Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

A COMMON PROGRAMMING STRUCTURE FOR BRYANT-CHANDY-MISRA,
TIME-WARP, AND SEQUENTIAL SIMULATORS

Marc Abrams
Distributed Systems Group

Department of Computer Science

Stanford University
Stanford, CA 94305-2140

Abstract

CPS expresses event-driven, parallel simulation pro-
grams. Rather than being a programming language, CPS
is a structure imposed on an existing language, C++.
CPS programs contain sufficient information to be imple-
mented as Bryant-Chandy-Misra, time-warp, or sequen-
tial simulations. CPS is independent of any problem do-
main. We describe the main concepts of CPS, illustrat-
ing them using the problem of logic circuit simulation.
We identify what information a parallel simulation must
contain that is not required for sequential simulation.

1 INTRODUCTION

One major issue arises in writing parallel simulation
programs: the simulation programmer (or user) must
provide information not normally contained in a sequen-
tial simulation program. Furthermore, the information
required varies, depending on which simulation protocol
is used.

We describe a general-purpose programming system
for parallel simulation called the Common Programming
Structure. CPS is designed primarily for experimental
comparison of the Bryant-Chandy-Misra (BCM) (3, 4],
time-warp (TW) [9], and sequential simulation protocols.
We believe that CPS may be extended to support simu-
lation protocols proposed in the future.

CPS is unique in that the user writes a single program
that mechanically generates three separate executable bi-
naries, implementing each of the three simulation proto-
cols listed above. CPS provides a common programming
interface for all three techniques, giving rise to the “C”
in CPS.

Mechanical generation of a sequential simulation is im-
portant to realistically estimate speedup of a parallel
simulation protocol. This facility is also provided by the
Time-Warp Operating System and Time-Warp Sequen-
tial Simulator [8].

661

One way to facilitate writing parallel simulation pro-
grams is to define a new programming language, as the
Yaddes specification language [13] does. In contrast,
CPS imposes a programming structure on an existing
programming language (C++ [14]). This approach is
also used in Sim++ [11].

CPS defines a library of C++ classes. A user creates
a simulation program by writing C++ code that creates
instances of CPS classes and calls members of the class
instances created.

It is important to distinguish between a programming
language and its implementation. This paper describes
CPS, but not its implementation. One implementation

of CPS is a system called OLPS [1].

We describe CPS by discussing how to write a logic
gate simulator in sections 2 to 7. Then in section 8 we
discuss some implications of using a single programming
structure for multiple simulation protocols.

2 MODEL OF SIMULATION

The BCM and TW protocols use the following model
of simulation [12]. The system to be simulated is viewed
as a set of physical processesinteracting via message pass-
ing. The simulation program is composed of a set of logi-
cal processes (LP’s) which can predict the exact sequence
of messages passed by the physical processes.

Example 1 Throughout the paper we consider the ez-
ample of simulating digital logic circuits. In this case
each logic gate is a PP, and the changes in signal levels
on wires interconnecting the logic gates are the messages.

One could view a simulator as a directed graph in
which each vertex corresponds to one LP, and the arcs
correspond to possible paths over which messages may
pass. A CPS program must specify two things for each
LP:

¢ variables storing the current state of the LP

¢ sequential code that examines and updates state

variables as well as generates new messages to be
sent to other LP’s

Example 2 The specification of a logic gate by state
variables and sequential code is an LP. Consider an LP
representing a logic gate with N inputs. The output of
the gate is the result of applying some function f to the
inputs. One specifies the LP by:

1. State variables: N + 2 state variables are required:

o One represents the number of input lines.

o One represents the time delay that occurs before
a change to an input produces a change to the
oulput.

o The remaining variables represent the last logic
level (0 or 1) received on each of the N input
lines.

2. Sequential code: The LP’s sequential code is run
each time a new message arrives. The code performs
operation f on the logic level present in the message
along with the state variables corresponding to the

unchanged input arcs.

3 TIME

We refer to the time units used during simulation as
simulation time. Each LP in CPS has a state variable
representing the current simulation time; this value is
called the local virtual time (LVT), following Jefferson’s
concept of virtual time [10]. The global virtual time is
a value less than or equal to the minimum of all local
virtual times.

Whenever an LP sends a message to another LP, the
sender includes a time-stamp with the message. The
time-stamp is always the time at which the PP corre-
sponding to the LP would have sent the message.

Example 3 The time-stamp of a message sent from the
LP for logic gate A to the LP for another gate B 1is
the simulation time at which the output signal of gate
A changes its value.

4 MESSAGES

A simulation message in CPS is represented by an in-
stance of class Msg (the typewriter font denotes fragments

class Msg {
public:
SimTime Time;
void* Text;
uschar Priority;
union {
usint InArc;

Sequencer* OutArc;
//Sequencer explained later

}
Msg(SimTime time, //constructor
LP 1p,
void* text=IllegalAddr,
usint Size0fText=0;
uschar priority=0);
“Msg(); //destructor

void SetSize0fText(usint);
};

Figure 1: Class Msg

of CPS code), which is shown in Figure 1. In all fig-
ures presenting CPS classes, only the identifiers that the
user normally needs to manipulate are shown. SimTime,
uschar, and usint are typedef’d to double, unsigned
char, and unsigned int, respectively.

Figure 1 shows that class Msg has the following fields:

¢ Time: contains the time-stamp. In CPS, an object
that contains a simulation time has the type Sim-
Time.

¢ Text: containsa pointer (of type void#) to a user de-
fined object, for example a logic level of 0 or 1 in the
logic simulator. Class Msg functions as a container
class, because its Text field can point to whatever
object the user defines.

e Priority: only meaningful to classes Priority-
Smallest and PriorityLargest, as described in sec-
tion 5.2. (These classes implement a priority queue-
ing mechanism.)

® InArc: identifies the source of the message received
by an LP.

¢ OutArc: only used with class MultiUserRoute (see
section 5.3).

Figure 1 also shows a constructor and a destructor
for class Msg. The constructor shows that values for the

662

Text and Priority fields are optional. The Text field
will default to the CPS defined constant IllegalAddr,
indicating that the Text field does not contain a valid
pointer. Constructor Size0fText must be the length in
units of char of the object pointed to by Text. (Size-
0fText is ignored in a shared memory implementation
of CPS.) Member SetSizeOfText is provided to allow
change the length after the object is constructed.

Example 4 Let L be an object of type LP* (ie., a
pointer to an object of type LP). L constructs a message
to send to its downstream gates by calling the constructor
of class Msg. As an ezample, suppose that L changes one
of its outputs to logic level 1 at time 362.3. The message
needed to contain this information is constructed and its
address is stored in M as follows:

char* NewLevel
NewLevelx 1;
Msg+* M = Msg(362.3, L, NewLevel, 1);

’

new char;

Later on, the message may be destroyed by the statement
“delete M.”

When another LP receives message M, it can read the
time-stamp of the message by accessing M->Time. In the
logic simulator, the receiving LP can read the new logic
level by accessing M->Text*.

5 LOGICAL PROCESSES
In CPS, the user must identify a set of LP types from
which the simulator is constructed. The name of a type
of LP must be a constant of type LPType. (LPType is
typedef'd to long.) In a simulator there are usually mul-
tiple instances of each LP type.

Example 5 For a logic simulator, there might be three
types of LP’s: two input AND gates, two input NOR
gates, and INVERT gates. Usually the user defines a set
of identifiers representing LP types by using the enum in
C++:

enum { AND, NOR, INVERT };

A logic stmulator may simulate a circuit with 100 triple
input AND gates, 59 dual input NOR gates, and 23 IN-
VERT gates. The user assigns a constant of type LPId
(which is typedef’d to long) to uniquely refer to each LP
instance. For example the NOR gates may be numbered
101, 102, ..., 159.

Type:

LVT:

663

Type
Id
LvT
u
Buffer State Routing
’ Pool Table Table
Sequencer Responder Router \

Figure 2: Components of an LP

The objects comprising class LP are shown in Figure 2.
The components that contain data, but no member func-
tions are:

The value of this object distinguishes members of
the set of LP types, as described above, for example
AND from NOR gates.

Id: Any two instances of class LP that share the same
value for Type must be assigned unique values for
Id. Thus Id distinguishes NOR gate 101 from NOR
gate 103.

This contains the local virtual time, which is set by
the responder (see below).

The components that contain both data and member
functions are:

Sequencer: Receives messages from other LP’s into a
buffer pool. Decides the order in which messages are
presented to the responder. The buffer pool allows
concurrent writing and reading by multiple LP’s.

Responder: Simulates the PP that a given LP models.
The responder contains the state variables described
earlier.

Router: Sends messages generated by the LP to other
LP’s. The router may contain a routing table.

The C++ specification of class LP is shown in Figure 3.
Note that class LP actually contains a pointer to the se-
quencer, responder, and router. Constructor argument
TextEqual is discussed in section 5.4.

typedef Bool (*Equal) (Msg*,Msg);

class LP {

public:
LPType Type;
LPId Id;
SimTime LVT;

Sequencer* S;
Responder* Re;
Routerx* Ro;

LP(LPType type,
LPId id,
Equal* TextEqual=NULL);

“LP(void);

Figure 3: Class LP

5.1 How LP’s Work

An LP repeats the following three actions:

1. The sequencer determines which message M in its
buffer pool is the next one to be simulated. The
sequencer may use LVT to make this decision. The
sequencer removes M and returns it to the respon-

der.

The responder simulates M and updates LVT and
the state variables. During simulation the responder
generates zero or more messages, and returns a list
L of these messages to the router.

The router uses its routing table to send each mes-
sage in L to downstream LP’s by writing to the ap-
propriate buffer pools.

Example 6 Consider an LP in a logic simulation repre-
senting LP #127, whose type (from Ezample 5) is a two
input NOR gate. The NOR gate LP repeats the following
three actions (corresponding to the three actions above):

1. The sequencer ezamines all messages from either in-
put arc that are waiting and chooses the one with the
smallest time-stamp. LVT 1is not required to make
this decision. (If multiple messages have identical
time-stamps, the sequencer chooses one message ar-
bitrarily.) The message chosen, M, represents the
next logic level change that an input ezperiences. Let
M->Time=2362.3 and let the logic level be 1. Assume
the message arrived on input #0.

664

Sequencers: Routers:
SingleSmallest NullRoute
MultiSmallest SingleRoute
PrioritySmallest MultiUserRoute
SingleLargest MultiProbRoute
Multilargest MultiCastRoute
PriorityLargest BroadCastRoute

Table 1: Sequencers and responders available in CPS.

2. Assume the last logic level received on input #1 was
0. Then the responder of the NOR gate would NOR
together 1 and O (the values last received on inputs
0 and 1, respectively) and obtain 0. Further, let the
delay in the NOR gate be 10 simulation time units.
Then at LVT 362.3+10 the NOR gate begins to out-
put logic level 0. (The NOR gate has now simulated
up to time 372.3). The responder will change LVT
and M->Time to 372.3 and M->Text* to (logic level)
0. (In this ezample, LVT need not be set, because
neither the sequencer nor the responder of the NOR
gate uses LVT.) The list returned to the router, L,
will contain one message, M.

The router will place M in the buffer pool of the LP
which is connected to the output of the NOR gate.

CPS defines several sequencers and routers (Table 1).
One may either use these or define his own. Responders
are entirely problem dependent, and hence are always
written by the user.

In C++ one normally creates class instances through
the new operator. However, for any class listed in Table1,
which we denote C, the user calls a function whose name
is the word Create concatenated to C, and whose argu-
ments are the same as the constructor of C. This allows
different sequencers and router implementations for the
CMB, TW, and sequential protocols. (The user defines
a compile time constant called Method, and sets its value
to one of MethodBCM, MethodSeq, or MethodTW to specify
which simulation protocol is to be used.)

The following subsections discuss sequencers, routers,
and responders in detail.

5.2 Sequencers

Table 1 lists six sequencers. Sequencers whose names
end in Smallest (Largest) return the message with the
smallest (largest), time-stamp from the buffer pool. Se-
quencers whose names start with Single (Mult:) allow
single (multiple) input arcs to the LP.

class Sequencer {
public:
LPId** InArcMap;
virtual void PreLoad(usint NumCopies,
Msg* M, uschar Priority=0);

};

Figure 4: Class Sequencer

A PrioritySmallest (Prioritylargest) sequencer
provides a set of MultiSmallest (Multilargest) se-
quencers, each having a unique priority level. Each mes-
sage (see Figure 1) contains a Priority field, specify-
ing on which MultiSmallest (Multilargest) sequencer
the message should be enqueued. PrioritySmallest
(PriorityLargest) will select as the “next” message the
smallest (largest) message from the highest priority, non-
empty component sequencer.

Example 7 In a simulator of a multi-processor com-
puter, each processor may be considered a PP. Jobs wait-
ing for ezecution at each processor may be messages. If
jobs are scheduled by a first-in, first-out or a processor-
sharing policy for each processor, a SingleSmallest,
MultiSmallest, or PrioritySmallest sequencer may be
used. If jobs are scheduled by a last-in, first-out policy,
a SinglelLargest, Multilargest, or PriorityLargest
sequencer may be used.

All of the sequencers listed in Table 1 are derived from
a class called Sequencer, whose declaration appears in
Figure 4. Any user defined sequencers must also be de-
rived from class Sequencer. Class Sequencer simply de-
fines an interface common to all classes derived from it.
Hence one creates instances of classes derived from class
Sequencer.

Figure 4 contains a pointer to a table, InArcMap, and
a function, PreLoad. InArcMap maps field InArc of an
instance of class Msg to the Id of the LP that sent the
message. Function PreLoad(N, M, P) constructs N copies
of message M and inserts these messages into the buffer
pool of the sequencer at priority level P (P=0 is the high-
est priority level). If there is only one priority level (as
is the case in all classes but PrioritySmallest and Pri-
orityLargest), P is ignored.

The declaration of the Create functions for sequencers
is shown in Figure 5. Argument L specifies the LP that
each sequencer is a component of. Sequencers Priority-
Smallest and PrioritylLargest have one sequencer for
each priority level, which are identified by the numbers
0,1,... ,HiLevel.

665

Sequencer* CreateSingleSmallest (LP* L);

Sequencer* CreateMultiSmallest (LP* L);

Sequencer* CreatePrioritySmallest(LPx L,
usint HilLevel);

Figure 5: Declaration of functions that create sequencers
(creation functions for largest sequencers is analogous)

class Router {

public:
virtual Sequencer* AddRoute(LP*, Prob);
virtual Sequencer* AddRoute(LPx);
virtual Bool CheckProbRoute(void);

};

Figure 6: Class Router

5.3 Routers

Table 1 lists six routers. NullRoute destroys the mes-
sages it receives, as required by LP’s acting as sinks.
SingleRoute routes each output message to the same
destination each time. MultiUserRoute uses field OutArc
of each output message, set in the responder, to select an
output route. MultiProbRoute selects an output route
based on a set of probabilities. MultiCastRoute sends
a copy of each output message to a set of LP’s. Broad-

CastRoute sends a copy of each output message to all
LP’s.

All of the routers listed in Table 1 are derived from
a class called Router, whose declaration appears in Fig-
ure 6. As is the case with class Sequencer, class Router
defines an interface, and the user creates instances of
classes derived from Router. In Figure 6, type Prob,
representing a probability, is typedef’d to double, and
type Bool is typedef’d to char.

Class Router has a member called AddRoute, which
is used to specify the set of feasible output routes, as
indicated below.

For SingleRoute: AddRoute(L), where L is of type
LP*, will initialize the routing table to always select LP
L as the output route.

For MultiProbRoute: AddRoute(L,P), where P is of
type Prob, will initialize the routing table to select LP L
as the output route with probability P. See CheckProb-
Route, below.

For MultiUserRoute: AddRoute(L), informs Multi-
UserRoute that L is a potential output route. (MultiUs-
erRoute needs to know all the potential routes, because
it may multicast simulation control messages to these
LP’s.) Furthermore, AddRoute also returns an identifier
that the user later uses to select a particular output route
in a responder. The identifier is of type Sequencer*. For
example, an LP L may have two routes, L1 and L2. The
user calls AddRoute once for each output route:

Sequencer* S1 =
Sequencer* S2

AddRoute (L1);
AddRoute(L2);

After these calls, the user responder may route to L1 or
L2 by setting field OutArc (see Figure 1) to S1 or S2,
respectively.

For MultiCastRoute: AddRoute(L) specifies that L
is one of the LP’s multicast destinations.

For NullRoute and BroadCastRoute:
unnecessary and hence undefined.

AddRoute 1s

Member CheckProbRoute is only called when using
MultiProbRoute, and is called after all calls to AddRoute
have been made. The member returns the constant True
(which has a non-zero value) if and only if the sum of the
type Prob field of all calls to AddRoute sum to one. This
member should be called before simulation starts (via a
call to Net->Simulate(), as described in section 6).

The Create functions for routers (e.g., CreateNull-
Route, CreateMultiProbRoute) have one argument, of
type LP*, which is a pointer to the LP that the router is
a component of.

5.4 Duplicate Messages

It is possible for a sequence of two messages travel-
ing over the same arc with non-decreasing time-stamps
to be otherwise identical. We call the second message a
duplicate. If the user gives argument TextEqual (see Fig-
ure 3) of the constructor of class LP a non-null value, then
duplicate messages are to be detected and destroyed by
sequencers and routers. (Duplicate destruction is called
event elision by Davoren [5].) If the argument is NULL,
then sequencers and routers will not spend time checking
for duplicate messages.

Example 8 In the logic gate simulator, assume that a
NOR gate has last received a 1 on both inputs, so that
its last output message had Textx = 0. The nezt in-
put received over either input will generate a new output

666

class Responder {
public:
SubState** CRWS;
//Current read-write state

Responder (LP* Owner, SubStatex**
InitCRWS, usint NumSubStates,
usint Frequency=0);

void Dirty(usint substate);
virtual Msglist* RespondToUser(Msg* M);
virtual Msg* RespondToNull(Msg* M) ;
virtual void Commit(SimTime GVT){;}

};

Figure 7: Class Responder. SubState is typedef’d to
void.

message with the same Text* value: 0. If the NOR gate
LP was constructed with a non-null value for TextEqual,
then the router will not send the second message, but
rather will delete it. The reason is that the message does
not indicate a change in signal level, and hence cannot
affect the gate connected to the output of the NOR gate.

Sequencers and routers must determine when two mes-
sages are duplicates. To do this the user defined Text
field of two messages must be compared. A user-written
function is required for this. The address of the func-
tion is passed to the constructor for class LP as argu-
ment TextEqual. This function takes two type Msg* ar-
guments, and returns either True or False if the Text
fields are equal.

5.5 Responders

Responders are written by the user. However CPS
provides a number of mechanisms to make writing re-
sponders easier. CPS defines a class called Responder
(Figure 7), from which user responders are derived. As
is the case with classes Sequencer and Router, class Re-
sponder defines an interface.

Recall from section 2 that an LP is specified by giving
a set of state variables and a piece of sequential code.
First we discuss the state variables, then we discuss the
sequential code.

Certain aspects of the BCM and TW protocols be-
come visible to the user at this point in the sense that
the design of the responder affects the efficiency of the
simulator. The user must structure the state variables
needed by a responder differently for the BCM and TW
protocols.

State variables. The state of an LP must be parti-
tioned by the user into two categories, read-only and
read-write states.

Read-only state: The user defines a class that contains
all read-only state variables.

Read-write state: The user may partition the read-write
state into a set of sub-states. The number of sub-states
is specified as argument NumSubStates in the construc-
tor for class Responder. The argument is optional; its
absence indicates that partitioning is not desired.

Sub-states are defined to improve the efficiency of TW
simulation. The responder simulates in response to a
message removed by the sequencer from its buffer pool.
The TW protocol requires that multiple versions be kept
of the LP’s read-write state variables. Old versions are
used when the LP must roll back its local virtual time.

Creation of a new version of the state requires allocat-
ing memory and copying the current state content. The
concept of sub-state is provided by CPS to reduce the
overhead of creating new versions. The TW implementa-
tion manages versions on a per sub-state basis. Therefore
the user can partition the read-write state into a suffi-
ciently small number of sub-states so that a new version
of only the state component actually changed during sim-
ulation of a message will be created. However the user
should not create too many sub-states, because this in-
creases the space overhead required to manage versions.
Sub-state partitioning is irrelevant when the BCM pro-
tocol is used.

The sub-states that the user defines are numbered
0,1,...,NumSubStates-1. (Usually the user will define
constants using enum with which he refers to the sub-
states.) The size of the array is NumSubStates. Respon-
der pointer CRWS contains the current read-write state
of the LP. The TW implementation will determine the
correct current local state before activating user-written
code. This may involve saving a new state or restoring
an old state and initiating rollback at downstream nodes.
The BCM protocol will not modify CRWS.

The Frequency argument for the class Responder con-
structor specifies how often to create a new version for a
changed object. A value of ¢ will not generate a new ver-
sion of a sub-state for the first ¢ calls to RespondToUser
that do not write to the sub-state, while a new version
is created on call number ¢ + 1.

Example 9 If one were writing a logic simulator, he
would need to write a responder for each type of logic
gate. From Ezample 2, the logic gate simulator for an
N input logic gate requires N + 2 state variables: Num-
Inputs, Delay, and a size N array called LastInput.

667

struct RO_State {
usint NumInputs;
SimTime Delay;
RO_State(usint numinputs, SimTime delay)
{ NumInputs = numinputs;
Delay = delay; }
3

struct RW_SubState {
Bool LastInput;
RW_SubState (Bool lastinput=False)
{ LastInput = lastinput; }
};

Figure 8: State variables necessary for logic simulator
responder.

The values of NunInputs and Delay are never changed;
hence the read-only state consists of these two variables.

One way to partition the remaining (read-write) state
variables s to make each variable LastInput a sub-state.
Consider a two input logic gate, in which input #2 is
tied to ground. In this case one state variable will never
change its value; hence only one version of the variable
need ever be created. Meanwhile with the other variable
in its own sub-state, the operations of allocating a new
state and copying the old value to it are faster than if sub-
states were not used. Other ezamples occur when one of
the two inputs is used less frequently than the other, or
when signals arrive on the two inputs in non-overlapping
periods of time.

The necessary declarations of state variables appears
in Figure 8.

Sequential code. The user provides members Re-
spondToUser and RespondToNull.

RespondToUser is the heart of a simulation program,
because it contains the actual algorithm to simulate the
behavior of a PP. This member is called with the next
(non-null, or user) message returned by the sequencer
to be simulated as its argument. RespondToUser then
updates the local state, CRWS, and returns a list of zero
or more messages to be sent to downstream LP’s.

The user must call member Dirty one time for each
sub-state modified. Furthermore Dirty must be called
before the first modification occurs, to insure that a run-
ning LP can be preempted. Dirty takes one argument,
specifying the identity of the sub-state that was modified.
Calls to Dirty are necessary so that the TW implemen-
tation can properly manage sub-state versions. Calls to
Dirty have not effect in the BCM implementation.

typedef MsgList* (*LGF) (Msg*, usint,

SubState*);
struct LG : Responder {
RO_State* ROS;
LGF £;

LG(LP* Owner,
LGF £,
usint numinputs,
RO_State RO_InitState,
RW_SubState RW_InitSubState)
(Owner, RW_InitSubState, numinputs)
{F=1% ROS = RO_InitState; }

MsgList* RespondToUser (Msgx M)
{
LVT = M->Time;
Dirty(M->InArc);
((RW_Statex) CRWS[M->InArc]) ->
LastInput = *M->Text;
return (*LGF)(M,R0S->NumInputs,CRWS);
}

Msg* RespondToNull(Msg* M)
{
M->Time += ROS->Delay;
return M;
}
3

Figure 9: User-written responder for any gate in the logic
simulation example.

Member RespondToNull is only called by the BCM
protocol. Its argument, M, is a null message sent to the
LP. The LP must generate a single null message and
multicast it over all output routes. Typically Respond-
ToNull calculates from LVT a lower bound on when the
LP will next send a non-null message, and stores this
value in M->Time, and returns M.

Member Commit is optionally written by the user. It
is called with increasing values of GVT as an argument
to allow the user to commit any actions that he defines
which can be rolled back. An example would be user in-
put or output operations involving istream or ostream.

Example 10 In the logic gate simulator, it is possible
to define one class that represents any type of gate (e.g.,
AND, OR, NOR, etc.). This class, LG, is shown in Fig-
ure 9.

Class LG contains two objects: ROS and f. ROS is set by
the constructor of class LG to point to the read-only state.

668

MsgList* NOR(Msg* M, usint NumInputs,
SubStateCRWS)

{

Bool rv = False;

for (usint i=0; i<NumInputs; i++)

v |=
((RW_State*) CRWS[i])->LastInput;
return 'rv;

}

Figure 10: An example of a type LGF function.

Object £ is set by the constructor to point to a function
that actually does the AND, OR, NOR, etc., operation
of the gate. One such function is given in Figure 10.

Note that because class LG is derived from class Re-
sponder, the constructor of class Responder is called
when the constructor of class LG is called. The class Re-
sponder constructor is responsible for constructing the
initial version of the read-write state, using RW.Init-
State as its initial value.

During simulation, member RespondToUser is called
each time a message is routed to a gate. When Re-
spondToUser returns, the router associated with the LP
to route the resultant message. Member RespondToUser
performs the following actions:

Call member Dirty to indicate that one sub-state
has been modified.

Use the InArc field of M to identify which input
level changed. The logic value for this input (in
*M->Text) is stored in the read-write state.

Update the time-stamp of M by incrementing it by
Delay.

Call the function pointed to by LGF, which might be
the NOR function of Figure 10. Function NOR uses
the C++ logical or operator to combine all read-
write state variables to calculate a new output for
the gate.

A logic gate is guaranteed not to change its output until
Delay units after the time-stamp contained in the null
message. Hence member RespondToNull increments the
time-stamp of a null message by Delay.

Example 11 Shown below is a fragment of C++ code
that a user might write to create an LP for a two input

NOR gate with a delay of 11.3 time units in a logic sim-
ulator. One first constructs the LP; then he constructs a
sequencer, responder, and router; and finally he sets the
LP to point to the sequencer, responder, and router:

LP* L = new LP(NOR, 159);
L->S = CreateMultiSmallest(L);
L->Re = new LG(L, &NOR, 2,
new RO_State(2, 11.3),
new RW_SubState[2]);
L->Ro = CreateSingleRoute(L);

This type of code fragment is usually used before simu-
lation starts, when parsing a file containing a description
of the model to be simulated.

6 INITIATING AND TERMINATING
SIMULATION

A complete simulation program starts by reading a file
containing the model description, allocating the neces-
sary LP’s, and setting the routing via AddRoute. The
program then simply executes “Net->Simulate()” to
run the simulation. Then the user terminates the simu-
lation program itself by executing “Net->Terminate().”

7 INPUT AND OUTPUT

C++ provides classes istream and ostream for input
and output operations. The user may only operate on
these streams before calling Net-> Simulate() (e.g., to
read a set of parameters whose value does not change
after simulation starts) or after Net->Simulate() returns
(e.g., to dump data collected in memory to disk).

During simulation (i.e., during execution of Net->
Simulate()), the user must operate on classes pistream
and postream, which are defined by CPS. The names of
these classes are chosen to emphasize that an instance of
either class is private to a single LP.

Class pistream adds the following semantics to C++
class istream. An instance of class pistream is as-
sociated with an instance of class streambuf. (Class
streambuf buffers values read from a file.) When op-
erator >> (i.e., the read operator) is called by an LP
with LVT [, the value returned by >> is such that all
preceding values in the streambuf were returned to the
LP when the LP had an LVT that did not exceed I.

An instance of class postream is associated with an
instance of class streambuf. (Class streambuf buffers
values read from a file.) When operator << (i.e., the

669

write operator) is called by an LP with LVT [, the argu-
ment given to << will not be added to the streambuf
until the GVT is greater or equal to I.

One other form of output is provided: class Histogram
This class is also private to a single LP. The class im-
plements a histogram that is stored in memory dur-

ing simulation, and then is written to a file during
Net->Terminate().

8 IMPLICATIONS OF A COMMON
PROGRAMMING STRUCTURE

We started this paper by observing that writing a par-
allel simulation differs from writing a sequential simula-
tion in that additional information has to be provided by
the programmer. It is instructive to identify what this
information is for the BCM and TW protocols.

BCM protocol: Responder member RespondToNull
is mandatory if the protocol is implemented using dead-
lock avoidance.

TW protocol: Providing the information listed below
as optional may improve the efficiency of the simulation.

(Mandatory) References to state variables for each
LP have to be made through pointer variables.
Specifically, pointer CRWS is needed. (The pointer is
necessary because its value, representing the current
state, is manipulated by the TW implementation in-
visibly to user written code.) The BCM protocol
requires such pointers.

o (Optional) Responder member Dirty is required for
the TW implementation to decide when to allocate
a new version of a state variable.

¢ (Optional) The user must choose an efficient parti-
tion of the state variables in each LP.

¢ (Mandatory) LVT must always be updated. In con-
trast LVT need only be updated for the BCM pro-
tocol when sequencers other than SingleSmallest,
MultiSmallest, and PrioritySmallest are used.
The logic gate example requires no updates to LVT
for the BCM protocol.

e (Optional) The user must decide on how frequently
new versions should be created.

We note that if the memory management system sup-
ports versions (for example Fujimoto’s Virtual Time Ma-
chine [7]), then the user would not have to refer to states
through pointer variables and would not have to call
member Dirty.

Both BCM and TW: A function of type Equal must
optionally be provided if duplicate messages are to be de-
tected. Furthermore, the user must use remember to use
I/O streams that are private to an LP (i.e., pistream
and postream) during simulation. Moreover, the user
should minimize the amount of input and output oper-
ations required during parallel simulation. For example,
multiple processes frequently reading from a a pistream
that uses a single disk as the backing store may substan-
tially increase the simulation running time.

CPS does not currently address on important issue in
writing parallel simulation programs: look-ahead. Look-
ahead is recognized to be crucial to good performance
both in the BCM [6] and the TW protocols [2). When
using CPS, the user must implement look-ahead in an
ad hoc manner. More understanding of look-ahead is
required before a look-ahead mechanism can be incorpo-

rated into CPS.

One comment may be made about the logic simulator
example. CPS defines an interface that is independent of
the problem-domain. In the logic simulator, a second in-
terface (function LGF) is defined; many implementations
of LGF are then provided to implement the specific logic
gate types (i.e., AND or INVERT gates). Interface LGF
is specific to the problem domain. The lesson is that for
a given problem, one should try to develop an interface
like LGF. In this manner the simulator can represent an
enormous class of problems with a small amount of code.
This is of great benefit in experimental work that seeks
to characterize which simulation protocols work best in
which problem domains.

9 ACKNOWLEDGEMENTS

This work was sponsored in part by the Defense
Advanced Research Projects Agency under contract
N00039-84-C-0211, as well as equipment from Digital
Equipment Corporation. The use of sub-states in sec-
tion 5.5 was influenced by Richard Fujimoto’s Virtual
Time Machine [7].

References

(1] M. Abrams. The Object Library for Parallel Simula-
tion (OLPS). Proc. Winter Simulation Conference,
San Diego (Dec. 1988) 210-219.

(2] D. Baezner, et al. Algorithmic Optimizations of
Simulations on Time Warp. Dist. Sim. 1989. Soc.
for Comp. Sim., Tampa (March 89), 73-78.

[3] R. E. Bryant. Simulation of Packet Communica-
tion Architecture Computer Systems. Tech Rep.
MIT,LCS,TR-188, M.I.T., Cambridge, MA (1977).

[4] K. M. Chandy, V. Holmes, and J. Misra. Dis-
tributed Simulation of Networks. Computer Net-
works 3, (1979) 105-113.

[5] M. Davoren. A Structural Mapping for Parallel Dig-
ital Logic Simulation. Dist. Sim. 1989. Soc. for
Comp. Sim., Tampa (March 89), 179-182.

[6] R. M. Fujimoto. Lookahead in Parallel Discrete
Event Simulation. Proc. 1988 Int. Conf. on Parallel
Processing (Aug. 88) 34-41.

[7] R. M. Fujimoto. Virtual Time Machine. Proc. ACM
Symp. on Parallel Alg. and Arch. (June 89).

[8] P. Hontalas, et al. Performance of the Colliding
Pucks Simulation on the Time Warp Operating Sys-
tems (Part 1: Asynchronous Behavior and Sector-
ing). Dist. Sim. 1989. Soc. for Comp. Sim., Tampa
(March 89), 3-7.

[9] D. Jefferson and H. Sowizral. Fast Concurrent Simu-
lation Using the Time Warp Mechanism. Dist. Sim.
1985. Soc. for Comp. Sim., San Diego (Jan. 85),
63-69.

[10] D. R. Jefferson, Virtual Time. ACM Trans. Prog.
Lang. Syst. 7,3 (July 1985), 404-425.

[11] G. Lomow. Sim++. Jade Simulations Inter. Corp.

[12] J. Misra. Distributed Discrete-event Simulation.
ACM Computing Surveys 18, 1 (March 1986), 39-
66.

(13] B. R. Preiss. The Yaddes Distributed Discrete Event
Simulation Specification Language and Execution
Environments. Dist. Sim. 1989. Soc. for Comp.
Sim., Tampa (March 89), 139-144.

[14] B. Stroustrup. The C++ Programming Language.
Addison Wesley, Reading, MA (1986).

AUTHOR’S BIBLIOGRAPHY

MARC ABRAMS received a Ph.D. in Computer Science
from the University of Maryland in 1986. He has been
a post-doctoral scholar at IBM and Stanford University.
He developed simulation models for the U.S. Army. He
is currently a Visiting Assistant Professor of Computer
Science at Virginia Tech, and consults for Jade Simula-
tions International Corporation. His research focuses on
the performance of parallel software.

Marc Abrams

Dept. of Computer Science
Virginia Tech

Blacksburg, VA 24061-0106
(703) 231-6931
marc@vtodie.cs.vt.edu

