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ABSTRACT

In this paper, we discuss some research issues related to
the general topic of optimizing a stochastic system via simu-
lation. In particular, we devote extensive attention to finite-
difference estimators of objective function gradients and pre-
sent a number of new limit theorems. We also discuss a new
family of orthogonal function approximations to the global
behavior of the objective function. We show that if the ob-
jective function is sufficiently smooth, the convergence rate
can be made arbitrarily close to 71._1/2 in the number of ob-
servations required. The paper concludes with a brief discus-
sion of how these ideas can be integrated into an optimization

algorithm.

1. INTRODUCTION

In recent years, considerable attention has been de-
voted, in the simulation literature, to the development of al-
gorithms for optimizing complex stochastic systems. In this
paper, we shall focus on describing some of the basic issues
that arise in the study of numerical optimization routines for
finite-dimensional continuous parameter optimization prob-

lems.

To precisely describe the class of problems that we shall
consider, let @A be the decision parameter over which the
optimization is to occur; the set A C IR% is the admissible
set of decision parameters. For each ¢/, let (2, F, Py) be
the associated probability space. The probability measure
Py describes how the random environment is affected by the
choice of 6. For each fcA, let ‘\'(9) be a real-valued random
variable corresponding to the “cost” of running the system
under 6. Then

(1.1) w(6) 2 / N(0,w)P(dw)

Q
is the expected cost of running the system under parame-
ter f. Assuming A is some open subset of ﬂ?.d, the general
finite-dimensional continuous parameter stochastic optimiza-
tion problem involves finding 0*€A to minimize «(€), sub-

ject (possibly) to constraints of the form
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O /ﬂmo,w)m(dw) >0,

1 <1 < m, where {Yi(6) : 1< < 771} is a collection of

“random constraints.”

In most practical applications, the objective function
«@(f) and the constraints [3;(0) are “smooth” functions of
the decision parameter f (even though, typically, X(O,w)
and the Y;(f,w)’s are not globally smooth in 8, for fixed
w). Given that the functions a(#) and Bi(0)(1 <i<m)
can be cheaply evaluated without error, deterministic mathe-
matical programming techniques may be applied to the above
optimization problem. Such methods typically take advan-
tage of derivative information of some kind (often evaluated
through numerically stable finite-difference approximations).
Of course, in the context of a complex stochastic system,
the objective function 0(9) and the constraints [3;(6) will
typically be evaluated via Monte Carlo simulation. As a con-
sequence, there will be random error associated with the cor-
responding function evaluations. In spite of the presence of
such error, it is to be expected that derivative information
will continue to play an important role in the development
of successful optimization algorithms based on simulation.
A significant portion of this paper is therefore devoted to
a discussion of the various approaches that may be used to
calculate derivatives (or, more generally, gradients) via sim-

ulation.

Section 2 is devoted to a discussion of the convergence
characteristics of finite-difference estimators; much of this
material appears here for the first time. In Section 3, we de-
scribe a class of unbiased gradient estimators that are based
on likelihood ratio ideas. Section 4 focuses on a class of gra-
dient estimation techniques for discrete-event systems known
as perturbation analysis methods. The estimators of Sections
3 and 4 both typically attain a somewhat faster convergence
rate than that available through the finite-difference methods
of Section 2. The discussion of Sections 2 through 4 empha-
sizes the scalar setting in which d = 1; Section 5 is therefore
devoted to describing the extension of these ideas to the case

in which the decision parameter @ is vector-valued.



In Section 6, we discuss some new results related to
global approximation of the objective function (and/or con-
straints) by orthogonal functions (specifically, trigonometric
polynomials). One way to apply such “surface fitting” tech-
niques is to optimize the fitted surface (using deterministic
methods) and to use the resulting optimizer as an approxi-

mation to the optimizer of the true surface.

Section 7 is devoted to a discussion of how the results of
Section 2 through 6 can be used in an optimization setting.
Specifically, we discuss some of the convergence theory for
the Robbins-Monro and Kicfer-Wolfowitz algorithms.

2. FINITE-DIFFERENCE ESTIMATORS

In this section, we describe some of the finite-difference
approximations that can be used to numerically calculate the
derivative of a function (@) of the form (1.1), when @ is
scalar (i.e., @cIR). In Section 5. we discuss the special con-
siderations that arise in dealing with gradients of functions

in which the parameter @ is vector-valued (i.e., 0€Rd).

2.1 Forward-Difference Estimators

Suppose that we wish to estimate (). The idea here
is to estimate, via simulation, the function values a(fy +
h) and a(fp) and to form a corresponding finite-difference
approximation to &'(fg). More specifically, let .X1(0y +
h), X2(0o+h), ... beiid. replicates of ther.v. X (8g+h),
simulated under common distribution Pﬁ0+h. Similarly, we
let X1(08p), N2(0p), ... be an independent stream of i.i.d.
replicates of the r.v. .\'(0y), generated under common dis-

tribution P,go. Consider the forward-difference estimator

1 o / N;(0p+h)— X;(0
Aal(n,h):gz< (O+If (0))

1=1

The determination of the best possible difference incre-
ment A introduces a trade-off between the variance of the
estimator and its bias. If A is chosen too small (relative to
n), the variance contribution to the mean square error will
dominate, whereas if R is chosen too large (relative to nj,
the bias will govern the convergence rate. It turns out that
the optimal difference increment h = h,,, in this setting, is
typically of order n™ 14 1, rigorously state the result, we

assume that:

(2.1)
i) Pe{,\'(ﬁ)g-} = Pgu{,\-(()(_)):"} as 0 — 0y (= de-

notes convergence in distribution),
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- A -
ii) 0 < varg, X(0g) = Ep,(X(00) — a())? <
(E4(-) denotes the expectation operator corresponding

to Py),
JAN -
i) 0'2(0) = varg X (0) is continuous in an open neigh-
borhood of 0,
iv) a(f8) = FEy.X(0) is infinitely differentiable in an open
neighborhood of .

The following theorem states that if the difference in-

crement is chosen optimally, then the convergence rate of

Aay(n, hy) to a'(0g) is n= /4,

(2.2) THEOREM. Assume (2.1). If a”(6y) # 0, then:
a) if nt/4h, — oo with h, — 0, nV/4|Aay(n, hy) —
a’(é‘o)l = 20 as N — 00 (we say that Z, = 00 as

n — oo if, for every ' > 0, P{Zn > [\'} — 1

as
n — oo),
b) if n'/*h, — 0, nY/4|Aay(n, h,) — '(6)] = ~
as n — OQ,

) if nY/*h, — h > 0, then n*/4(Aa;(n, h,) —
o'(0p)) = 22BN (0,1) — ha'(6p)/2 as n —

2.

The proof of this result appears in the Appendix. (A
similar theorem, under different hypotheses, appears in FOX
and GLYNN (1989).) We note that the value of A which
minimizes the second moment of the limiting r.v. appearing

in ¢) is

Thus, the difference increment that minimizes asymptotic

—l/i This result was ob-

mean square error is h, = h*n
tained previously by ZAZANIS and SURI (1986). It is worth
observing that if one wishes to minimize the mean absolute
error of the estimator, then the optimal difference increment
takes the form h, = h,n”1/4. where (typically) h. # h™.
(To see this, observe that h, would be obtained by minimiz-
ing the first absolute moment of the limiting normal r.v. ap-
pearing in c).) Stated more abstractly, the L? and L' error
criteria do not yield precisely the same scquence of optimal

difference increments.
2.2 Central-Difference Estimators

Theorem 2.2 states that the forward-difference estima-

-1/4 to the derivative

tor converges (at best) at rate n
(x’(f)o). One way to improve upon this poor convergence
rate is to instead use a central-difference approximation to
the derivative. When function evaluations are made with-
out error, this is known to be a numerically more accurate

approximation to the derivative.



To precisely define the estimator, we let ‘\'1(90 + h-),
Xo(fg+ h), ... beiid. replicates of the r.v. X' (8 + h),
simulated under common distribution Pgo+h, Similarly, we
let .\4 (00 - h.), ‘\'2(90 - h), ... be an independent stream
of i.i.d. replicates of the r.v. X (6o — h), generated under
Pg,—h. The central-difference estimator is defined as

n

Aas(n,h) = L $ (l\'i("o +h) — Xi(0 — h.)> |

n 2h

i=1

The following theorem summarizes the behavior of
AQ‘Q(n, h); the proof is similar to that of Theorem 2.2 and
is omitted.

(2.3) THEOREM. Assume (2.1). If a'3)(6) # 0, then:
a) if nY/8h, — o0 with h, — 0, n1/3|Aag(n,hn) -
Ql(eo)l = X asn — OO,
b) if n1/8h, — 0, nl/slag(n,hn) —a'(8p)| = o< as
n — oo,
c) if nl/sh,, — h > 0, then 711/3(Aag(n,h,,) -
@(60)) = VZZLIN(0,1) - £a3)(0)) as n —

Q.

The improved convergence rate (of order N~ 1/3, as op-

posed to n-1/4

for forward differences) is obtained here be-
cause of the fact that central differences are less biased than
forward differences. This permits the difference increment to
be chosen larger (of order n—l/G, as opposed to n=1/4 for
forward differences) which, in turn, reduces the variability of

the estimator.

The choice of h in c) that minimizes the asymptotic
mean square error of the central difference estimator is (see
also ZAZANIS and SURI (1986))

. 901‘(00))‘/6
- (ar)

2.3 Finite-Difference Estimators Using Common

Random Numbers

The central-difference estimator improves upon the con-
vergence rate of the forward-difference estimator by reclucing
its bias (for fixed h). The method that we shall describe here
improves upon the convergence rate of the forward-difference
estimator by reducing its variability (for fixed h). The idea
is to generate the replicates of X(y + /l) using the same
stream of random numbers that were used to obtain the repli-

cates of X (fp). This, of course, is nothing more than the

method of common random numbers, as applied to derivative

estimation.

Suppose that the r.v. )’(00 + h) is produced from the
same stream of random numbers as is X (0y) and shares
the same distribution as does 1\’(60 + h) under P00+h~
By convention, we set Y(ao) = X’(ﬁo). Let AY(/‘L) =
Y (0p + h) — Y (0p). We make the following assumptions

about our common random number scheme:

(2.4)
i) P{}(h)&'} = Pgu.,,.h{,\'(eo + h)E'},
i) E‘AY(h):2 = h.af + o(h) as h | 0, where O'f >0,
iii) there exists € > 0 such that EIAY(h)P"" = hf +
o(h) as h | 0,
iv) a(0) = EyX(0) is two times continuously differen-
tiable in an open neighborhood of .

Let A}&(h),AY’Q(h),... be an i.i.d. sequence of
replicates of the r.v. AY (h). The forward-difference com-

mon random numbers estimator for O’l(eo) is then given by

1 <~ AY;(h
Aas(n, k) = ;Z%

i=1

Before proceeding to a statement of the convergence rate the-
orem for Aa3(n, h), we pause to discuss our assumptions
further. Consider the typical discrete-event system. Let
A(h) be the event that Y (6y + h) experiences a change
in the order of events from that experienced by Y (6p). On
the event A(h), Y (6 + h) — Y(8y) is typically of unit
magnitude. On the other hand, on the complement of A(h),
Y (6o + h) — Y (8p) is typically of order A in magnitude.
Also, for most discrete-event systems P(i(h)) = /\h.+0(h)
for some A > 0. For p > 0, write

EAY (h)P = EAY (h)I(A(h))+ EAY (AP I(A(h)°).

This decomposition suggests that for most discrete-event sys-
tems, EAY (h)P = Bph + o(h) for p > 1. This explains

the form of (2.4) ii) and ).

(2.5) THEOREM. Assume (2.4).
nh, — oo, then:
a) if 111/3lzn — 2 with h, — 0, 711/3]Aa3(n,hn) —
0’/(90” = 00 asn — o,
b) if n'/3h, — 0, 711/3|A03(71,hn) —a'(0h)] =
as N — OO,
c) ifn/3h, — h >0, n'3(Aaz(n, hy)—a'(6,)) =
%N(O, 1) = 2a"(85) as n — .

a”(6p) # 0 and
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We note that the convergence rate here is of order
Tl_l/a, the same as that obtained earlier for the central-
difference estimator. Observe that the optimal difference in-
crement now is of order n—1/3, which is much smaller than
the difference increment of order n~ 1 derived for central
differences. The lower variability of the common random
numbers estimator is what permits us to choose the smaller
increment. We further note that the value of h appearing in
c) which minimizes the asymptotic mean square error of the
estimator Aag(n, hn) is

2 1/3
B = ( 20
01"(90)2

Of course, we can also combine central differences and
common random numbers. Let ACY(h) = Y(Go + h) —

Y(eo - h) The following assumption is the analogue of
(2.4);

(2.6)
i) P{Y (R)e-} = Pogsn{X (60 + h)e-}.
i) EAY (h)? = ho? + o(h) as h | 0, where 02 > 0,
iii) there exists € > 0 such that E|AYC(h)|2+E = hf@,+
O(h) as h l 0,
iv) a(f) = Ey X () is three times continuously differen-
tiable in an open neighborhood of 0o.

Let A Y1(h),AY2(h),... be an iid. sequence of
replicates of the r.v. A.Y (h). The central-difference com-

mon random numbers estimator of () is given by

1 o~ A.Y;(h)
Aa4(n,h) = ;Z—Qh——

i=1

The proof of the following convergence rate theorem for
Aag(n, h) follows the same lines as that for Aag(n,h);

the proof is therefore omitted.

(2.7) THEOREM. Assume (2.6). 1f a/®(fp) # 0 and
nh, — o0, then:
a) it nY/%h, — o0 with hy, — 0, n?®|Aag(n, hy) —
a/(90)| = o0 as n — OO0,
b) if n'/5h, — 0, n?/3|Aay(n, hn) — o'(fo)] = o0
as . — OCQ,
o) ifn/5h, — h > 0,n%5(Aay(n, hy)—a'(0o)) =
ZEN(0,1) - B2 a(3)(fy) as n — 00,

Thus, combining common random numbers and central
differences improves the convergence rate of the derivative
estimator to order n_2/5. Furthermore, the difference in-
crement that minimizes the asymptotic mean square error of
the estimator aq(n, hy) is hy, = h*n=1/5 where

. 902 s
h* = | —m—————
40(3)(6,)?

2.4 Finite-Difference Estimators With A Near-
Optimal Convergence Rate

In the preceding three sections, we have discussed four
different finite-difference estimators. The convergence rate

- 1/4, in the case of forward differ-

was improved from order 1.
ences with independent streams of random numbers, to order
n—2/5’ which was achieved by a central difference estimator
that used a common stream of random numbers. A natural
question that arises here is whether any further improvement
is possible. In particular, can one obtain finite-difference esti-
mators for the derivative that achieve a convergence rate that
is arbitrarily close to the best possible rate for a Monte Carlo
procedure, namely 1~ 1/29 We will now answer this question

in the affirmative by developing such a class of estimators.

To produce the type of estimator that we have in mind,
we need to obtain a finite-difference approximation to a’(ao)
that is as unbiased as possible. Suppose, for the moment,

that ¢ is an analytic function in #. Then

e hn
_ (n
(2.8) alf +h) = ;—o: ™)) —

Let Tha be the “shifted” function defined by (Th()t)(@) =
a(6 + h). We further let Do be the derivative function
specified by (Da)(6) = all )(9) The expansion (2.8) may

then be written as

% pn
(2.9) Thoa = Z FD"a.

n=0

Proceeding formally, we may rewrite (2.9) in terms of the

operators T} and D as

o h7
(2.10) Th=) — D" = exp(hD).
n=0

We now wish to express the operator D in terms of the shift

operator Th:

1



Expanding the logarithm in a formal power series, we obtain

—l)k+l

U (DR
(2.11) D_hg(Th I

To obtain a finite-difference approximation to «'(0g)

(Da)(f0), we truncate the series (2.11) at the m’th term:

N 1 m kﬁ(_l)k*—l
DNEZ(T,,—I) k——k——
k=1
m  k
_1 k ¢ poe (=1
=i (§) moten S
k=1¢£=0

Noting that (Th)t = The, we obtain the following approxi-
mation to a'(fg):

., _1\1-¢
<2) (%0(00 + hg)

To obtain a finite-difference estimator for a'(fg), we let
X1(00 + h€), Na(8g + hE),... be iid. replicates of the
X(8g + h€), simulated under common distribution
P90+h1(0 <{< m). We further generate each of the

r.v.

m + 1 sequences independently of one another (i.e., the se-
quences (,\'i(eo + h‘/,’)
for 0 < £ < 1m). Set

: ¢ > 1) are mutually independent

m k k -1 1—¢
» <{) %‘\'i(eo + ho).

k=11¢=0

1
Zi(h) = 7

2

The expectation of Z;(h) then matches the right-hand side of
(2.12). We then obtain a finite-difference derivative estimator

by setting

1
ag(h,n) = — E Zi(h)
n ¢
1=1
Our next theorem describes the convergence rate of

ag,(hn‘n), when the difference increment is chosen appro-

priately.

(2.13) THEOREM. Assume (2.1). If m > 1 and hpnt/*"
— h > 0asn — o0, then
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7 (a5(hay 1) = o' (00)) = 03N (0,1)

1_
n-

; Y )
as N — o, where 05 = 0%(0p)Ym/h” and

m

1
\m = Z E

k=1

2 m m k ]
+2 (1) k

£=1 \k=¢

rate of
-1/2
/2, by

According to Theorem 2.13, the convergence
as(hn,n) may be made as close as we wish to n
choosing m sufficiently large. To some extent, this conver-
gence rate is deceptive. Note, in particular, that the constant
\'m Is increasing in M. Furthermore, the construction of each
observation Zi(h) that enters as( h, n) requires 1M indepen-
dent simulations. As a consequence, the computational effort
required to generate (rs(hp, 1) is sensitive to the choice of
m. Thus, although the convergence rate promised by The-
orem 2.13 is significantly better than those described earlier
in this section, the run-lengths required to see such an im-

provement may be quite large.

3. LIKELIHOOD RATIO DERIVATIVE
ESTIMATORS

In certain settings, it is possible to construct derivative

estimators that achieve the best possible rate of convergence
. —1/2 .

for a Monte Carlo estimator, namely n 1/2 in the number

of observations N that are generated.

Suppose, for the moment, that the distribution defining
a(0) is independent of €. Then, all the 0-dependence of
sits in the r.v. X (0), so that a(f) = ENXN(0). Assum-
ing that we can interchange the derivative operator and the

expectation, we get

o'(00) = EVV(0o),

where 117(0p) = X'(60). Then, by generating i.i.d. repli-
cates of 117(0)), we obtain an ¢stimator which (use the stan-
dard central limit theorem) possesses the canonical conver-
The idea behind the likelihood ratio

method (and the perturbation analysis approach of the next

gence rate 77_1/2.

section) is to structure the representation of a so that the

driving distribution is rendered independent of 8.

Suppose that the distribution Py defining a has density

L(0) with respect to some common distribution P, so that



(3.1) Py(dw) = L(0,w)P(dw).

The r.v. L(0) is called the likelihood ratio of Py (with
respect to P). Under this assumption,

a(0) /ﬂX(O,w)P@(dw)

/ X(0,w)L(0,w)P(dw)
9]

/ Y(0,w)P(dw)
Y]
EY (),

where Y (8)

tation of «x.

X(6)L(8).

Assuming that the derivative-expectation in-

This is the desired represen-

terchange is valid (and it typically is), we obtain o'(fg) =
EW(8o), where 1V(80) = X'(00) L(00) + X (00) L' (65).
Hence, the key to obtaining likelihood ratio derivative esti-
mators is finding a distribution P and a r.v. L(8) such that
(3.1) holds (at least for @ in an open neighborhood of ).

This idea is easily illustrated when the basic sample
space §) is the real line. Suppose that the distribution Py
takes the form Py(dr) = f(0,2)pu(dr). For example, if
,u(dx) = dz, we are saying that Py has a (Lebesgue) density
for each 6. Choose g(z) > 0 so that

/ g(z)p(de) = 1,
R

(This can always be done if jt is o-finite.) Set P(dz)
g(r)p(dz) and observe that (3.1) holds with L6, r) =

f(6,r)/g(r).

Suppose that we are interested in estimating both
a(fp) and a'(fy). Assume that the set AG) = {L’
fa,z)y > 0} is independent of @ in a neighborhood of
fy. A particularly convenient choice of g(), in this case,
is g(z) = f(0y,r). Because A(0) is independent of 6, the
likelihood ratio L(0,r) = f(0,r)/f(00, 1) is well-defined

in a neighborhood of 8. This choice of ¢ has several advan-

tages. Note that to generate 11(0q), the simulation involves
generating outcomes under the distribution Pgo. The dis-
tribution Pgo is typically the “natural” distribution for esti-
mating (fg). Hence, a(0y) and a'(0p) can easily be esti-
mated from the same set of sampling experiments. A second
advantage is that by choosing ¢ in this way, L(0p) = 1 and
the formula for W(6y) simplifies. In fact, in most applica-
tions, the calculation of L’'(0y) also simplifies considerably,

when ¢ is chosen so that g(J.’) = f(O(J, »). Furthermore, in
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many sampling settings, this choice of ¢ leads to an estimator

117(8p) that has desirable variance properties.

As the above discussion suggests, an important issue
in the development of likelihood ratio gradient estimators is
the construction of a likelihood ratio (for a given class of
discrete-event simulations) that has desirable computational
and variability characteristics. For example, it turns out that
in a discrete-event simulation context, the likelihood ratio
typically exists only for terminating simulation problems. Of
course, steady-state characteristics can be analyzed as a limit
of finite-horizon estimation problems. Unfortunately, the as-
sociated likelihood ratios become successively more unstable
as the time horizon gets large. However, this problem can
be avoided if the discrete-event system has the right kind of
structure (typically, regenerative structure). REIMAN and
WEISS (1986) discuss some of the relevant ideas.

4. PERTURBATION ANALYSIS DERIVATIVE
ESTIMATORS

In Section 3, we described the likelihood ratio approach
to derivative estimation. The basic idea was to use the
method of likelihood ratios so as to obtain a representation
of a in which the driving distribution is independent of 6.
In this section, we describe an alternative technique for ob-
taining such a representation. The idea is to return to the
common random numbers technique described in Section
2.3. Suppose that we can find a probability space (Q, F,P)
and a family of r.v.’s {}(h) : |h] < €} such that:

(4.1) P{}(h)&‘} = Pgo+h{,\’(90+h)€-}.

Under this assumption, it follows that

a(0o+ h) = EY (h)

for |h| < €. Assuming that we can interchange the derivative
and expectation operators, we find that ('i/(eo) = EH’(QO).
where W (6y) = Y'(0).

cates of the r.v. 117 (0p), we obtain an estimator that achieves

Hence, by generating i.i.d. repli-

the n=1/* convergence rate that is best possible for a Monte

Carlo procedure.

As in the case of the likelihood ratio method, this tech-
nique is best illustrated when the basic sample space is the
unit interval. Let ) = [0, 1], F =Borel sets of [0, 1], and
let P be uniform distribution on Q. Set /{w) = w and

observe that



Y(h) = F;H(U)

satisfies (4.1) (where Fp(r) = Pgo+h{,\'(60 +h) < JT}).
To calculate W (8g), we need to determine H%Fh_l(.’v)lhzo.
Assume, for the moment, that I} has a (Lebesgue) density
fh for each h. By definition of the inverse distribution func-
tion F},, we have

Fa(Fy ! (z)) = 2.

Differentiating both sides of the above expression with re-

spect to h., we get

9
Bh

Fa(F7H (@) + fal BN @)Ly

anfn (@) =0

from which we obtain

d 0
an (@) = = gp Pl (@) fa(F (R (2),

Thus, in this setting, we find that

0

5 P (B U/ S (P (U)) n=o.

W(bo) = —
One undesirable feature of the approach that we have just
outlined is that since we have taken our basic probability
space as uniform distribution on [0, l], the generation of
W(@O) appears to require inversion (i.e., calculation of
Fh_l()) Recall, however, that Fh_l(U) has the same distri-
bution as Y (h) (or, alternatively, X (6g+ h) under Pootn).
Hence, W (6y) (under P) shares the same distribution as

7]

(4.2) =55, Fr(X(00))/ Fa(X (00))|n=0

(under Pgo). The advantage of the representation (4.2) is
that we can generate the derivative observations using pre-
cisely the same algorithm as that used to estimate «(fp)
itself (since 0(00) is typically estimated by generating i.i.d.
replicates of X (6p) under Py,). Sce GLYNN (1987) for ad-

ditional details.

The argument that led to (4.2) appears to require exis-

tence of a density fh‘ It turns out that in many settings, the
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common random numbers technique can still be applied, in
spite of the non-existence of a density. For example, suppose
that X (6) = 9(6,Y ) and Y has distribution F(y/O) un-
der Py. If we set Y(h) = (90 + h)Y/@o (90 > 0), then
(4.1) is satisfied with P = Py, and we find that

a(0o + h) = Eaog(f0 + h, (80 + h)Y/60).

If g is smooth, it is clear that the derivative of g (00-|—h, (Bo+
h)Y/go) exists, regardless of the nature of the distribution
F.

The representation (4.2) (for W(@o)) can be derived
via an alternative argument. Recall that 01(0) = EgX(G)
As a consequence, if ,\'(9) is non-negative, we find that

a(o+ h) = Fgyin /00 I(X(6o + h) > z)dz
0
/00(1 - Fh(r))d:c.
0

(4.3)

Hence, assuming that the derivative and integral operators

can be interchanged, we obtain

(o)

d
—Fh(:c)dx|h=0.

(44) oh

a'(é)o) = -

In order to apply the Monte Carlo method to the numerical
evaluation of the integral appearing in (4.4), we need to rep-
resent it as an expectation. One way to do this is as follows

(assuming F has a density fj):

(4.5)
il
' _ oo 3k r(z) i
w0y == [ BEL i @yds],
0

= Eay 5 Fa (X (00))/ f1 (X (60))

)

.h:O

which is just (4.2). It is interesting to note that an alternative

representation of the expectation 0(90 + h) exists:

(4.6) a(fo + h) = / zFy(de).
0

If Iy has a density, this becomes



a(fo+ h) = /m z fr(x)dz.

0

Assuming that the derivative-integral interchange is valid, we

get

0
7 a'(6y) = _ I
(4.7) (o) /0 :cah fr(z)dx heo

To represent the integral in (4.7) as an expectation, we use

the same idea as in (4.5):

2 fn (X (60))

"(00) = Ep. X (6 ’
o'(00) = Eao X(60) =703 h=o

In particular, if ‘\'(9) = .\ (in which case a(f) = Ey.X),

we obtain

\.L%fh(a\')

(4.8) a'(00) = Eg,- fr(X)

h:O.

It turns out that (4.8) is precisely the likelihood ratio deriva-
tive estimator of Section 3. Hence, in this simple setting,
the common random numbers approach and the likelihood
ratio method derive from the two analytical representations
(4.3) and (4.6) for the mean of a non-negative r.v. Since
(4.3) and (4.6) are usually obtained from one another by an
integration-by-parts, it follows that the likelihood ratio and
common random numbers methods are related through an
integration-by-parts in this simple context. We note, paren-

thetically, that if ;\(9) is non-negative, then

Ee X (0) = p/w P=1 P {X () > tP}dt
0

for p > 0, from which it follows that

| %Fh(«\'(ao)P)

’ — - p—
(4.9) (90) - pE9o‘\ (00) fh(‘\r(oo))

‘hzo'

Formula (4.9) generalizes (4.5). In principle, one could opti-
mize over D in order to determine that p-value which yields

a derivative estimator with the minimum variance.
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It turns out that the common random numbers deriva-
tive estimation method described above can be applied to cal-
culate derivatives of performance measures for discrete-event
dynamical systems. The subject of perturbation analysis
is concerned with the study and development of the resulting
estimators. For example, consider a discrete-event system
in which the measure Py characterizes the distribution (over
sample trajectories) when the event-scheduling distributions
are indexed by a scale parameter . Now, because ) appears
as a scale parameter in the event-scheduling distribution, we
can view the event-scheduling r.v.’s that are generated as
taking the form 6 X,0.X5,.. forr.v.'s X1, N9, ... having
distribution independent of 6. For discrete-event systems
in which the probability of two events occurring simultane-
ously is zero, a small perturbation of the event times will
have no effect on the order of the state transitions experi-
enced by the discrete-event system. The effect of the param-
eter 0 will reflect itself only in the timing of the sequence
of state transitions. Furthermore, as HO and CAO (1983)
point out, the manner in which the perturbation propagates
itself through the sequence of event timings is suitable to a
highly efficient recursive computation (i.e., the perturbation
of the n'th state transition epoch is easily calculated from
that of the (n — 1)’st). These ideas lead to an easily cal-
culated sample path derivative for discrete-event systems in
which the event-scheduling distributions are parameterized;
see SURI (1987) for additional details on the nature of the
infinitesimal perturbation analysis (IPA) derivative compu-

tation.

As described above, the IPA approach to derivative esti-
mation focuses on derivative estimation relative to perturba-
tions in the event-scheduling distributions. In many queueing
settings, one wishes to optimize over routing probabilities,
however. Likelihood ratio methods are highly flexible and
can be applied in a straightforward manner to such prob-
lems. Recent extensions of IPA to such routing probability
derivative estimation problems hold significant promise, how-

ever (see HO and CAO (1985)).

Empirical evidence, gathered to date, appears to sug-
gest that when both IPA and likelihood ratio methods apply
to a given problem, the IPA estimator will typically be more
efficient (in the sense of having lower variability). This con-
clusion stems, in part, from the fact that likelihood ratio
estimators are known to have a variability that increases in
a roughly linear fashion with the time horizon of the simula-
tion; sce REIMAN and WEISS (19806).

Some care must be taken in applying IPA techniques
to a given problem, however. The difficulty is that the inter-
change of derivative and expectation operators that is needed
to rigorously justify the IPA estimator (see (4.1)) may some-

times be invalid. In such settings, the IPA estimator can



converge to the wrong quantity. To get some sense of the
problem, we note that if Y'(h) has a well-behaved derivative
Y'(0) at h = 0, then we would expect that

(4.10) h™2var(Y (h) = ¥ (0)] — varY'(0)

ash | 0. (In fact, (4.10) is a sufficient condition for permit-

ting the interchange of derivative and cxpectation.) Hence,

(4.11) EAY (h)? = h2EY'(0)* + o(h¥)

as h | 0. Recall, however, that in Section 2.3, we argued
that the typical behavior of a discrete-event system was gov-
ermned by (2.4) ii), which contradicts (4.11). The difficulty is
that while the effect of the perturbations on the state tran-
sition sequence may be ignored in calculating 117(6p), it
cannot be typically ignored in calculating (t'(ﬁo). In HEI-
DELBERGER et al. (1988), this point is analyzed further.
It is shown that conventional IPA can be inconsistent (in
the sense of convergence to an incorrect answer) for mul-
tiple customer-type queueing networks. However, conven-
tional IPA turns out to be consistent for a large number of
performance measures associated with single customer type

networks.

Furthermore, a number of extensions in the basic IPA
algorithm hold significant promise for overcoming the diffi-
culties that arise in the multiple customer context. In partic-
ular, a new version of IPA, known as smoothed perturbation
analysis (SPA), is now under development. The idea is that,
rather than work with the “raw” sample path Y (h) itself,
one considers instead the conditional expectation of Y (h)
with respect to some appropriately chosen conditioning vari-
able Z (appropriate in the sense that E(Y(h)|Z) is easily
calculated). Since a conditional expectation involves an inte-
gration operation, the conditioning ought to yield a process
E()(h)lZ) which is smoother in A than is Y (h) itself.
As a consequence, SPA has the potential to deal with esti-
mation problems for which classical IPA does not work; see
GLASSERMAN and GONG (1989) for further details.

5. GRADIENT ESTIMATION

In the previous three sections, we have described deriva-
tive estimation techniques that are applicable to problems in
which the decision parameter @ is scalar-valued. The meth-
ods of Section 2 gave rise to estimators for which their re-
spective convergence rates were slower than n=? i the

number N of obscrvations n that were generated. On the
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other hand, the likelihood ratio and perturbation analysis
techniques that were described in Sections 3 and 4 attained

. -1/2
the canonical convergence rate of 1o /2,

The generalization of these ideas to the setting in which
0 is vector-valued is straightforward. The partial derivatives
with respect to cach of the co-ordinates 0; is easily calculated
in the same way as the scalar derivatives were estimated ear-
lier. However, the computational complexity of calculating a
d-dimensional gradient is highly sensitive to d and is an issue
which is specific Lo the setting in which 8 is vector-valued (as
opposed to scalar valued). For example, note that a forward
difference estimator for the d-dimensional gradient Vo (6p)
involves performing simulations at the d+1 parameter points
fo,00+ hyeq,.

On the other hand, a central difference approximation

.., 00+ hgeq, where €; is the 2'th unit vec-
tor.
requires simulating at the 2d points g =+ hgéq. Thus, a cen-
tral difference estimator for a d-dimensional gradient requires
roughly twice as much computational effort as a forward dif-
ference estimator to obtain the same number of observations.
This, however, is balanced by the fact that the convergence
rate of a central difference estimator is more rapid than that
of a forward difference estimator. As a consequence, we see
that if d is large, a forward difference estimator may be more
efficient for small n. If n is large enough, however, the cen-
tral difference estimator always wins. This dimensionality
effect becomes even more pronounced for the “near optimal”
difference estimators of Section 2.4. Note that to estimate
a d-dimensional gradient, simulations at the md + 1 points
0,00+ h fey, ... 00+hgley (1 < £ < m) are needed.
Hence, the dimensionalilty degradation that occurs with this
estimator is even more serious than that experienced by the
central difference estimators discussed earlier. An additional
disadvantage of this class of estimators is that they can be
quite sensitive to numerical round-off error when m is large.
(The presence of the alternating sign (——1)1_£ can lead to

numerical instability.)

Turning now to the likelihood ratio and perturbation
analysis estimators, we note that both of these estimators,
when applied to estimation of the gradient, require only a
single simulation at the parameter point 0. Of course, the
additional computer time required to calculate the d partial
derivatives from the single simulation imply that the com-
putational effort to compute a d-dimensional gradient is still
increasing in d. However, one would expect that these esti-
mation algorithms would be less sensitive to d than are the
finite-difference estimators of Section 2. Thus, the likelihood
ratio and perturbation analysis estimators improve upon fi-
nite difference estimators in two ways: computation time is

less sensitive to the dimension d, and the convergence rate is
-1/2
n .



6. ORTHOGONAL FUNCTION
APPROXIMATIONS

One of the reasons that gradient estimation plays a key
role in optimization is that the gradient gives information
about the shape of the objective function. When such shape
information is added to that supplied by a function evalua-
tion, we are essentially being given an affine approximation
to the function in a neighborhood of the point at which the
evaluations occurred. More generally, if all the partial deriva-
tives of an analytic function are given at a single (fixed) point,
the entire global behavior of the function is then determined.
The ability to obtain global information about the behavior
of the objective function is clearly useful in an optimization

context.

As indicated above, one way to cheaply infer global be-
havior is via a Taylor series expansion that is determined by
the partial derivatives of the function. Another approach in-
volves attempting to expand the function in an orthogonal
expansion of some kind. We shall now illustrate this idea in
the case that the decision parameter @ is scalar valued and
the orthogonal functions are the trigonometric functions. In
this case, we will then obtain a Fourier-like expansion of the

objective function.

Suppose that we are interested in studying the behav-
ior of the objective function over the interval [0, 71']4 (By
transforming the interval if necessary, this is equivalent to
studying @ over an arbitrary compact interval of the form
[(l, b].) We can then make v 27T-periodic by extending &
to [—7r, () via the even extension a(f) = «(—0) and then
letting (8 + 27) = «(6).
differentiable on [0, 7r], it is well known (see FULKS (1969),
p. 547) that for each 96[—71', 7!'],

Assuming (¢ is continuously

(6.1)

where the €'s are the normalized cosine functions defined

by
IS
k - L e 8
ﬁcoskﬁ, k>1
and
(6.2) (J:,y)é/ r(0)y(0)db.
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(The Fourier series for (v is a cosine series because of the
fact that & is an even function.) The functions €g, €1, ...
are orthogonal with respect to the inner product (6.2) that
we have defined, in the sense that (ek, E[) =0 for k ;/-' £.
(In fact, they are orthonormal since (ek,ek) =1 for k >
0.) Hence, (6.1) expresses & as a linear combination of the

orthonormal “vectors” €y, €1, €49, .... Thus, we can estimate

. . . A
a by estimating each of the inner products ak:(a, Ek> for
k > 0. In contrast to expanding a function in a Taylor series,

each of the coefficients @y is defined by an integral, namely

2 [T o (0)do k=
a = \/:foa()1 0

72-; foﬂ a(f)coskfdd, k> 1.

Monte Carlo methods are well suited to estimating integrals.
In particular, suppose we generate {7 as a uniformly dis-
tributed r.v. on the interval [0, 7I'] and then simulate .\ (U)

under the distribution P,. Then, @} can be represented as

o

Hence, the r.v.

VITEX(U), k=0
2V/TEX (u)cos kU, k> 1.

Am,0) = X(U) [ 1+ ‘_’Zcos(kU) -cos k@

k=1
has expectation
EA(m,0) =" (a,ex)ex(0)
k=0

Thus, A(m, @) is an unbiased estimator for the first m + 1
terms in the Fourier series of a. Note that only one simula-
tion is required to estimate the first M-+ 1 Fourier coefficients
of r.

Suppose thal we generate 1 i.i.d. copies Ar(m, 0),
C ,/\n(ﬂ?,()) of the rv. A(m, 0). We can then form the

estimator

1 n
“n(g) = ;ZAI("nn:());

=1

we permit M = M, to be a function of the sample size n
(since ™ will have to grow with 7 in order to asymptotically

remove the bias of the estimator).



In order to measure the distance of the estimator &p(+)

from the function a(), we use the norm

2= ([

Our goal is to describe the magnitude of the distance ||an -
al|. Let

1/2
(0)d()> )

If & is continuously differentiable on [O, 7T], then (6.1) is valid,
so that

Mp

an(8)—al(b)

(ar(n)—ar)ex(d)— > arex(®

k=0 k>mp

(a,ek)‘ Then, the orthogonality of the €}’s

guarantees that

where aj

||an—a|]2:Z(ak(n — a) Z ai.
k=0 k>mn
Hence,
(6.3)
Ellay —al|* = Zva:ak(n) + Z a;
k=0 k>mp,
=2mn~! | EX}(U)+2)  EX*(U)cos® kU
k=1
mMn
—n! Zaf + Z az..
k=0 k>m,

It is worth observing that if each of the Fourier coefficients

were to be estimated independently (so that /\(m, #) takes
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the form Xo(Up) + 2 Z;n___l Xk(Ug) cos(kUy) COS(IC@)),
this would have no effect on (6.3). In other words, E”Oln -
Ot”2 is unaffected by whether the coefficients are estimated

independently or not.

We are now ready to state a limit theorem for E'||an -
2
ol

(6.4) THEOREM. Let b(0) = Eg.X?(). Suppose that
b(8) is continuous on [0 7I'] and a(f) has a continuous p’'th
derivative on [0, ml(p>1). Um, = nl/2p , then:

a) EX%(U) + 221::1 EX- (U)COSQ(kU)
~m [ b(0)d6/m as m — o,
n'=7E||an—al||? — 0asn — coforanyy > 1/2p,
n1/2_7/2||an —al]| ® 0asn — 00 for any ¥ >
1/2p,
for € > 0, m{0e[0, 7] lan(0) — a(8)| >
en?/*"1/?} = 0 asn — o0, for ¥ > 1/2p. (m

is Lebesgue measure.)

b)

C

~—

d

~

Thus, if « is sufficiently smooth, we can obtain a global

-1/2 in the num-

convergence rate arbitrarily close to n
(We note that

because @ is 27-periodic and is an even function, 's first

ber of observations 1 that are simulated.

p derivatives must vanish at 0 and 7 in order to satisfy the
smoothness hypothesis of Theorem 6.4. If & does not sat-
isfy the condition, one can shrink a’s domain of definition to
[E, T — E] and then smoothly extend « to [0, 7I'] in order to

satisfy the smoothness hypothesis.)

7. STOCHASTIC APPROXIMATION
ALGORITHMS

In this section, we briefly describe how the results of
the previous sections can be integrated into an optimization

algorithim.

Consider the unconstrained problem in which the goal
is to minimize the objective function a(§) over OcIR®. The
idea is to develop a recursive procedure in which the (n +
1)'st iterate is likely to be closer to the minimizer #* than
is the n'th iterate. Specifically, suppose that it is possible
to generate r.v.'s ”7(9) such that EH'(G) [~ Va(&); as
discussed in Sections 2-5, this can be done either through a
finite-difference approximation or through the likelihood ra-
tio and perturbation analysis gradient estimators (in which
case E'WV(0) is typically equal to Va(f)). Assuming exis-

tence of such r.v.’s WW(8), consider the recursion

(7.1) 0n+1 :611—71_1FVR+11



where I is a given d X d matrix and P{Vn+1€A|90,Vg,
00,V = P{W(6,)eA}. In other words, the r.v.
Vn+1 is generated by simulating a copy of W(()n )

In the case that E{Vn+1|90, Vo,... 00, Vn} =
Va(6,) (as would occur if the methods of Sections 3 and 4
were used), algorithm (7.1) is known as the Robbins-Monro
algorithm. Assuming that o is twice continuously differen-

tiable, the optimal choice of the matrix [ then turns out to

be

r=H(6"),

where H is the Hessian of second derivatives; see POLYAK
and TSYPKIN (1980) for details.

It is particularly illuminating to consider (7.1) in the

case that § is scalar-valued. In this case, (7.1) takes the form

(7.2) €n+1 = 971 - n—lCVn+1.

Note that if ¢ > 0, 4, has a tendency to be smaller
than 0,, when a’(&n) > 0, and has a tendency to increase
when a'(ﬁn) < 0. As a consequence, the sequence (6, :
n > 1) has a tendency to move towards a point 8% for
which @’(6*) = 0 and ’(8) > 0 (&’(8) < 0) for 6 in
a neighborhood to the right (left) of *. Any such 8* must
necessarily be a local minimizer of &. Thus, the algorithm

(7.1) appears intuitively reasonable.

In fact, (7.1) has good convergence characteristics. If
E{V,i1l00,Vo,...,0,,V,} = &'(6,) and d = 1, RUP-
PERT (1982) has shown that under suitable regularity con-

ditions,

(7.3) nl/ztl/?wlmJ —6") = at-D—gB(tQDH)

as . — 00 (in the Skorohod space D[E, 0), € > 0), where
B(+) is standard Brownian motion and @ and d are certain
1 in (7.3), we

-1/2 .
conclude that 0, converges to 0" at rate n /% When unbi-

problem-dependent constants. Setting {
ased estimators of the gradient are available.

On the other hand, in certain applications, only finite-
difference approximations to the gradient may be present.
For example, suppose d = 1 and that P{V,1+1€A|90, Vo,
0., V) = P{[X(0, + cnt/®) — X (0, — cn=1/5))
/‘ZCH_I/GEA}, where X (6, + Cn_l/e) is simulated (un-
der P€n+cn_'/6) independently of ,\’(On - Cn'l/G) (under
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Pgn_cn—l/s). Here a central difference approximation to
the derivative is being used (recall that n~Y8 is the opti-
mal difference increment as specified by Theorem 2.3). The
resulting minimization algorithm is known as the Kiefer-
Wolfowitz procedure. As one might expect, some degra-
dation in the convergence rate occurs as a consequence of
the finite-difference approximation. Specifically, RUPPERT

(1982) shows that under suitable regularity hypotheses,

(74) 033015 — %) = by 4 bot =472 BT

as N — OO (in D[é‘, 00)), where by, b, and A are problem-
dependent constants. Thus, the convergence rate of the
Kiefer-Wolfowitz procedures in which a central difference ap-
proximation is used to estimate the gradient, is n=1/3 i
the number of observations generated. Note that this con-
vergence rate is identical to that discovered in Theorem 2.3.
The fact that the convergence rates for the optimization al-
goreithms (7.3) and (7.4) match the convergence rates of the
corresponding gradient estimators indicates the pivotal role

that gradient estimation plays in the optimization setting.

While the above discussion has focused on uncon-
strained optimization, constrained variants of (7.1)-(7.2) are
also available. Among the approaches that have been stud-
ied are penalty function methods and Lagrange multiplier
techniques; see RUBINSTEIN (1986) for a more extensive

description.

A somewhat different philosophy for optimizing sto-
chastic systems via simulation involves the idea of using sim-
ulation to develop a description of the global behavior of
the objective function and constraints. The orthogonal func-
tion approximations of Section 6 would represent one way to
obtain such global descriptions. Having fitted functional ap-
proximations to the objective function and constraints, one
can then use deterministic techniques to optimize the fitted
surface. One then uses the optimizer of the fitted surface as
an approximation to the optimizer of the original stochastic

system.
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APPENDIX

Proof of Theorem 2.2. Let \,(9) = Xi(6) — a(f) be
the centered version of X;(6). We first wish to show that

when h, — 0,



n=!/? (ZM((JO + hy) —‘\",-(00))

i=1

(A1)
20(00)N(0,1)

as 7 — 00. This follows from the central limit theorem
for triangular arrays (sce, for example, CHUNG (1974), pp.
205-209). In particular, to verify Lindeberg’s condition, we
observe that (2.1) ii) and iii) together imply that (g +
hn) = Ni(6p) and EX; (00 + h”):’ — K \ (00) from
which it follows that {,\l 0o+ h,, )"
integrable (see Theorem 4.5.4, p. 97, CHUNCG (1974)). The
uniform integrabilitv of {( (6o + hp)? :n > ng} im-
plies that of { 00 +h,)—X; (90))2 n > no} from
which Lindeberg's condition is an easy consequence. This
establishes (A.1).

:n > ng} is uniformly

We now note that

n/%(Aay(n, hy) = o (60))

LN .
(A.2) = m (Z Xi(00 + hy) — «\i(00)>
i=1

+ n'/4(hy)

where b(h) = (0(90 + h) — a(by) )/h — a'(fp). Ttis
evident that by (2.1) iv), (6o + h) = a(fo) + ha'(00) +
h*a’(69)/2 + o(h?), so that b(h) = ha''(0y)/2 + o(h).
The theorem then follows immediately from (A.1) and (A.2).

Proof of Theorem 2.5. The proof proceeds along the
same basic lines as in Theorem 2.2. We first note that (2.4)
i1) and iv) together imply that Cf":\arA} (hp) = h,,cr:’ +
o(hn) = (a'(00)hn + olh ,1))“’ = hao? + o(hy). Let
AY;(h) = AYi;(h) — EAY;(h). We wish to show that if
h, — 0 with nh, — oo, then

] n i
AYi(h, N(0,
m; (hy) = oN(0,1)

(A.3)

as . — oC. To obtain (A.3), we need to verify Lindeberg’s

ho)/Vnh, 1<

1 <n, n> l} But the Lindeberg condition reduces here
to verifying that for N > (),

condition for the triangular array {A),(

(A.4) E{A}"l(hn)z/a;‘;;A)"l(hn)(“’ > I\'rr;'; ‘np—0

as N — 00. The left-hand side of (A.4) can be bounded by

lAYI(hn)P“, % 2 - 2
b 03+£/\'f/:’7l‘/?'A}l(hn) > Kogn

< |’+e/ "+e 5/2 5/7)

/3

~ —e/2
glte Nel? (nh”)

as .. — OC; this yields Lindeberg’s condition (since nh, —

00). The proof is completed by writing

n'3(Aaz(n, hy) — ' (65))

= _1__ZAY hn)//1ha + 0 2b(hy),

\% h nl/3 i=1

where b(h) = EAYL'(/’L)/h — a’(0g). (To obtain the de-
sired limit theorem, use (A.3) and b(h, ) = a”(&o)hn/Q +
o(hn).)

Proof of Theorem 2.13. We first observe that there
exists € > 0 such that {hZ;(h):0 < h < ¢} is uniformly
integrable. (Use the same argument as that employed in the
proof of Theorem 2.2). Hence, Lindeberg’s condition may be

verified, to obtain the central limit theorem

(A.5) ‘””Zh A

i=1

) = o3N(0, 1)

as N — OO. The next step is to study the bias term ﬂ(h) =
EZi(h.) — 0'1(00). We start by observing that since « is m

times continuously differentiable, it follows that

(A.6)

1 kY (=1)'* :
EZ(h) = EZE (ﬂ) ——allo +hf)

[l

> —
DA

3

>

o
wl}
- b}
3
]~
VR
~
—

r=0 k=1¢=0
_1y\1-¢
( 1) Vi +O(hm—1)
1 & (r) s m-—1
=7 (0o)h" v+ + o(h )
r=0
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where

m ok k (_1)1—6 )
I = ZZ <€> Tf .

To get a handle on the 7r’s, we note that

z=log(l+e" —1)
m _1)k+1

e

_E:T
i k tr

=D (- E_ <€>(—1)’°-f—€1c + 0™

m  k m
k —1 1-¢ l)r,r
=22 (§) EE S S o

N
k=1¢=0 r= T

(C.r _ l)k + O(.‘l‘m+l)

0
)1—[

- %ii O) (_11c

Er + O(;L’m+1)

Comparing coefficents in I, we conclude that Yr = 0 for
T ;é 1l and ; = 1. Substituting in (A.6), we conclude
that £Z;(h) = r,x(“(ﬂo) + o(h™~1). Hence, B(h) =
O(hm_l). To obtain the desired central limit theorem, we

write

nwm (as(hn,n) — a'(6)))

= ; ) 71_1/2 Zhnzi(hn)
i=1

nl/2mp
m—1
+nEm /3(}171 )'
and use (A.5) and the estimate (3(h,) = o(hT 1),
Proof of Theorem 6.4. To prove a), we will show that

EX?(IT)cos(kU/) — 271 [T b(0)d0/7 as k — oc. We

start by observing that

(A7) E,\'Q(U)cosz(kl_"'):/ b(0) cos* (k0)d0 /.
J0

Since b(-) is continuous, it is evident that b(-) is uniformly

continuous on [0, 7r]. Hence, for every € > 0, there exists

N = N(€) such that |b(8) — bn(0)] < €, where b () is

the piecewise constant function defined by
T | NG
bv@)=b —=|—]|].
~(0) ~ |
Since cos?(kf) < 1, it follows that

(A.8)
/bN(O)cosz(kO)dﬁ—/ b(9)cosz(k0)d9]<e,
0 0

(A.9) <e.

/0” bN(())dﬁ—/Owb(G)dﬁ

Choose k so large that 27!‘N/k < €. Then, setting ¢ =
l_k/?NJ, we have

/" bn(8) cos®(k6)do
0

N-1 o r(j+1)/N

_ Z/ b (8) cos®(k0)do
j+0 JmI/N
N-1 m(j+1)/N

= 3 (i) [

j=0 mjIN
N-—

nkj/N+7mk/N .
= bN(ﬂj/N)E/k‘/V cos*(u)du
wkj/l

cos?(k6)do

—

1 wkj/N+2me

= bN("j/N)E[/nkj/N

T(k/N-2¢) Qi
+ / cos® (v + kP + 27r£’> dv]
0 N

‘ a0 1 kN2
= bN(”J/N)[T + /
0

cos*(u)du

k
9 2wy
cos” <v + % + 27r€> (lv]

mhk(j+1)/N

N-1
1
=3 bN(nj/N)E/ dv /2

j=0 Tkj/N
N-=1

| [TR/N =20
+ Z%bN(WJ/N)EA
]:

2y iy
I:CUS <I' + —A‘/—- + erl) — 5] 4_/[
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| wier
0

N-1 1 m(k/N-
bN 7l'_]/N /
) =0 0

Yo 1
[cos2 (v + ZNﬂ + 27rf> — 2] dv.

N —

(A.10) +

<.

042t
(We ve used the fact that fg wm cos (u)du = j e

2re
sin?(u)du, s0 that Lo fham
cos*(u)du = 27! [ +’)”[cosz(u) + sin”(u)]du = ()

But |L/N — 2f| <2, 50

1 [rk/N=20) \ 9 1
E/o [c < + % + 27r€> - E] dv
2r
-k
and thus

(A.11)

N-1 1 w(k/N—
| S entmimy |
j=0 0

9 2 1
[cos“ ( NJ + 27r€) 5] dv

where M = max{|B(9)| :
(A.11), we obtain

< Me

95[0, 71']} Combining (A.8)-

< (M + 2)e.

/ b(a)cos3(k0)d0—2—1/ b(6)do
JO 0

Since € is arbitrary, we obtain our desired conclusion. Turn-
ing now to b), we note that the smoothness of «x implies that
(see FULKS (1969), p. 551)

of O(m%_”)

E age

Sup
0<h<

so that

m

o= aper]’

k=0

O(Tnl—:!]) )
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Z a? = O(m!'~*F).

k=m+1
Hence, if m, = Tl%p, it follows that Zk)m,. ay
= O(n#_l ). Furthermore, part a) implies that
mp man
- -9 - 2 2
n~U [ EXPu) +2) ) EX?(u) cos®(ku) — > 4}
k=1 k=0

O(n#;_l);

b) then follows immediately from these estimates. Result c)

is a well-known consequence of b). For d), we note that

n' o — aff?

m
nl—“’/
-

fm{ﬁ [=m, 7] i |an(8) — a(f)] > en

(n(6) — a(9))*d0

IV

u|~l
wl-'
—

Part b) implies that Em{@e[—-w,w]

> En?"?} — (0 as n — 00, yielding d).

0) — a(8)]

|an(
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