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ABSTRACT

Neural models are enjoying a resurgence in sys-
tems research primarily due to a general interest
in the connectionist approach to modeling in artifi-
cial intelligence and to the availability of faster and
cheaper hardware on which neural net simulations
can be executed. We have experimented with using
a multi-layer neural network model as a simulation
model for a basic ballistics model. In an effort to eval-
uate the efficiency of the neural net implementation
for simulation modeling, we have compared its per-
formance with traditional methods for geometric data
fitting such as linear regression and surface response
methods. Both of the latter approaches are standard
features in many statistical software packages. We
have found that the neural net model appears to be
inadequate in most respects and we hypothesize that
accuracy problems arise, primarily, because the neu-
ral network model does not capture the system struc-
ture characteristic of all physical models. We discuss
the experimental procedure, issues and problems, and
finally consider possible future research directions.

1 INTRODUCTION

Are neural network models useful as simulation
models? That is, 1s it advantageous to replace a
continuous or discrete simulation model with a neu-
ral network model? This is a very general question
and, in this paper, we will attempt to provide an an-
swer based on the results of our small experiment.
Clearly, further experimentation is needed to provide
a more conclusive response. Our answer, then, based

on our experiments is negative — the neural network
model (multi-layered or otherwise) provides the sys-
tems analyst with a less powerful modeling tool than
he already uses in traditional systems investigations.
Tools including capabilities such as general linear re-
gression analysis, time series analysis, and system
identification analysis are readily available. Qur basic
tenet when beginning this research was not based on
the question: Can neural networks be used as simula-
tion models? Rather, we asked How efficient are neu-
ral network models when compared with other, similar
methods for modeling, identification, and parameter
estimation? We feel that this distinction is extremely
important if we are to assess the value of neural net-
work modeling. There are multitudinous methods
for systems and simulation modeling. A test of neu-
ral network modeling should be predicated on com-
parative testing, and not on modeling with a neural
network for its own sake.

Multi-layered (i.e. containing hidden layers) neu-
ral network models are algebraic equations with non-
linear coefficients. Their use in computer simulation
can take one of two forms: behavioral or structural.
With behavioral models, we are interested in build-
ing neural nets that model the behavior, but not
necessarily the structure, of the physical system un-
der consideration. With structural modeling, we can
use the neural network model as a structural model.
In this paper, we will spend most of our time dis-
cussing the bchavioral aspect. We will now, how-
ever, briefly mention two structurally inclined sinmu-
lation models. In terms of structural models, neu-
ral networks have shown to be useful in modeling
physiological functions of real neurons. Physiological
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Figure 1: Structural Modeling

modeling is one of the chief reasons for using neu-
ral models. Neural models, though, can also be used
for non-neurological applications. For instance, we
see that 1t might possibly be used to model a net-
work of entities whose movement is constrained by
numerical thresholds. Consider figure 1. This single
neuron model can be the basis for modeling an out-
put spooler of a computer operating system — the
spooler (neuron) “collects” bytes from many sources
(input links) each of which has a different bandwidth
(link weight) until it reaches its maximum capacity
(threshold), say, at 1024 bytes. When capacity is
reached, the spooler spools its output to the printing
device (output link). Also, consider the familiar sit-
uation where people form in lines waiting to enter a
special art exhibit where limited attendance is per-
mitted due to lack of space. In these cases, a guide
will wait until she has, say, 20 people in the front of
the queue. Only then will she proceed with the peo-
ple into the exhibit. The threshold is 20 and so the
guide waits for the right number of people before she
“fires.” There are many other structurally related
models that can be employed — for instance, some
Petri net models can be transformed into the neural
network domain by substituting neuron thresholding
for the minimum number of input place tokens nec-
essary for transition firing. In behavioral modeling,
we can use the neural network to model system be-
havior. Let us examine this concept. Why might we
want to use an algebraic equation to model dynami-
cal system behavior? Certainly it is more natural to
use difference or differential equations (or stochastic
networks in discrete event modeling). If we have suf-
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ficient knowledge about the physical system then we
will, indeed, use better modeling methods:

o Assume Model is K'nown: If the physical system
and its components lend themselves to experi-
mentation, then we will use models that are fa-
miliar to that discipline.

o Assume Model is Known with Unknown Param-
eters: We would use parameter estimation meth-
ods based on known models for the system.

o Assume Model 1s Unknown: If a model is com-
pletely unknown then we will still hypothesize
model structure. For instance, if the system is bi-
ological in nature and we are modeling fluid con-
centrations then exponential models have been
shown to be effective. There are many methods
for model identification (Sinha 1983, Hsia 1977)
based on how much or little is known about the
domain and system. One should not necessarily
turn to using algebraic equations (as in neural
networks) simply because one has a partial or
sketchy modecl.

o Assume Inputs are Unknown: Time series meth-
ods have been shown to be effective for many
predictive and forecasting purposes.

In all of these cases, dynamic discrete system
models are based on difference equations of some sort.
This seems logical when we consider that dynamic
processes involve state variables and dependence on
differences in state variables. So we see that using al-
gebraic equations to model system behavior is some-
what odd in itself — solutions will certainly be al-
gebraic but does one “guess” the right algebraic so-
lution for neural net encoding purposes? In many
cases, the adding of layers or different transfer func-
tions to a neural network is tantamount to guessing
unless one is completely aware of the corresponding
equational changes.

Let us consider, though, that we accept the
premise of using algebraic equations to model sys-
tem behavior. To determine the efficiency of such
an approach, will must compare the neural network
method against other algebraic methods. How do
we proceed? In using a neural network to model a
system, we train the neural network on input/output
pairs obtained via observation and then we use the re-
sulting, trained network to predict new outputs from
new inputs. We will consider this approach in the
section on experimentation.

Let us bricfly discuss terminology in neural net-
work literature.  Experience has taught us that



Table 1: Varying Terminology
for Similar Functions

Standard (Numerical) | Time Series Analysis | Neural Networks
Interpolation Prediction Store Information/Memory
Extrapolation Forecasting Forecasting
Equation(s) Equation(s) Neural Network
Parameter Coeflicient Link Weight
Geometric Fitting System Identification Pattern Recognition
Adaptation Iteration Training/Learning

metaphors can be both a boon and a burden when ap-
plied to science. In the neural network literature, we
are continually confronted with terminology such as
“learn,” “hidden layer,” “training” and so on. From
such discussions, one might think that these concepts
are entirely novel. We need, though, to look deeper to
see that “learning” is adaptation (usually of param-
eter values), and “hidden layers” are simply arith-
metic terms with nonlinear functions of parameters.
Using metaphors can help us to create new and cre-
ative science but we must be wary of creating new
terminology for old concepts. Table 1 displays the
relationships in terminology. We must constantly be
on guard when we use metaphors so that we don’t
lose perspective of what calculations and algorithms
are actually invoked. With respect to using neural
networks, we must study what the metaphors pro-
vide us — does “extending a layer” or “creating new
feedback loops” provide us with promising equation
representations which might otherwise be obscured
when viewed from a strict equational perspective (i.e.
without the use of the metaphor)? We feel that the
neural “metaphor” is not creating novel equations for
purposes of system identification — it is simply pro-
viding an unstructured way of producing equations
that do not reflect physical system structure. Saying
that “I'm going to trying adding a layer or a feed-
back loop” arbitrarily is much like saying “I'm going
to arbitrarily raise the powers of some coefficients in
my equation.” We should strive for more systematic
ways of upgrading and refitting our models.

2 RELATED RESEARCH

Within the simulation community, there has
been little work done in neural network research;
however, most of the current research that does deal
with neural networks relates more to using computer
simulation to simulate a neural network rather than
to study whether or not neural networks provide rea-
sonable alternatives to current methods of continuous

and discrete event simulation methodology. Exam-
ples of this approach are taken by Bassi and Bekey
(1989) and Clarson and Shimp (1989). Wildberger
(1989) is actively studying the use of neural networks
as one tool in enhancing power plant performance.
Other researchers have concentrated on studying var-
ious software tools for effective neural network sim-
ulation (Rumelhart et al. 1986, D’Autrechy et al.
1988). Within the domain of signal processing we find
more evidence of neural net research. For instance,
we view the work of Lapedes and Farber (1987) and
Farmer and Sidorowich (1988) as being closely related
to our work. Lapedes and Farber have found the neu-
ral network methodology to work well for identifying
system behavior by training the net on time series
data; however, we are unsure how their method com-
pares against more integrated modeling methods in-
corporating the use of correlograms, periodograms,
Box-Jenkins and other time series methods.

3 EXPERIMENTS

Our approach to studying the effectiveness of
neural networks is based on experimentation with
statistical inference. We are not convinced of any
other method that will provide the scientific commu-
nity with some sort of proof as to the effectiveness
of neural modeling methods as compared with tradi-
tional methodologies. We admit that our experiments
do not cover all factors including alternate neural net
control strategies and modeling formalisms (BAM,
ART, etc.), yet we must start with base cases and
then move on slowly.

3.1 Tools for Experimentation

As a basis for experimentation, we used a vari-
ety of software packages for cross-checking of results
and to extend our capabilities. These packages are
depicted in figure 2. In lieu of actual ballistics exper-
imentation, we used a standard differential equation
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Figure 2: Experiment Setup

that is known to be an accurate model of simple bal-
listics incorporating air resistance. We used the DE-
SIRE program (Korn 1989) to model the differential
equations and obtain varying results based on several
initial conditions. Results from DESIRE were used
to train a neural network which was implemented
in Neural Wares’ product called NeuralWorks (Kli-
masauskas 1988). Results from DESIRE and Neu-
ralWorks were also translated into several statisti-
cal packages for analysis: SAS (SAS Institute 1988),
SAE (Barnes 1988), and TIMESLAB (Newton 1988).
We found it useful to cross-check results using dif-
ferent packages. Most graphical output was created
using the Mathematica package (Wolfram 1988) and
some output was dumped directly from the computer
screen. We encountered some difficulties in translat-
ing from one package to another but these were rel-
atively minor. For instance, one package could not
accept data in scientific notation (i.e. using exponen-
tiation) whereas another package could generate data
only in scientific notation.

3.2 The Ballistics Model

We chose a ballistics model since this model
is easy enough to understand but difficult to ana-
lyze using non-numerical methods. The equations
use Cartesian space and are listed as (1) through (5).
Equations (1) and (2) are initial conditions for com-
ponent velocity while (3) through (5) comprise the
equations of motion.

zo = wgcos(h) (1)
Yo = wvosin(f) (2)
¢ = —kvz (3)
= —kvy—g (4)

= (¥ +9°)% (5)
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Figure 3: Trajectories Used for Gathering Data

Note that £ = wvcos(f) and y = wvsin(f) represent
the components of the velocity vector. This equation
set represents a model of a cannon ball (or missile)
fired from height y = 0. The gravitational constant is
g = 32.2. The ball encounters air resistance (specified
by the constant k = 7.5 x 1075%) that is proportional
to velocity squared. The model without air resistance
has a fairly straightforward solution; however, with
air resistance proportional to velocity squared, the

equations are not-amenable to closed form solution
(Hart et al. 1988).

3.3 Experimental Procedure and Re-
sults

The first step was to solve the differential equa-
tions of motion to obtain a table of values for the
variables @ (initial angle) , vy (initial velocity), and h
(horizontal distance that the projectile travels until
it hits the ground). h was determined by coding DE-
SIRE to mark the value of £ when y crossed zero. 6
and vg are inputs while h is the single output. Angle
6 was provided in increments of 9 degrees from 0 to
81 degrees. Velocity vg was provided in increments
of 5 from 0 to 100 feet/sec. This resulted in 210 total
observations. The output h ranged from 0 to 300.14
feet. Figure 3 depicts the trajectories that were for-
mulated for purposes of gathering data on 8, vy and
h.

The data appears in graphical form in fig-
ure 4. Figure 4(a) shows the isometric view while
figure 4(b) shows a front view. Notice that, as ex-
pected, h increases as we increase vy while keeping
the angle roughly between 30 and 60 degrees. 'ODE’
refers to the Ordinary Differential Equation model
used to obtain the data.




Figure 4: (a) Original Ballistic Data: ODE, and (b)
Front View

3.4 Neural Network Model

We based our neural network on a ballistics sim-
ulation included in the NeuralWorks package which
was, in turn, inspired from networks used by Lapedes
and Farber (1987) in their paper on modeling nonlin-
ear time series using neural networks. The network,
shown in figure 5, is defined as a feed-forward net-
work with an input and output layer, and two hid-
den layers. The input and output layers have linear
activation functions whereas the hidden layers use a
sigmoidal activation function to pre-process their out-
put.

This network is equivalent to a set of nonlin-
ear equations (due to the sigmoidal activation func-
tion tanh) as discussed by Farmer and Sidorowich
(1988). The two inputs to our neural net are 6 and
vg. The third input is inactive, for simplicity, since
it represents initial height which is set to zero. The
single output is horizontal distance h traversed by the
projectile. The neural network equations are listed as
(6) through (10). Equation (6) represents the output
layer with single output h. Equations (7) and (8) rep-
resent the hidden layers, and (9) and (10) represent
the two inputs to the neural network.

E Wk2k — Ao
k

Zr = tanh(z w;yY; — ak)
J

h = (6)

(7
(8)

Y; = tanh(z w;T; — a]')
[

h = impact point of projectile

Initial Angle

Initial Velocity

Figure 5: Neural Network for Ballistics Simulation

r; = 0

(10)

L2 = Yo

When viewed in an equational manner, it is easier
to see what is meant by terms such as “layer” and
“activation function.” Without the sigmoidal curve
(1.e tanh), the equations could be expressed simply
as a single linear equation with nonlinear weights.
The addition of the sigmoidal activation (or transfer)
function makes a single equation representation more
complex.

Neural Ware has multiple options for con-
trol and learning strategies — we chose to use the
same options that they did: backpropagation. We
retrained the network to learn for 180,000 iterations.
Then, once the patterns were “stored,” we used the
network to predict values for h based on the original
values for 6 and vy. Figure 6 displays the original
ODE surface (which is re-displayed for comparison)
and the approximating surface created by executing
the neural network (NN). Figure 7(a) shows a differ-
ent view of the same neural network surface (from the
front) and figure 7(b) shows the residual error plot for
each of the 210 observations.

3.5 Linear Regressive Model

For comparison with the neural network approx-
imation, we chose a linear model:

h = Bo + B16 + Bavo
We used SAS, SAE and TIMESLAB for this pur-

pose and obtained the following parameter estimates:
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Figure 6: (a) Original ODE Surface, and (b) NN Sur-
face: Isometric View

\ o

Figure 7: (a) NN Surface: Front View, and (b) NN
Residuals

Figure 8: (a) Original ODE Surface, and (b) LR Sur-
face: Isometric View

Bo = —48.972, B, = 0.45177, and B, = 1.9264. Lin-
ear Regression (LR) resulted in an approximation
surface shown in figures 8 and 9.

3.6 Surface Response Model

The surface response model was chosen to deter-
mine if certain factors played a part in the function
6 x vg — h. The response model is defined as:

h = Bo + 10 + Bava + B26% + Bavd + Bsbvo

We obtained the following parameter estimates: 3y =
—43.2773, B = 4.0509, B = —0.5436, (3 =
—0.05239, B4 = 0.01289, and Bs = 0.01927. Fig-
ures 10 and 11 display the surface response (SR) ap-
proximation to the original data.

3.7 Analysis of Variance: What We

Learned

We learned that the neural network was a rel-
atively poor approximation method given the con-
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Figure 9: (a) LR Surface: Front View, and (b) LR
Residuals

Figure 10: (a) Original ODE surface, and (b) SR
Surface: Isometric View
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Figure 11: (a) SR Surface: Front View, and (b) SR
Residuals

straints of our experiment. We have not; however, ex-
plored other alternatives (at the time of this writing)
such as adjusting the learning rate, adjusting initial
link weight values, and using other learning meth-
ods and neural model types. Also, we would like to
run further experiments which involve increased total
learning times (beyond the 180,000 iteration count).

Simple linear regression outperformed a neural
network (with root mean square error (RMSE) of
46.47 versus the neural net’s 70.85). The surface re-
sponse method fared even better with a RMSE of
29.19. We stress that using geometric (i.e. non time
specific) methods for system identification seem gen-
erally inappropriate if at least some structural knowl-
edge is available for the physical system. However
we are saying that, even when this severe limitation
1s accepted, traditional geometric methods were still
shown to have superior performance in both execu-
tion time and approximation value. Table 2 displays
the three compared modeling methods (neural net-
works (NN), linear regression (LR) and surface re-
sponse (SR)) on the basis of residual sum of squares
(RSS), mean square error (MSE), and root mean
square error (RMSE). A ranking is provided based
on RMSE comparisons. To evaluate the relationships
between residual error and independent variable, we
plotted 6 versus RMSE (see figure 12(a)) and vq ver-
sus RMSE (see figure 12(b)) for the surface response
method. We see clearly that the error is at a
minimum for 40 < vy < 80 and for approximately
10 < 6 < 30 and 50 < 8 < 70. If our simulation were
to use the surface response model as an approxima-
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Table 2: Statistical Results

Model | RSS MSE | RMSE | RANK
NN 1,039,188.6 | 5020.2 | 70.85 3
LR 447,019.2 2159.5 | 46.47 2
SR 173,884.2 852.4 | 29.19 1

Figure 12: (a) Residuals for values of 6, and (b)

Residuals for values of v
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tion to the ODE model, we would obtain reasonable
results for h. We postulate that the NN and LR mod-
els would produce similar intervals of minimal error.

4 CONCLUSIONS

When a system is being modeled we must use
all available knowledge about the domain and poten-
tial variables. Even when we appear to have little
knowledge about a system, we usually have enough
to assume a basic system structure (often a canonical
form) and then we can estimate the parameters. If
we have outputs then, at the very least, we can use
the vast array of time series methods to analyze the
system and perform prediction and forecasting. Are
neural networks good at forecasting? We do not ad-
dress this in this paper; however, we have little reason
to believe that an algebraic equation (modeled as a
neural network) will outperform a model based on au-
toregressive (i.e. ARIMA) modeling which explicitly
models time dependent variables.

Given that we have little knowledge about the
system other than the available data, we can use a
neural network model to store the input/output pairs
for later retrieval. However; as we have seen in this
paper, the neural net method for our example does
not compare favorably with standard methods such
as linear regression and surface response methods.
We strongly suggest that other experiments similar
to ours take place so that we can learn more about
the strengths and weaknesses of neural nets as simu-
lation models. Due to space limitations, we have not
explicitly discussed a discrete event model, although,
we speculate that there will be similar problems with
neural nets; discrete event models may also be par-
titioned into inputs (interarrival and service times)
and outputs (queue departure time). One small ex-
periment does not allow us to induce that all neural
networks are poor for all simulation models, but it
provides us with a yardstick for initial comparative
purposes.
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