used, one to fill the

In one of the

cells of a buffer and the other to select which cell the
next output value will be taken from. At each step, the
second generator selects a cell, outputs its content, then
the first generator fills it back. Shuffling is not so well
understood and have some practical drawbacks (Bratley
et al. (1987)). For instance, there is no obvious efficient

way to jump ahead in the sequence.

5. STATISTICAL TESTING

Knuth (1981) describes a set of empirical statisti-
cal tests, usually viewed as the “standard™ ones. Many
of them are included in the package of Dudewicz and
Ralley (1981). Marsaglia (1985) describes supposedly
more powerful ones. Statistical tests are rather easy to
design: any function of a finite set of i.i.d. uniform ran-
dom variables can be used as a statistic to define a test,
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if its distribution is known. To gain power, the test can
be repeated N times, and the empirical distribution of
the values of the statistic can be compared to its theo-
retical distribution, using say the Kolmogorov-Smirnov
test (Dudewicz and Ralley (1981), L’Ecuyer (1988)).

Besides empirical tests, some theoretical tests can
give information about the statistical behavior of cer-
tain generators, often over the full period but sometimes
also for just part of the period. Examining the lattice
structure of LCGs yields such tests. Other tests are
based on the notion of discrepancy. Informally, the dis-
crepancy D‘,\j) in t dimensions is the absolute difference
between the expected number and actual number of vec-
,Tntt—1), 0 < n < N, falling into a hyper-
rectangular region, maximized over all such regions (or

tors (Zn,...

in some definitions, over those regions with a corner at
the origin). For many different classes of generators,
Niederreiter (1978, 1986, 1987, 1988, 1989), Mullen and
Niederreiter (1987) and Tezuka (1988) provide bounds
on D(,\;). A low upper bound can give some sort of “pro-
tection”. But only in rare cases, exact values can be
computed. Also, as pointed out by Knuth (1981), the
discrepancy is very sensitive to rotations of the axis, in
contrast to the Beyer-quotient or spectral test. Further-
more, generators that are good at the latter always have
low discrepancy D(,\;) for large enough N. This suggests
that rating generators on the basis of their discrepancy
bounds is not necessarily the best idea.

6. CONCLUSION

A lot has been written on uniform variate gener-
ation, but certainly, the last word has not been said.
MRGs with a trinomial characteristic function, large m
and say k > 5, appear to be an excellent choice in terms
of efficiency and statistical quality. The unit cell vol-
ume of the associated t-dimensional lattice, for t > k,
can be reduced by increasing k. The mesh size can be re-
duced without increasing m by using the digital method.
Combination can also be used for further “scrambling”.
Note that the digital method can be implemented using
different MRGs (evolving in parallel) for different digits.

PT-perfect generators offer a good stimulus for fur-
ther research. As computing power is getting cheaper
and cheaper, applications will require increasingly ro-
bust generators. They should be submitted to (new)
more powerful statistical tests.
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