Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

A LOGIC FOR SIMULATING DISCONTINUOUS SYSTEMS

Sanjai Narain
Jeff Rothenberg

RAND Corporation
1700 Main Street
Santa Monica, CA 90406

ABSTRACT

This paper presents DMOD, a formalism for simplifying the synthesis and analysis of programs for simulating
discontinuous systems. It lacks the concept of explicit state. Its programs are constraints upon event occurrences, based
upon a novel view of the causality relation. Constraints can freely refer to the past and future of causing events.

Simulation is regarded as inference of event occurrences from constraints. An event is said to occur when an interesting
proposition becomes true. The new concept of partially instantiated events is introduced.

DMOD can be regarded as a formalization of the widely used event scheduling view of the discrete-event simulation
technique. However, it shows how event occurrences can be computed without devices of scheduling, unscheduling or
event queues, which are intrinsic to this view. Due to partially instantiated events, DMOD can also be considered more

general.

1.0 INTRODUCTION

Simulation of a system means computation of how its state
evolves with time. It is essential for obtaining insight into
system behavior when its direct
inconvenient, expensive, dangerous or impossible. A

observation is too
system is said to be discontinuous if it has at least one state
parameter whose value over the entire time line cannot be
described by a single well behaved function of time. A
function of time is said to be well behaved, e.g. a sine or
square wave, if its properties are well understood.
Examples of discontinuous systems routinely arise in
science, medicine, robotics,

manufacturing, computer

hardware or computer animation.

The reason that systems can be discontinuous is that events
occur in them. These cause one well behaved function to
stop being a description of a parameter and another such
function to start being so. For example, a well behaved
function describes position of a billiard ball till an event of
its colliding with another object occurs. This causes the
function to change to another well behaved one.

This paper presents DMOD, a first-order logic formalism
for simulating discontinuous systems. It is based upon the
following fundamental assumption:

Once the event occurrences till time T are known the
state of the system can be computed at any point of
time till T.

Thus, simulation can be regarded as computation of event
occurrences. This is a generalization of a similar idea in
[Misra 1986] where the only events are message
transmissions.

DMOD proposes a method of computing event occurrences
based upon a novel view of the causality relation. It
exhibits three conceptual differences over most traditional
simulation formalisms, particularly those based upon the
widely used discrete-event technique (for a modern survey
see [Evans 1988]):

(a) Purely declarative basis. Programs in most traditional

formalisms frequently contain side-effect causing
operations such as event scheduling (insertion) and
unscheduling (deletion) upon an event queue. The abstract
logic that these are intended to implement is left implicit,
but is far from obvious. Thus, questions such as about

program correctness can be difficult to answer.

DMOD programs are first-order logic constraints upon
event occurrences defining a novel view of the causality
relation. (An important feature of constraints is that they
can freely refer to the past and future of causing events).
Constraints are defined separately from procedures for
performing inference upon them. Thus, logical properties

of programs can be studied independently of these
procedures.

Two useful results are obtained as a result. First, the device
of partially instantiated events is identified which yields

692

new programming possibilities. Second, we are able to
compute even!t occurrences without any use of event
queues, scheduling or unscheduling. The algorithm is,
however, quite inefficient, so another one is developed
which restores these devices,
fundamentally different way.

but uses them in a

(b) Absence of explicit state. Programs in most traditional
formalisms manipulate an object called state. The state is a
collection of tuples <P,V,T> each meaning that the value
of state parameter P is V at time T. As simulation time
advances new tuples are added to state in a destructive or
non-destructive manner. As discussed below, reference to
states and events in the past of simulation time is frequently
required. Thus, all relevant tuples about the past must be
retained, so states can become quite complex and difficult
to visualize.

Programs in DMOD manipulate history i.e. the sequence of
occurring events. History can be easier to visualize than
state as temporal and causal orderings can be imposed upon
events in it. By the fundamental assumption all states and
events in the past and present of a time can be recovered
from history till that time. Thus, while state parameters are
still objects of contemplation, explicit states are not.
History could be included as an extra state parameter in
traditional formalisms, but that would be conceptually
redundant.

(c) More general definition of event. Frequently, events
are defined to be state changes. However, events such as
message transmissions are awkward to regard as state
changes. Sometimes an event is defined to be a message
transmission. However, satisfaction of conditions e.g. it
beginning to rain at sunset, or the temperature of ocean
becoming higher than that of land are awkward to regard as
events in this sense. DMOD considers an event to occur
As
discussed below, a wide range of happenings can now be

when an interesting proposition becomes true.

regarded as events.

Section 2.0 discusses the causality relation. Section 3.0
defines DMOD. Section 4.0 contains examples of DMOD
programs. Section 5.0 describes two simulation algorithms.
Section 6.0 makes some final remarks.

2.0 THE CAUSALITY RELATION

An important method of compuling cvent occurrences is
Intuitively,
causes(A,B) means A is responsible for, or brings about B.
More precisely, it can be regarded as an abbreviation for if
A occurs then B occurs, so that event occurrences can be

via the causality relation between events.

computed using:

occurs(B) if causes(A,B) & occurs(A).

where occurs(B) means the event B occurs. However,
inference of the causality relation from typical statements
about it can be quite difficult. This is because statements
can refer to the past as well as the future of causing events.
The former happens when modeling agents with memory
such as doctors or credit verifiers. The latter happens when
delays occur between causes and effects and during these
delays, conditions arise which preclude expected effects
from occurring. An example of a statement which refers to
both the past and the future of the causing event (and its
formalized version) are:

An event of an aircraft taking off towards a radar at
time T causes an event of detection by that radar at
time T+20 provided:

(a) an event of its being instructed to fly low has not
occurred before T &

(b) an event of its changing course does not occur
between T and T+20 &

(c) the radar’s intensity is above threshold for each
time between T and T+20.

causes(flies_towards(A,R,T),detects(A,R,T+20)) if

(a) not exists(X).

X<T & occurs(told_to_fly low(A,X)) &
(b) not exists(X).

T<X<T+20 & occurs(changes_course(A,X)) &
(c) not exists(X).

T<X<T+20 & intensity(R,X)=<threshold.

Here flies_towards(A,R,T) denotes an event of aircraft A
taking off towards radar R at time T. Similarly for
detects(A,R,T), told_to_fly low(A,T),
changes_course(A,T). intensity(R,T) the
intensity of radar R at time T.

denotes

The difficulty of reasoning with such a statement arises
from two sources. First, there is mutual recursion between
this statement about causes and the above definition of
occurs. The recursion can be quite difficult to control.
Suppose the event E=flies_towards(a,r,0) occurs, where a
is an aircraft and r is a radar. In order to infer from the
second rule that causes(E,F) where F=detects(a,r,20), and
hence from the first rule that occurs(F), we have to infer
that there is no event G=changes_course(a,X) such that
occurs(G) and 0<X<20. As time is real-valued we cannot
hope, even in principle, to iterate over all points of time.

The second source of difficulty is that rules can refer to

693

states e.g. intensity. As time can be real-valued the
number of distinct states, e.g. positions of a moving object,
can be non-computably infinite. It is impossible to keep an
explicit record of all these. Note that the above rules would
strain, if not lie outside the reasoning capability of, most
current theorem proving or logic programming systems.

DMOD removes this difficulty by proposing that causality
be resolved only in the context of a sequence of events.
This allows causality to be defined, at the object level,
without reference to occurrence. Occurrence is defined at
the metalevel inside the inference procedure. The context
enables arbitrary reference to past and future.

3.0 DEFINITION OF DMOD

Let F be a condition about the simulated system which
takes m+1 arguments, m>=0, and the last argument ranges
Let F be defined for entities
al,.,am,t. Then the proposition F(al,..,am,t) is said to
become true if F(al,..,am,t) is true but there exists a finite
time interval immediately preceding t such that for each
time instant X within it F(al,..,am,X) is false. Thus, we
distinguish between a proposition being true and becoming
true. Where P is a unary condition, these ideas can be
illustrated in the following diagram:

over real-valued time.

l1---2-——=3-——=4---5---6.... (time line)
<--P false-><----- P true--—-——- e

P becomes true at 4 but not at 4.1, or 3.9 Let F1,F2,..,FKk be
a special set of conditions about the simulated system
called event-defining conditions. Each Fi takes m+1
arguments, m>=0, and the last argument ranges over real-
valued time. Where Fi is defined for entities al,..,am,t, the
proposition Fi(al,..,am,t) is called an event and t is called
its time-stamp. If the event Fi(al,..,am,t) becomes true
then it is said to occur at t. Thus, we distinguish between
an event and its occurrence.

This definition of events enables us to regard a wide range
of happenings as events. For example, the sending of
token by machine to printer at time t can be regarded as
the event sends(machine,token,printer,t). Where P is a
parameter, define the condition Qp(t)=there exists time x,
x<t, such that for all uzt between x and t, value of P at u
is not equal to the value of P at t. Now, the event of the
value of P changing at t0 can be represented as the
proposition QP(tO). The event of the temperature of water
becoming higher than that of land at time t0 can be
R(water,land,t0) where
R(x,y,t)=temperature(x,t)>temperature(y,t) and
temperature(x,t) is the temperature of x at time t.

represented as

Now, the set of event-defining conditions must be chosen in
such a way that the fundamental assumption of DMOD is
satisfied. Thus, we do not have to regard each of the
possible happenings as events, only those which have some
For example, to
compute position of the billiard ball we need only consider
collisions as events and not changes of position.

bearing upon computation of state.

Specification of which events occur is done using an
alternative view of causality called causal_connection.
This relation is defined between two events and a context of
events. If it holds, the two events are said to be causally
connected in this context. Causal connectedness is similar
to connectedness between nodes in a network. Two events
may be causally connected in one context but not in
another. Note that events in the context do not have to
occur. This is the basis for avoiding the mutual recursion
above. For convenience, causal_connection is defined as a
four-ary relation using Homn clauses, called causality rules,
each of the form:

causal_connection(E,HE,F,HEF) if
causality_predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF).

0O—-—-0—-—-0-——0——0—————— o————= o-—-o0 (9)
<---HE--> <———-= HEF---->

In order for causal_connection to be defined E,HE,F,HEF
must be related as in the figure above. S is a sequence of
events sorted in increasing order of time stamps ending in
F. E appears before F, HE is the sequence of all events in S
up to but not including E, and HEF is the sequence of all
events in S between E and F but not including either. The
above rule is to be read as:

If from the information available till E it is predicted
that there is a causal connection between E and F, and
this prediction is not falsified by information collected

between E and F, then E is causally connected to F in
S.

The inference procedure arranges that HE and HEF are
bound to appropriate sequences of occurring events at run
time. Thus, by the fundamental assumption, arbitrarily
complex conditions about events and states in the past of E
can be evaluated using HE and to those in the future of E
up to F using HEF. The history up to time T represents all
states up to T even if they are non-computably infinite.
There is no restriction on the forms of definitions of
causality _predicted or prediction_unfalsified.

Rules for computing state parameters, given history, are

694

called state-computation rules. These can involve complex
mathematics, and there is no restriction on their form. A
DMOD program consists of a set of causality rules, and a
set of state-computation rules. It can be regarded as a
model of the simulated system, i.e. a precise description of
it for the purpose of simulation.

4.0 EXAMPLES OF DMOD PROGRAMS
4.1 Aircraft and radar

The following rules express the intention of the statement
in Section 2.0, where all identifiers beginning with capital
letters are variables, while others are constants.

causal_connection(E,HE,F,HEF) if
causality_predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF).

causality_predicted(E,HE,F,HEF) if
E=flies_towards(Aircraft,Radar,CT) &
F=detects(Aircraft,Radar,CT+20) &
not member(told_to_fly low(Aircraft,),HE).

prediction_unfalsified(E,HE,F,HEF) if
E=flies_towards(Aircraft,Radar,CT) &
F=detects(Aircraft,Radar,CT+20) &
not member(changes_course(Aircraft,),HEF) &
intensity above_threshold(Radar,HE,E,HEF).

intensity_above_threshold(R,HE,E,[}) if
intensity(R,HE*[E])>threshold(R).

intensity__above_threshold(R,HE,E,[Ex|HExF]) if

intensity(R,HE*[E])>threshold(R) &

intensity_above_threshold(R,HE*[E],Ex,HEXF)
Here flies_towards, told_to_fly low, detects and
changes_course, are event-defining conditions. [] denotes
the empty list, [A|B] the list with head A and tail B, and an
underscore (_) an arbitrary variable. A*B denotes the
concatenation of lists A and B. member(A,L) is true if A is
a member of list L. intensity(R,H) denotes the intensity of
radar R immediately after the latest event in history H.
threshold(R) denotes the threshold intensity of radar R.
The definition of intensity, not given here, would consist of
state-computation rules.

The second rule checks whether an event of the aircraft
being told to fly low has occurred in the past of E,
represented by HE and if not, predicts an event of
detection. The third rule checks whether an event of
aircraft changing course occurs in the future of E up to F,
represented by HEF, and also whether in the states

695

represented by HEF the radar intensity has ever fallen
below threshold. Assuming that intensity can only change
when events occur intensity_above_threshold simply
checks whether the intensity is above threshold after each
event in [E]*HEF.

Note that intensity could be a continuous parameter so that
it would not be sufficient to check only at event boundaries,
that it remains above threshold. It could fall below
threshold in between. However, the definition above could
easily be extended. The point is that the entire information
till F is available and we can write rules for computing
anything that can be effectively computed from it.

Where position of an aircraft is a continuous state
parameter, a state-computation rule for determining it is:

position(Aircraft,[Px,Py],H) if
H=HE*[E] &
position(Aircraft,[Ax,Ay],HE) &
velocity(Aircraft,[Vx,Vy],HE) &
DT is time_stamp(E)-time_stamp(H) &
[Px,Py]=[Ax,Ay]+[Vx*DT,Vy+DT].

Here position(A,Pos,H) means that the position of object A
after the last event in history Hist is Pos. Similarly for
velocity. time_history(H) denotes the time stamp on the
latest event in history H. The rule simply states that the
position of an aircraft after event E is equal to the position
after its predecessor plus its velocity after the predecessor
times the time difference. It is assumed that velocity
remains constant between two events. To compute the
position at any point of time T we can write:

position(Aircraft,[Px,Py], T,H) if
history_till(T,H,HT) &
position(Aircraft,[Ax,Ay],HT) &
velocity(Aircraft,[Vx,Vy]l,HT) &
time_history(HT,TimeH) &
DT is T-TimeH &
[Px,Pyl=[Ax,Ay]+[Vx*DT,Vy*DT].

history_till(T,H,HT) computes all events HT in H whose
time stamp is less than or equal to T. The rule simply
computes the position after HT and adds to it the residual
displacement till T.

4.2 Discrete-event simulation

The discretc-event technique is widely used for simulating
discontinuous systems e.g. [Evans 1967, Kiviat 1967,
Fishman 1973, Dahl & Nygaard 1966, Nance 1981,
Schruben 1983, Zeigler 1984, Misra 1986, Evans 1988,
McArthur 1986]. In this section we first show how the

version of Misra can be expressed in DMOD. (The version
by Schruben [1983] has also been expressed but space
considerations do not permit its discussion). We then
propose that other versions can be similarly expressed.

In Misra’s events are
transmissions. The method of computing event occurrences
is rigorously justified. A variable called clock and a data
structure called event queue are used. When an event
occurs clock is set to its time stamp. An event occurrence
can schedule events into the queue. An event F in the
queue occurs provided the sender of F receives no message
at any t, clock=<t<t1 where t1 is the time stamp of F. If it
does then F is unscheduled from the queue. The next
occurring event is taken to be the earliest event in the
queue. These constraints can be expressed using the rule:

version the only message

Event E causes event F provided E schedules F and no
event G occurs between the time stamp on E and that
on F, such that the receiver of G is the sender of F.

It can be expressed in DMOD as:

causal_connection(E,HE,F,HEF) if
causality_predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF).

prediction_unfalsified(_, ,F,HEF) if
not exists(G).Ge HEF & receiver(G)=sender(F).

causality predicted(E,HE,F) is true
schedules F.

whenever E

Other discrete-event formalisms are similar except that
events, and conditions for their non-occurrence can be
arbitrary. We propose that these are attempts to implement
the causality relation. In particular, causality predicted
and prediction_unfalsified express, in a declarative
manner, the intention of scheduling and unscheduling.
However, unlike in other formalisms, events can be
computed in DMOD without use of an event queue. Thus
DMOD can be viewed as their formalization as well as
simplification. As the next section shows, it is also more

general.
4.3 Partially instantiated events

It is possible that given a DMOD program, the query
causality predicted(E,HE,F) succeed, in the sense of
logic programmming, for ground E and HE but non-ground
F. Let the resulting answer substitution be t. (Logically
speaking, this means causality predicted holds for E,HE
and all possible ground instantiations of Ft). The resulting
partially instantiated event It can be fully instantiated

when prediction_unfalsified is checked.

The advantage of this feature is that we do not have to
determine the predicted event completely. It illustrates
how causality_predicted is fundamentally different from
the scheduling operation of the discrete-event technique,
which is not intended to insert a non-ground event into the
event queue.

The feature can be employed to obtain a simple
implementation of activity scanning or demons, which
requires considerable extra programming in conventional
formalisms. A condition is to be monitored and whenever
it becomes true, an event, e.g. of operator notification, is to
occur. A condition becomes true after an event if it
switches from false to true when the event occurs.
Assuming that the condition is only to be checked after
event occurrences, these requirements can be expressed by
the rule

Event scan(Cond,T) causes event
notify_operator(Cond,T1) provided there is an event E
in between T and T1 such that Cond becomes true after
E and T1 is the time stamp of E.

Note that when scan(Cond,T) occurs T1 is not known.
The rule can be expressed in DMOD as:

causal_connection(E,HE,F,HEF) if
causality predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF)

causality_predicted(

scan(Cond,Time), ,inform_operator(Cond,FutureTime)).

prediction_unfalsified(E,HE,F,HEF) if
E=scan(Cond,Time) &
F=inform_operator(Cond,FutureTime) &
HE*(E]*HEF=A*[B]*C &
Be HEF &
holds(Cond,A*[B]) &
not holds(Cond,A) &
FutureTime=time_stamp(B).

causality_predicted predicts an event of informing the
operator but at an as yet unknown FutureTime.
HE*[EJ*HEF is the sequence of events till the time stamp
on F. Let it be equal to A*[B]*C. If Cond holds after
A*[B] but not after A then it becomes true after B, so
FutureTime can be taken to be the time stamp of B. Now
the single event scan(AH.load_average(H)>10,0) causes,
in general, multiple events of operator notification
corresponding to times when load average exceeds 10. Of
course, B must occur after scan(Cond,Time), i.e in HEF.

696

As another example of the use of partially instantiated
events consider a boxing match. We know that once an
event starts_match(A,B,T) occurs where A,B are the
boxers, an event wins_match(X,T+120) will occur, where
X is one of A,B and 120 seconds is the duration of the
match. However, X is not determined at T but only at
T+120 when all the blows have been laid. In DMOD we
can say:

causality_predicted(
starts_match(A,B,T),_,wins_match(X,T+120)) if
member(X,[A,B]).

prediction_unfalsified(E,HE,F,HEF) if
E=starts_match(A,B,T) &
F=wins_match(X,T+120) &
winner(HE*[EJ*HEF,X).

The rule for causal_connection is the same as in the
previous example. winner(H,X) is true if X is the winning
boxer given that the sequence of events in the match is H.

4.4 Hamming’s problem revisited

This example shows the application of DMOD to a non-
simulation domain. The problem is to generate in
ascending order, all numbers which are divisible by no
primes other than 2,3 or 5. An equivalent formulation, due
to Dijkstra [1976], is to generate in ascending order, all

numbers defined by the following axioms:

(a) 1is in the sequence

(b) If x is in the sequence, then so are 2*x, 3*x and 5*x.
(c) The sequence contains no values except those on
account of (a) and (b).

The generation of a number N is represented by the
occurrence of event e(N) where e is a unary event-defining
condition.

causality as:

The above axioms can be restated using

(a) e(1) occurs.

(b) e(X) causes each of e(2*X), e(3*X), e(5*X).

(c) No other events occur except those on account of (a)
and (b).

These can be expressed in DMOD as:

causal_connection(E,HE,F,HEF) if
causality_predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF).

causality_predicted(start(0), ,e(1)).
causality_predicted(e(X),_,e(2*X)).

causality_predicted(e(X),_,e(3*X)).
causality predicted(e(X),_,e(5*X)).

prediction_unfalsified(_,_, ,).

The last rule says that predictions are never unfalsified.
Now, the sequence of occurring events s
start(0),e(1),e(2),e(3),e(4), e(5),e(6),e(8),..... Note that the
DMOD version almost exactly mirrors the orginial
specification.

4.5 Prime numbers

We show how to generate all prime numbers between 2 and
N. Let start(N,0) be a special initial event. Then,
generation of primes can be expressed by the following
causality rule:

causes(start(N,0),e(X)) if
X is an integral time in between 2 and N &
no event e(T) properly occurs in between
start(0,N) and e(X) such that T divides X.

This can be expressed in DMOD as:

causal_connection(E,HE,F,HEF) if
causality _predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF).

causality predicted(start(N,0), ,e(X)) if
integer_between(2,N,X).

prediction_unfalsified(start(N,0), ,e(X),HEF) if
not exists(U).Ue HEF ,divides(U,X).

Now, given that start(10,0) occurs, the other occurring
events are e(2),e(3),e(5),e(7).

5.0 SIMULATION IN DMOD

We now show how, given that the initial event has
occurred, we can compute which other events occur, i.e. the
entire history. We proceed roughly in a bottom-up manner:
compute what events the initial event causes in the history,
then compute what events these cause in the history, and so
on. As causality itself requires history to be evaluable, an
apparent circularity arises. To resolve it we first define the
history precisely, taking the aid of the following diagram:

EO Ei Ej
0--0---0--0--0-—--0--—------0--0-—-—-0 (8)

<---HEi---> <--HEiEj-->

Ea,.Eb, a>b denotes the empty sequence. Informally,

697

HAB means the sequence of events between A and B but
not including either.

Let S=E0,E1,E2,... be a sequence of cvents sorted in
increasing order of time-stamps. Then S is said to satisfy
causal-soundness if for each j, j=0, there exists i, i<j such
that causal_connection(Ei,HEi,Ej,HEIEj) holds, where
HEi is the sequence EO,..,Ei-1 and HEIE]j is the scquence
Ei+1,.,Ej-1. Note that the initial event EQ is exempt from
requiring a cause. Intuitively, a sequence is causally-sound
if every event in it, except the first one, has a cause in it.
Of course, a causally-sound sequence may not contain all
the events which should intuitively occur, e.g. the sequence
EQ is trivially causally sound. To ensure that it does, it
needs to satisfy another property.

Let S=E0,E1,E2,... be a sequence of events sorted in
increasing order of time-stamps. Then S is said to satisfy
causal-completeness if it satisfies both of the following:

(a) for each i, j, i#j, if there is an event G such that
causal_connection(Ei,HEi,G,HEIEj) then the time
stamp of G is not less than that of Ej where HEi is the
sequence EO,.,Ei-1 and HEIEj is
Ei+1,..,Ej-1.

the sequence

(b) Let S possess a last event Ek. Then there is no
G for which there is an i such that
causal_connection(Ei,HEi,G,HEiG) where HEi is
E0,E1,..,Ei-1 and HEIG is Ei+1,..,EKk.

event

Informally, condition (a) says it must not be possible for an
event to occur after Ej-1 but strictly before Ej. Condition
(b) says that S must not be extendable at the end i.e. it
must already contain all events. Note that the sequence E0
always trivially satisfies (a) but not necessarily (b).

Let EO be a special initial event for the simulated system.
Assume that EO has occurred. A history of the system is
defined to be a sequence of events starting at EO which is
both causally-sound and causally-complete. Intuitively, it
contains all of the events whose occurrence is required by
the occurrencé of the initial event and the causality rules,
and only these events.

More than one scquence can be a history. This happens

when concurrent events occur. For cxample with
causal_connection(p(1),[1,9(2),[]) and
causal_connection(p(1),[],r(2),[]) we have two distinct
histories p(1),q(2) and p(1),r(2), p(1) the inital event.

After p(1) both q(2) and r(2) can occur.

698

5.1 A simulation algorithm

Let the initial event EO occur. Suppose the history
E0,E1,..,Em till a certain point of time has been computed.
We need to compute the next event Em+l. Let
Sm={F1,F2,...} be the set of events where for each Fi, there
cxists an Ei such that
causal_connection(Ei,HEi,Fi,HEiFi) holds, where HEi is
the sequence EO,El,..Ei-1 and HEiFi is the sequence
Ei+1,.,Em. Take the next event, Em+1 to be the event in
Sm with the least time-stamp. If Sm is empty, the
algorithm halts. Note that Sm need not be finite.

Intuitively, given a history we determine all the events
which are caused by an event in the history with the history
as context. Of these we pick the earliest event as the next
one.

As there may be more than one event in Sm with least
time-stamp, the algorithm is non-deterministic. A different
sequence would be computed for each choice of Em+1,
signifying that the system is concurrent. Note that the
algorithm makes no use of event queues. Also note that it
does not make any use of the structure of the definition of
causal_connection. It is made use of in the next section for
developing a more efficient algorithm.

As an example, we show how prime numbers are
generated. Let the event EO=start(10,0) occur. Clearly,
HEO=[)=HEOFi.

causal_connection([],start(10,0),e(X),[]) holds for each X
where X is an integer between 2 and 10, because there is no
event in [] whose time stamp divides X. Thus, the set SO
contains events {e(2),e(3),e(4),..,e(10)}. E1 is taken to be
e(2).

HEOFi is now [e(2)]. No event of the form e(X) causes any
event. Now, causal_connection([],start(10,0),e(X),[e(2)])
holds only for X=3,5,7,9 as 2 divides the time stamp of any
event e(X), X even. Thus, S1={e(3),e(5),e(7),e(9).}. E2 is
taken to be e(3).

HEOFi is now [e(2),e(3)]. It is easily seen that E3=e(5).
And so on. The sequence of occurring events is
start(10,0),e(2),e(3),e(5),e(7). We now have:

Theorem 1. Correctness of algorithm. A sequence of
events EO,E1,..., where EO is the initial event in the system,
is computed by the above algorithm if and only if it is a
history.

Proof. If part. Suppose EO,El..Em. m>=0 has been
computed. Assume that the sequence is not causally-sound.
As EO is causally sound, there exists Kk, O<k such that

E0,El,...EKk-1 is causally-sound but E0,El,..,Ek-1,Ek is

not. Then there is no Jj, 0O=<j=<k-1 such that
causal_connection(Ej,HEj,Ek,HEEKk) where
HEj=E0,...Ej-1 and HEjEk=Ej+1,.,Ek-1. As Ek has

been computed as the next event after Ek-1 it must belong
to the set Sk-1 in the algorithm. But then there must exist
an Ej as above. Contradiction.

Assume that the sequence is not causally-complete.
Suppose condition (a) is violated. Then there exist iyj,
i>=0, j>0, i#j and G such that
causal_connection(Ei,HEi,G,HEiHE}j) where
HEi=EJ(,..,Ei-1 and HEiEj=Ei+1,..,Ej-1 but the time stamp
of G is less than that of Ej. Then G must belong to the set
Sj-1in the algorithm. As Ej is computed as the next event
after Ej-1 it must also belong to Sj-1. But this contradicts
the requirement in the algorithm that the time stamp of Ej
be less than or equal to that of G.

Suppose condition (b) is violated. This contradicts the
termination condition of the algorithm.

Only if part. Let EQ,E1,... be a history. Suppose it is not
computed. As EO is computed, there exists k, 0<k such
that E0,E1,..,Ek-1 is computed but Ek is not. As EQ,E1,...
is causally-sound there exists i, O=<i=<k-1 such that
causally_connected(Ei,HEi,Ek,HEIiEK) where
HEi=EO0,..,Ei-1, HEiEk=Ei+1,..,Ek-1. Thus, Ek belongs to
the set Sk-1 in the algorithm. As EO0,El,... is causally-
complete there is no G whose time stamp is less than that
of Ek, and for which there exists j, 0=<j=<k-1 such that
causal_connection(Ej,HEj,G,HEjG) where
HEj=E0,.,Ej-1, HEjG=Ej+1,..,Ek-1. Thus, Ek is
computed as a next event after Ek-1. Contradiction. QED.

5.2 A more efficient simulation algorithm

The above algorithm can be quite inefficient. To compute
the set Sm we need to determine for each Ei whether there
exists Fi such that causality predicted(Ei,HEi,Fi) for
suitable HEi. After Em+1 has been computed we would
repeat this computation for all i, except m+l1, for
determining Sm+1. In other words, there is no obvious way
to incrementally derive Sm+1 from Sm. For example, in
the primes example, for
causality_predicted
e(2),e(3),..,e(10).

0=<m=<10
computes the

each

repeatedly events

We now develop a new algorithm which avoids this. It
maintains a queue of items each of which is an event with
which a condition is associated. The condition is derived
from the prediction_unfalsified part of the definition of
causal connection. Itis evaluated when the history till the
time st;mp on it has been accumulated. If true, the event is

recorded in the history, otherwise discarded. The queue for
the next step can be incrementally computed from that for
the current step.

The algorithm is similar in spirit to those based upon event
queues into which events are scheduled and unscheduled.
There is a fundamental difference however. In other
algorithms an event is unscheduled as soon as it is
determined that it cannot occur. Here, unscheduling occurs
only when the history till the time stamp on the event has
been accumulated and the associated condition is found to
be false. Furthermore, the algorithm highlights the strictly
auxiliary nature of event queues. They yield efficiency, but
are not inevitably tied up with the logic of event
occurrences.

The algorithm makes the assumption that the DMOD
program contain the rule:

causal_connection(E,HE,F,HEF) if
causality predicted(E,HE,F) &
prediction_unfalsified(E,HE,F,HEF).

where each of E,HE,F,HEF are variables. The need for it
arises because in the algorithm we would like to infer that
for every E,HE,F,HEF if causality predicted(E,HE,F)
and prediction_unfalsified(E,HE,F,HEF) then
causal_connection(E,HE,F,HEF). Without this statement
we cannot this, rules for
causal_connection have the above form. For example, let

infer even if all
the program consist of a single rule for causal_connection
with E,HE,F,HEF as e(0),[1,£(0),[] respectively. Now, even
when causality_predicted and prediction_unfalsified
hold for E,HE,F.HEF as e(1),[],f(1),[] respectively, we
cannot infer that causal_connection holds for these also.

Let the initial event EQ occur. Let E0,..,Em be the history
computed till some point of time. Let Qm be a finite or
infinite set of items each of which is a function of the form
AHEF .prediction_unfalsified(E,HE,F,HEF) where
E,HE,F are all ground but HEF is a variable. The time
stamp of the function is defined to be that of F. An item
AHEF.prediction_unfalsified(E,HE,F,HEF) is in Qm if
and only if there exists i, 0=<i=<m such that:

(a) E=Ei, and

(b) HE=EO,..,Ei-1, and

(¢) causality_predicted(E,HE,F) holds, and

(d) time stamp on F is greater than or equal to that on
Em.

Let Rm={F1,F2,.} be the set of cvents such that
AHEF prediction_unfalsified(Ei,HEi,Fi,HEF) is in Qm,
and holds for HEF=Ei+1,.,Em. Take Em+1 to be the

699

event in Rm with the least time stamp. If Rm is empty, the
algorithm halts.

To compute Qm+1 delete from Qm all functions whose
time stamp is less than that of Em+1. Also add to Qm all
items
AHEF.prediction_unfalsified(Em+1,HEm+1,Fm+1,HEF)
such that causality predicted(Em+1,HEm+1,Fm+1)
holds, HEm+1=E0,...Em. Thus,
causality predicted is only called for Em+1 as we had
hoped. Any functions contributed by EO,..,Em are already
in Qm+1 if not deleted above. Clearly, Qm+1 satisfies the
conditions above.

where

As an example, consider again the generation of prime
numbers. EO=start(10,0) as in Section 5.1. Each item in
Q0 is
AHEF .prediction_unfalsified(start(10,0),[],e(X),HEF)

where X=2,3,4,5,..,10 Each function is true for HEF=[] so
R0={e(2),e(3),e(4),e(5),..,e(10)}. E1 is taken to be e(2).
AHEF.prediction_unfalsified(start(10,0),[1,e(2),HEF) is
deleted from Q0. As an event of the form e(X) does not

cause any events, each item in QI is again
AHEF.prediction_unfalsified(start(0),[],e(X),HEF)
where X=2,34,5,..,10 Thus, Q1=Q0.

Now, only functions
AHEF.prediction_unfalsified(start(0),[],e(X),HEF)
where X=3,5,79 are true for HEF=[e(2)]. Thus

R2={e(3),e(5),e(7),e(9)}. E2 is taken to be e(3). And so on.

The main difference with the first algorithm is that items
are only deleted from the queue. No call is ever made to
causality_predicted except for constructing Q0. In the first
algorithm, causality_predicted was repeatedly called for
constructing each Sm, 0=<m=<10. We now have:

Theorem 2. Correctness of improved algorithm. A
sequence of events E0,E1,.. where EO0 is the initial event in
the system, is computed by this algorithm if and only if it is
a history.

Proof. Suppose EO0,..,.Em, m>=0 has been computed. We
show that the set Sm of the first algorithm is identical to the
set Rm of the second. An event with the least time-stamp in
these is computed as the next event Em+1.

Let Fi bclong to Rm. Then there exist Ei,HEi and a
function AHEF.prediction_unfalsified(Ei,HEi,Fi,HEF) in
Qm such that the function holds for HEF=Ei+1,...Em,
where HEi=EO,..,Ei-1. The membership of this function in
Qm implies that causality predicted(Ei,HEi,Fi) also
holds. Thus, by the presence of the rule for
causal_connection above,

causal_connection(Ei,HEi,Fi,HEF) also holds. Hence Fi
belongs to Sm.

Let Fi belong to Sm. Then there exist Ei,HEi such that
causal_connection(Ei,HEi,Fi,HEF) holds where
HEi=E0,..,Ei-1 and HEF=Ei+1,.,Em. By definition of
causal_connection, causality_predicted(Ei,HEi,Fi) holds
and the time stamp of Fi is greater than or equal to that of
Em. Thus, the function
AH.prediction_unfalsified(Ei,HEi,Fi,H) is in Qm. Again,
by definition of causal_connection, this function holds for
H=HEF=Ei+1,..,.Em. Thus, Fi belongs to Rm. QED.

6.0 FINAL REMARKS

conventional simulations, state
parameters in DMOD need only be updated upon demand,

In contrast to most
that of computing the next event. They need not be
routinely updated at each event boundary. A caching
mechanism can be employed to avoid recomputing
parameters. In view of this fact, and the second algorithm
above, it is not unreasonable to expect that DMOD would
be as efficient as conventional state-oriented simulation
formalisms.

A partially instantiated event can lead to an infinite Qm in
the second algorithm, as it represents an infinite number of
ground events. The algorithm is being extended to keep
Qm finite by allowing insertion of items with partially
instantiated events, instead of only their ground instances.

DMOD appears to integrate discrete and continuous
simulation methods. Often analytic approaches for
computing event occurrences are infeasible. For example,
two objects may be moving along complicated trajectories
and it may be impractical to compute their collisions by
analytically solving simultaneous equations govemning their
motion. In such cases numerical methods can be freely
employed. These can involve incremental advances of time
which are the essence of time-stepped simulation. Also,
specification of where to employ it can be made within
causality_predicted and prediction_unfalsified rules.

As DMOD’s events are more general than message
transmissions, it is not clear whether parallel simulation
approches of [Misra 1986] or [Jefferson 1985] are directly
applicable to DMOD. One possible approach is the
following: The set of all causally-sound sequences of
events starting at the initial event can be laid out in the
form of a tree. The root is the initial event EQ. If EO,...,Em
is a branch then EO,.,EmEm+1 is another branch
provided there exists i such that
causal_connection(Ei,HEi,Em+1,HEiEm+1) where
HEi=EJ(,..,Ei-1, and HEIEm+1=Ei+1,.,Em1. Em+1 is an

700

immediate descendant of Em. Only the causally-complete
branches in this treec are historics. This tree can be
constructed and searched in parallel.

DMOD serves as a basis for defining in a precise, and
conceptually tractable manner, advanced simulation
problems such as incremental, backward, or demand-driven
simulation. Such problems are currently being investigated
by the authors.

ACKNOWLEDGEMENTS

We thank J. Kajiya, L. Miller, N. Shapiro, R. Bagrodia,
R. Nance, S. Glicker, P. Fishwick and J. Misra for helpful
remarks.

REFERENCES

Carnap, R. [1966). Philosophical foundations of Physics.
Basic Books, New York.

Communications of the ACM [1981]. Special issue on
simulation and modeling, April.

Dahl, O.-J., Nygaard, K. [1966]. Simula-An Algol-based
simulation language. Communications of the ACM, vol. 9,
no. 9.

Evans, J.B. [1988]. Structures of discrete-event simulation.
An introduction to the engagement strategy. Ellis Horwood,
New York.

Evans, G.W., Wallace, G.F., Sutherland, G.L. [1967].
Simulation using digital Prentice-Hall,

Englewoods Cliffs, N.J.

computers.
Fishman, G. [1973]. Concepts and methods in discrete-
event digital simulation. John Wiley & Sons, New York.

Galion, A. [1988]. Temporal logics and their applications.
Academic Press, New York.

Jefferson, D. [1985]). Virtual Time. ACM transactions on
programming languages and systems, July.

Kiviat, P.J. [1967]. Digital computer simulation: modeling

concepts. RM-5378-PR, RAND Corporation, Santa
Monica, CA.
McArthur, Klahr, P., Narain, S. [1986]. ROSS: An

object-oriented language for constructing simulations. In
Expert Systems: Techniques, Tools, Applications, (cds.) P.
Klahr, D. Waterman, Addison Wesley, 1986.

Misra, J. [1986]. Distributed discrete-event simulation.
Computing Surveys, March.

Nance, R. [1981]. The time and state relationships in
simulation modeling. Communications of the ACM, April.

Narain, S. [1989]. DMOD: A logic-based calculus of
events for discrete-event simulation. To appear in
Proceedings of Al and Simulation Conference, Tampa,

Society for Computer Simulation.

Oeren, T., Zeigler, B. [1987]. Artificial intelligence in
modeling and simulation: directions to explore. Simulation,
April.

Rothenberg, J. [1986]. Object-oriented simulation: where
do we go from here? Proceedings of the Winter Simulation
Conference, Washington, D.C.

Rothenberg, J., Narain, S., Steeb, R., Hefley, C., Shapiro,
N. [1988]. Knowledge-based simulation: An interim
report. N-2897-DARPA. RAND Corporation, Santa
Monica, CA.

Schruben, L. [1983]. Simulation modeling with event
graphs. Communications of the ACM, November.

von Wright, G.H. [1968]. Time, change and contradiction.
Cambridge University Press.

Zeigler, B. [1984). Multifacetted modelling and discrete-
event simulation. Academic Press, New York.

Sanjai Narain is a computer scientist at The RAND
Corporation where he is developing advanced simulation
methodologies. His areas of expertise are logic,
programming languages, temporal reasoning and artificial
intelligence. He obtained his doctorate in Computer
Science from UCLA in 1988. He can be reached at 213-

393-0411 or at narain@rand.org.

Mr. Rothenberg is a Senior Computer Scientist at The
RAND Corporation who has worked extensively in
knowledge-based simulation. He performed his graduate
work in Al at the University of Wisconsin in the area of
semantic nets for robotic applications. His recent work has
been in the development of new formalisms for integrating
object-oriented and event-oriented views of discrete-state
simulation. He can be rcached at 213-393-0411 or at
jeff@rand.org.

701

