Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

SIMULATED ANNEALING AND RESOURCE LOCATION IN COMPUTER NETWORKS

G. Anandalingam

Department of Systems

University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

This paper examines the problem of locating resources
such as databases, controllers, and data processors on
a computer network. The integer programming prob-
lem in location variables y and interconnection variables
z is solved using two simulated annealing algorithms.
Pure simulated annealing for this problem has complex-
ity O(2N2+N). In hybrid simulated annealing (HSA),
for fixed y, the problem in z becomes a special case of
the transporation problem; the worst case solution for
HSAis O(N.2"). In parallel simulated annealing (PSA),
a decomposition procedure yields knapsack problems for
z when y = 1, and £ = 0 when y = 0; this is solved
in O(N*2"). Numerical results show that the computa-
tion time taken by the simulated annealing algorithms are
comparable to a Lagrangian relaxation procedure, and the
solutions are on the average within 8 % of a lower bound.

1. INTRODUCTION

The goal of topological design of computer net-
works is to achieve a specified performance at minimum
cost. Since the full problem is intractable, topological
optimization is decomposed into separate components in-
cluding the design of the backbone of the network, lo-
cal access network including the location of concentra-
tors, and the distribution of network resources such as
data bases, packet controllers, and fault indicators (i.e.
alarms). Each of these individual problems is also diffi-
cult and complex, and there is fairly intensive research at
present in deriving solution techniques for them.

Another important problem in designing computer net-
works is that of locating resources such as databases, con-
trollers, and data processors (i.e. computers) so as to
make them available to all customer sites at a minimum
cost. Simultaneous treatment of computer and database
location has been analyzed by Chen and Akoka [1980],
Fisher and Hochbaum [1980], Gavish and Pirkul [1986],
and Morgan and Levin [1977] among others. We call such
an optimization problem the Computer Resource Location

Problem (CRLP).

We present two algorithms based on simulated anneal-
ing for solving the CRLP. Simulated annealing, intro-
duced by Kirkpatrick et al. [1983], has gained popularity

in recent years because it is a new technique and has been
applied to the solution of such problems as VLSI design,
circuit placement, scheduling, and the famous travelling
salesman problem in operations research (see the bibili-
ography in the report by Collins et al. [1987]). To our
knowledge, this paper is the first one that has attempted
to solve computer network design problems using simu-
lated annealing.

The main drawback with simulated annealing (SA) is
that it usually takes enormous amount of computer time
to solve optimization problems. In this paper, we have
used some heuristics for speeding up the process. In the
first one, we transform the CRLP in such a way that part
of it is easily solvable using straightforward linear pro-
gramming techniques. Thus only some variables need to
be generated randomly. In the second one, we parallelize
the optimization problem, and use a nested simulated an-
nealing algorithm to solve it.

In order to compare the performance of these algo-
rithms, we also provide a Lagrangian relaration algo-
rithm, based on Mirzaian’s [1985] method. We solved 25
randomly generated problems using all three algorithms
for networks of upto 15 nodes. Results show that, on the
average, both algorithms based on simulated annealing
performed quite well. On the average, the computation
time was comparable to the Lagrangian relaxation algo-
rithm, and the optimal solutions were within 8 % of a
lower bound.

This paper is organized as follows: In the next sec-
tion, we provide a general formulation of the computer
resource location problem (CRLP), and examine its com-
plexity. Section 3 presents the main parameters of the
simulated annealing algorithms. In Sections 4 and 5 we
present the modified simulated annealing algorithms that
we propose and examines the issue of complexity. In Sec-
tion 6, we present the Lagrangian relaxation algorithm.
Section 7 contains the results of numerical examples.

2. COMPUTER RESOURCE LOCATION
PROBLEM

We begin with an existing network of nodes and in-
terconnecting paths. In computer networks, paths consist

980

of communication links, such as telephone lines, satellite
links or microwave links. The nodes can represent a mes-
sage switch, satellite earth station or a microwave relay
station, etc., and provide basic communication services.
We seek to place resources at various nodes on the existing
network. We intend to determine the optimum number
of resources and the optimum interconnections between
users and the resources in the network.

When a resource is connected to a user, there is a cost
incurred on the path used between the entities to pro-
vide the service. This cost will be referred as the path
weight. The interpretation of the path weight depends
on the application and the optimization criteria. For ex-
ample, if one of the objectives is to minimize the total of
communication costs for messages then the path weight
might represent the communication cost per message on
the path. Other examples of the path weight are delay on
the path, and reliability of the path.

A cost is also incurred in locating a resource at a given
node. This cost will be referred as the entity weight for
that location. The interpretation of the entity weight also
depends on the application and the optimization criteria.
If one of the objectives is to minimize the total invest-
ment in the resource being installed, the entity weight
might represent the cost incurred in buying, installing,
and maintaining the resource. Nodal processing delay,
and reliability of a node are other examples of the entity
weight.

The Computer Resource Location Problem (CRLP) as-
sociated with the hierarchical structure described above
is stated as follows:

Given: Candidate locations for the resources in the net-
work, the path weights, the entity weights for every
candidate location, and the service capacities of en-
tities at each node.

Obtain: The optimal number of resources and their lo-
cations on the network, and the optimal interconnec-
tions between users and resources.

To minimize: The total cost due to path and entity
weights.

Subject to: Capacity constraints.

Mathematically the CRLP is stated as,

P1
Choose z;; and y; to
Minimize:
Z=ZZCUI:;+ZnyJ (1)
JEI €1 J€I
Subject to:
Zz.le, Viel (2)
3

Zz.‘j < sy;, VyjeIr
[X=¥4
Ty, —y; <0,

Ti;,Y; € (0: 1)1

Vieljel
Viel,jel

(4)

(5)
Where,

Z: the total cost.

L: the number of levels in the hierarchy (given).

I: set of user locations and candidate locations for the
resources.

1z an index which represents the location of the users.

7: an index which represents the candidate locations for
the resources.

ciy: path weight between i and j.
;¢ entity weight at location j.
s;: capacity of resource at location j.

T;: assignment variable which is equal to 1 if the user at
location i is connected to resource at location j, and
is 0 otherwise.

y;: location variable which is equal to 1 if a resource is
placed at the candidate location j, and is 0 otherwise.

The first term on the right hand side of Eq.(1) rep-
resents the cost due to the interconnection of users to
resources, and the second term represents costs due to
the location of resources. Constraint set (2) ensures that
user is adequately served by the resources. Note that we
have allowed each user to be only served by one resource.
This is frequently referred to as the ‘star-star’ configu-
ration. Constraint set (3) ensures that the total service
demanded from a resource by all users does not exceed
its capacity. Constraint set (4) ensures that users are not
assigned to a location where a resource does not exist.

3. SIMULATED ANNEALING

Simulated annealing (SA) is motivated by the behavior
of mechanical systems with a very large number of degrees
of freedom. According to the general principles of physics,
any such system can be coaxed into a minimum energy
level by a slow annealing process. Kirkpatrick et al. [1983]
showed that a fruitful connection existed between simu-
lated annealing and combinatorial optimization involving
search for global extrema of a function that had many lo-
cal extrema. In optimization, simulated annealing works
as follows: At relatively high temperatures (a parameter
of the procedure), many solutions are accepted, even if
they are bad. This allows the search to discover the gross
features of the problem domain. Successively lower tem-
peratures identify more details, and the solutions become
more localized. Ultimately, SA yields a very good solu-
tion on a very good mode of the problem domain. We
will now present a formal representation of simulated an-
nealing.

981

We are concerned with the minimization of a function
Z: X xY — R, where X = [z., : z; isinteger Vi € I, € I]
and Y = [y, 1 y, € (0,1),Vj € I}]. Let w = (x,;, ¥,) €
X x Y be a particular feasible solution to the problem,
and assume that for each w there is a set N(w) C X x Y,
which we call the set of neighbors of w. Assume that there
1s a transition probability matrix P such that P(w, w’) >
0if and only if w’ € N(w). We will denote Z = Z(w). Also

let Ty, To,..... be a sequence of strictly positive numbers
(the temperature), such that

Th>T > ... (6)
and

Limk_.mTk =0 (7)

The simulated annealing algorithm, with current solu-
tion w, works as follows:

0. Let the best solution w* = w.
1. Generate w’ € N(w).
2. Set w* to w’ with probability
p = Min [1, exp((Z - 2°)/Tx)),
and leave it unchanged with
probability 1-p.
3. Replace w with w’,
and repeat steps 1 to 3 until
solution unchanged for M iterations.
4. Replace Tk with Ti41,
and repeat Steps 1 to 4, until Tx = 0.

Note that in Step 2,i1f Z’ < Z, p = 1, and w’ is chosen
to be the next value of w* for sure. Also conversely if 2’
> Z, p< 1, for most values of T,x. The exception is the
case when Tk >>| Z - 2’ |, which gives exp (Z - 2°)/Tk =
1, and even if Z° > Z. In this case, w’ would be chosen
to be the next value of w, even though it might give a
worse value of Z; i.e. initially, nearly all w are candidates
for the best solution. As the temperature decreases, the
worse solutions get selected with lower probability.

Hajek [1988], Lundy and Mees [1986] and Mitra et al.
[1986] have proved that the simulated annealing algorithm
converges asymptotically. The main issue is to obtain a
cooling schedule o(T), i.e. the trajectory of the tempera-
ture reduction denoted by (6) and (7), that will guarantee
asymptotic optimality.

We chose a cooling schedule that had the form of an
exponential decay:

Ty = The™** (8)
where T is the initial starting temperature, and a is a
constant. Note that the cooling schedule given by equa-
tion (8) satisfies equations (6) and (7), and the condi-
tions of Hajek’s [1988] theorem proving the convergence
of simulated annealing. Note that this cooling schedule
has more attractive properties than the ones suggested by

Hajek [1988] and Lundy and Mees [1986]: it takes longer
to find the gross features of the problem domain, and does
not linger too long once it has found the mode in which
the global optimal solution lies.

Next, we have to decide the value of T;, the initial
temperature. Here there is a trade-off between choosing
a value of T so high that all w’€ N(w) would be candi-
dates for w in Step 2, thus considerably slowing down the
convergence of the algorithm, versus having a T; so low
that only w’ for which Z° < Z are chosen to be the next
value of w, where the gross features of the solution space
X x Y are missed leading to local rather than global op-
tima. The latter case also amounts to reducing simulated
annealing to a straightforward steepest descent algorithm.
We chose the initial temperature as follows:

T] = Minzexﬂlarye)'z (9)
Note that equation (9) gives the least upper bound of the
hierarchical facility location-allocation problem.

Finally, although Lim;_.7: = 0 guarantees conver-
gence, it may take exponentially long to obtain a result.
Thus the choice of Ty, the final temperature determines
the final error in the solution. If the total number of
possible solutions to problem P1 is W, (note only one of
which is the global optima), the sensitivity of optimal so-
lution (i.e. the allowed error bound) is §, and the error
probability is v, then we need v/(1 —v) > (W —1)e~T
(Lundy and Mees, 1986). This gives us

Ty < 6§/(log(W —1) —logv) (10)

We use equation (10) to set the final temperature for the
simulation.

4. HSA: HYBRID SIMULATED
ANNEALING

The first algorithm proposed in this paper makes use
of a special property of the CRLP and combines linear
programming with the simulated annealing technique to
solve the CRLP very efficiently. When the location vari-
ables (y’s) are known and fixed, we can drop constraint
(4) in problem P1. This reduces P1 to a special case of
the transportation problem. Since the constraint matrix
of the transportation problem is unimodular, when the
right-hand-side s; are all integers, a straightforward lin-
ear programming algorithm gives integer (0 or 1) solutions
for the 2’s, even when the integer constraint on the z’s are
dropped.

Computational experience has shown that a straight-
forward application of the simulated annealing technique,
where both z’s and y’s are chosen randomly, results in
very poor performance. By transforming the CRLP as
described above, only the y’s need to be generated ran-
domly and, for each y, the optimal r’s can be obtained

982

using linear programming techniques. The number of z’s
is much larger than the number of y’s. Thus, our transfor-
mation reduces the computation time considerably. We
deal with the complexity of HSA in the next subsection.

Algorithm 1

We will now present the algorithm. In order to keep the
description concise, we will adopt the following notation:

Z : the total cost as defined by Eq.(1).
Z%:
I: set of candidate locations for the resources. Note that

these are the same nodes where the users are located.

the total cost of the current optimal solution.

K': subset of I selected for location of resources at the
I-th iteration. [i.e. y, =1,Vj € K'].

n: cardinality of the set I, i.e, the number of candidate
locations for the resources.

k': cardinality of the set K™, i.e, the number of resources
selected in the Il-th iteration.

m: the minimum number of resources required to serve
all the k users.

Statement of the algorithm:

1. Initialize: set Z* = oo, temperature, T=T1 using Eq.

(9)

set 1=0, and K°.
2. 1l=1+4+1
Randomly generate K' = N(K'™?)
Such that,
K'clI
m<k <n
!
ZJGK $; 2k

3. For fized y,, Do The Following:

Solve the LP,

Z = Min Z ZC.JI‘J

JER! €l
Subject to:
Sa,=1, Viel
JEK!
ZIU < 8,95, VjEI
tel

4. Compute A Z =2 - 2"
IfAZ <0, ThenZ* — Z
and store current solution.

Else with Prob = ezp(-A Z/T),

Z* — Z and store current solution.
If solution unchanged after
N iterations, go to Step 5.
FElse, go to Step 2.

5. Lower Temperature, T — o (T), using Fq. (8).
If T > Ty (FEq. 10), go to Step 2.
Else, stop and record optimal solution.

Complexity

The first thing to note is that HSA is guaranteed to
converge since the cooling schedule (equation 8) we have
used satisfies Hajek’s [1988] theorem of convergence. Sec-
ondly, by our choice of the final temperature (equation
10), we have specified that the final solution will have an
error of 6 or less with probability «.

If the cardinality of the set I is N, there are N? x-
variables and N y-variables, each of which can take a
value of either 0 or 1. A total enumeration of the inte-
ger programming problem would require gN?+N computa-
tions. Even a partial enumeration technique like branch-
and-bound, or the Lagrangian relaxation technique would
have a worst case performance of O(2N2+N) (Parker and
Rardin, 1988). Mitra et al. [1986] have shown that the
worst case convergence time of pure simulated anneal-
ing for an optimization problem with n 0-1 parameters
is O(2°™) where c is some constant. Thus in the prob-
lem of resource location in data networks, had we used
pure SA we would expect a computational complexity of
O(2C<N2+N)). However, we only use simulated anneal-
ing for the N y- variables. The x,, for simulated y, are
obtained by solving a linear program in N? variables.
Decades of experience with the simplex method shows
that observed behavior of a linear program with m con-
straints is O(m) (Murthy, 1976). Thus since the number
of constraints m = 2N for the problem in Step 3 of Algo-
rithm 1, the observed complexity of the hybrid simulated
annealing algorithm should be O(N.2V) which is much
smaller than the worst case performance of either pure
SA or a Lagragian relaxation technique.

The worst case performance of the simplex method is
O(2™). However, recent theoretical research using proba-
bility distributions on linear programming data has shown
that the ezpected performance of the simplex method
ranges from O((1/n 4 1/(m-n+1))~") to O((1/n 4 1/(m-
n+1) - 1/m)™"), where n and m are the number of
variables and constraints respectively. (See for instance,
Parker and Rardin [1988] and Smale [1983]). Thus, the
expected complexity of HSA is also O(N.2V), and we are
justified in arguing that the complexity of the hybrid sim-
ulated annealing method we propose in this paper would
be orders of magnitude less than a partial enumeration
technique like Lagrangian relaxation for solving the hier-
archical facility location-allocation problem.

983

5. PSA: PARALLEL SIMULATED
ANNEALING

In the second method, we parallelize the simulated an-
nealing procedure and obtain an algorithm that has com-
plexity O(N".’ZN) where k is a constant. We first use a
Lagrangian technique to relax constraint (2) in problem
P1. Thus the objective function becomes:

ZR(p) = ZZC.JL] +Zf,y, + Zﬂi(zzu -1)

J€I 1€l J€rI 1€1 J€I
(11)

where p = (p1,...,un) are the Lagrangian multipliers
associated with the N constraints (2). Note that we can
rewrite (11) as:

ZR(k) =Y D (e +m)rg+ frv,} =D m (12)
J€I €l el

From equation (12) we see that P1 can be written as a
set of I problems in j where the j-th problem, for fixed p,
is given by:

P2Rj
Minimize w.r.t. x

ZR,(w) =Y (cy +m)oy+fuy— D w (13)
i€l el
Subject to:
ZI” < s,y, (14)
tel
i, -y, <0, Viel (15)
Ti) Y, E(O)l)’ Viel (]6)
Note that ZR(u) = ZJEI ZR;(u).
The dual of this problem is given by
P2Dj
Maximize w.r.t. p
ZD, = ZR, () (17)
Subject to:
pi 20 (18)

Note that, when y, = 0 for some j, z,, = 0,Vi € I.
Conversely, when y; = 1 for some j, equation (15) can be
dropped since it is superfluous due to (16), and problem
P2R;j belongs to the class of ‘knapsack problems’. The
following results apply:

Theorem 1:

Suppose p; > 0, Vi € I, and p = (p1,...un). Also, for
fixed y,let Z*, ZR*, ZD" be the optimal solutions of P1,
P2R, and P2D respectively. (Here P2R is the combined
solution from all the individual P2Rj, and P2D is the
same). Then

ZR'< Z*

ZD* < Z" (19)

Proof: Modification of proof of Theorem 5.13 in
Parker and Rardin [1988] applies.

Theorem 2:

I «,,Vi € I solves P2Rj for fixed y;, and some
4 > 0, and both (i) Z]GIZ:J =1, Vi € I, and (ii)
Y oier ;Z,'(ZJEI z{, — 1) =0 hold, then z, solves P1 for
that y;.

Proof: Modification of proof of Theorem 5.14 in
Parker and Rardin [1988] applies.

Thus for some value of 4 we can obtain at least the
lower bound for the problem P1 (by Theorem 1). Also,
by changing g, and resolving P2Rj, Vj, we can obtain the
optimal solution of P1 if the conditions of Theorem 2 are
satisfied. We need a mechanism for finding the optimal
w’s for P2Dj.

One way to change the p’s is by using a subgradient
technique (Parker and Rardin, 1988). For fixed u, ZR*(u)
will give the lower bound of the problem;i.e. ZR*(u) =
Z1B. Suppose we find feasible z;,’s such that Z]&I Ti; =
1,Vi € I, then we will get Zupg(p). We use the following
mechanism to change the p’s:

w, = r'(ZUB(It:‘) - ZLB(I“))/(Z Tij — 1)2 (20)
JEI
pit! :.Maz{O,;Lf-l—wf(ZIq“l)} (21)
J€EI

where r° is some parameter such that r' < 2,
. . T
Limi—oor! =0, and Limr— Z!_l = 00.

The problem now is solved in two parts: First, we will
find the optimal value of the z;;’s for all y; = 1. This
involves using the subgradient procedure given in equa-
tions (20) and (21). We will call this ‘Algorithm 2a’, and
the results of this procedure are stored. Next we will ran-
domly generate the y,’s and use the stored values from
Algorithm 2a to evaluate the objective function Z which
is then examined for goodness using the traditional simu-
lated annealing mechanism. We will call this ‘Algorithm
2b’.

Algorithm 2a

1. Initialize: Pick any p! > 0, Vi € I, and
sett =1, and Z° = —00.
Sety, =1, Vj€1

2. Solve P2Rj, Vj € 1, and get z;;, Vi
and ZD(p') =5 _, ZR,(p").

€ I,

J€I

tw
3. [fZJGIzU = 1:

and Z,GI l"f(z)e] Ilt; - 1) =0,
STOP; rf; solves P1.

984

4 If 21 < ZD(u'), let 2 = ZD(4').
Otherwise Z* — Z'~1.

5. Compute new point pit!, Vie I
using (20) and (21)
Replace t — t+1, and return to Step 2.

Theorem 3:
Algorithm 2a either stops at Step 3 with ZD* = Z*, or
generates a sequence {Z' } satisfying Lim,—.ocZ' = ZD".

Now we will proceed to the simulated annealing part
of the algorithm. We will use the same notation as in
Algorithm 1.

Algorithm 2b

1. Initialize: set Z* = oo, temperature, T=T) using Eq.
(9)

set 1=0, and K°.
2. 1l=1+1

Randomly generate K' = N(K'™1)
Such that,

K'clI

m<kl<n

!
Z]GI\’ s, 2k

3. For fized y, € K', obtain z};, Vi € I
from Algorithm 2a.

For y, ¢ K', set zi} = 0.

4. Compute A Z =7 - Z*

IfAZ <0, Then Z* — Z
and store current solution.

Else with Prob = exp(-A Z/T),
Z* — Z and store current solution.

If solution unchanged in N iterations,
go to Step 5.

Else, go to Step 2.

5. Lower Temperature, T — o(T), using Eq. (8).
If T > Ty (Eq. 11), go to Step 2.
Else, stop and record optimal solution.

Complexity

In order to analyze the complexity of this problem, re-
call that problem P2Rj is a Knapsack problem in zi;’s
whenever the y,’s are 1. Since there are N, zi;’s for
each fixed y;, the knapsack problem is solved using dy-
namic programming techniques in O(N) (Denardo, 1982).
When the y; = 0, =z, = 0 also. In order to gener-
ate z values from each subproblem P2Rj, j=1,...,J, for
y, = 1, Vj, it will take O(N?M) iterations where the
subgradient technique takes M steps. Usually M < N*
where k is some positive integer, and k << co. Suppose

we store all these results, then we will have all the in-
formation that is necessary to run the entire simulated
annealing algorithm. In the worst case, 2V possible val-
ues of y need to be checked. Thus the overall complexity
of the problem is O(N*2"), where usually k < 3.

6. A LAGRANGIAN RELAXATION
ALGORITHM

In order to compare the computational perfor-
mance of the greedy heuristic and the algorithm based
on simulated annealing presented in the last two sections
to a more traditional operations research technique, we
develop a Lagrangian relaxation algorithm for the hierar-
chical facility location- allocation problem. To our knowl-
edge, the method developed in this section is different
from others in the computer resource location literature.
(See for instance, the paper by Gavish and Pirkul [1986]
and references therein). It is similar to the algorithm
developed by Mirzaian [1985] for the location of concen-
trators in a communications network. The Lagrangian
relaxation technique will also provide a lower bound for
the problem which will enable us to compare the good-
ness of our approximate algorithms by estimating how
close they get to this lower bound.

Recall problem P1 given by equations (1) to (5). We
will relax equations (2) and (3) by incorporating them
into the objective function with the associated Lagragian
multipliers i, (i € I), and v;, (j € I). Then, for all val-
ues of A and v, we need to find z.;, and y; to solve the
problem:

P3
Z(\7) = Minay Y > (e = N+ 7,2,
J€I 1€l
+ Z(f} - 1;8;)Y; + Z Ai (22)
J€I i€l
Subject to:
i, -y, <0, Vieljel (23)
zi;,y; €(0,1), Viel,jel (24)

Note that, except for the integrality conditions, there
is only one constraint in problem P3. The theorem be-
low characterizes the optimal solution of the problem, for
given values of A and 7.

Theorem 4:
Let JG) =€l (c;—A+7)<0Vye€ I], and let
Qi = f5 =78 + 2 es,(cis — Ai + 7). An optimal
solution of P3 is:

985

1 if Q; <0
Yy; = (25)
0 otherwise
y, ifie€ ()
Ty = (26)

0 otherwise
Proof: See Appendix

The next issue is to find the optimal A and . Let ZL
be the objective function value of the linear relaxation of
problem P1; i.e. ZL = Z given by equation (1) where
the x’s and y’s are linear. Given Theorem 1, and noting
that minimizing the primal is equivalent to maximizing
the dual in linear programs, i.e. ZL = Maxy, y Z(},7), we
get the following result:

Theorem 5:
The optimal solution of the linear relaxation of the hi-
erarchical resource location problem is ZL* = Z(A*,v*)
where A* and 4* are the optimal solutions of P4 given by:
P4
“ 2 mE DA

ZL =Mazs (27)

J€I tel
/\i - 7] - ﬂi] S Ciy (28)
=-m+ Z Bi; < d, (29)
el
)\:,'YJy"b;,BuZO, leI,]EI (30)

Proof: See Appendix

Clearly since we are dealing with integer programs, ZL
obtained from solving problem P4 (given by equation 27)
will be different from the optimal solution for the entire
problem Z, given by equation (1). This ‘duality gap’ ex-
ists for all integer programming problems. It should be
noted that we can use problem P4 to obtain the lower
bound for the problem, which is the value of ZL at the op-
timum. We will estimate the distance of the solutions of
the approximate algorithms to this lower bound. The La-
grangian procedure outlined above can be modified with
a subgradient technique to obtain a near optimal solu-
tion as opposed to a lower bound. We have not done this
because our main reason for using the technique was to
analyze the performance of the approximate algorithms.
It should be noted that much less computation time would
be required for obtaining the lower bound.

7. COMPUTATIONAL RESULTS

HSA and PSA are coded in C, with LINDO used for the
transportation (linear programming) part of HSA. The
Lagrangian relaxation, was also coded in C. The compu-
tational performance of all algorithms was investigated

using an IBM-PC-AT with a math coprocessor for data
networks with 5, 10, and 20 nodes. For each size of net-
work, we generated 25 problems, and for each problem, we
estimated the amount of cpu time each algorithm took to
satisfy the relevant stopping criterion, recorded the low-
est objective function value achieved by each approximate
algorithm, and estimated how close it was to the lower
bound produced by the Lagrangian Relaxation technique
for the same problem.

The test problems were generated randomly as follows:
The link weights for links between every pair of nodes in
the network are picked randomly from a uniform distri-
bution. Dijkstra’s shortest path algorithm was used to
find the shortest path between every pair of nodes in the
fully connected network. The total path weight between
each pair of nodes was obtained by summing the weights
of the links on the shortest path between the two nodes.
The entity weights were also selected randomly from a
uniform distribution. All the nodes in the network were
treated as candidate locations for every level.

The results of the three methods are summarized in Ta-
ble 1. For networks with 5 to 10 nodes, HSA was within
6 percent of the lower bound, and for the 15 node data
network, it was within 10 percent. These are very good
results. The time taken by the LR was 50 percent lower
than that of the HSA algorithm for the small network,
and was around 15 percent lower for networks with 10-
20 nodes. However, it should be noted that the LR only
produces a lower bound. If it were combined with a sub-
gradient technique to obtain near optimal solutions, the
computation time could be much longer.

The results for PSA have not been completed as yet.
8. CONCLUDING REMARKS

In this paper we formulated the problem of locating
resources in a computer network as an integer program-
ming problem, and presented two algorithms based on
simulated annealing for solving it. The approximate algo-
rithms both had advantages over a traditional operations
research technique based on Lagrangian relaxation. HSA
obtained solutions very close to the lower bound, although
the computational time was quite large. The Lagrangian
relaxation algorithm took a considerable amount of time
to compute the lower bound.

What we have shown is that a nontraditional search
technique such as simulated annealing could be adapted
to the solution of an important problem in computer com-
munications network design. Given the advent of cheap
fast desktop computing capabilities, there is a strong
argument for using the computer to perform intelligent
search for solutions. Also, since design is generally not
an on-line activity, the long computation time required

986

by these nontraditional search techniques is not really a
problem. There is a much greater need for obtaining so-
lutions that are close to being optimal.

9. APPENDIX

Proof of Theorem 4
We will provide a logical proof. Note that all d;’s and
a;’s are strictly positive. Thus if all (c;; — Ai + v;) are
also strictly positive, then the solution is trivial, and for
optimality all x;;’s and y;’s are set to zero. This trivial
solution is given by the Theorem.

Suppose now that (¢;; — A + 7;) < 0 at some i* €
I,5* € I. Z(X,v) is minimized if the user at ¢* is allo-
cated to the facility at 7*, provided that the location cost
d; — v;a; at 3* does not exceed the allocation cost. Con-
tinuing this line of argument, many users can be serviced
by the facility located at one node (say j*), so long as the
location cost does not exceed the sum of allocation costs.
This provides the condition for the y;. Clearly, only users
with negative allocation cost will be serviced by a facility
located at any of the nodes. This gives the condition for
the z;;’s. O

Proof of Theorem 5
Given Theorem 1, and noting that ZL = Maxa 4 Z(), v),
and letting f; = d; — v;3;, we get that

P5
ZL=Mazsy Yy Min[0,d,+ Y (co=Ai+7)]+ Y A

J€I t€J(7) €]
(31)

We can rewrite this as
Z=Mazy, - Zn, + Z A (32)
J€I 1€1
n > =fi= > (e = A+ (33)
t€J(y)

)\.,7;,17120, ieljel (34)

We can rewrite the second term on the right-hand-side
of equation as follows:

- Z (ciy=Ai+7)]=Maz Z(/\i-cu—‘ra)% (35)

t€J(7) €l
s.t. 0<w, <1 (36)
The dual of the above problem is
Min Zﬂq (37)
el
s.t. By 2 Ai—ciy — (38)
Biy 20 (39)

The above is true for all j € I. Incorporating equations
(37)-(39) into equations (32)-(34), we can rewrite problem
P5 as that given in Theorem 5. O

10. REFERENCES

1. Chen, P. and J. Akoka [1980] ‘Optimal Design of Dis-
tributed Information Systems’, IEEFE Transactions
on Computers, vol. C-29, December, pp 617-625.

2. Collins, W. E., R. W. Eglese, and B. L. Golden [1987]
Simulated Annealing An Annotated Bibiliography,
Working Paper Series no. Ms/S 87-02, College of
Business and Management, University of Maryland,
College Park, 62 pages.

3. Denardo, E. V. [1982] Dynamic Programming:
Models and Applications, (Englewood-Cliffs, NJ:
Prentice-Hall).

4. Fisher, M. L. and D. S. Hochbaum [1980] ‘Database
Location in Computer Networks’, Journal of the As-
soctation of Computer Machinery, vol. 27, no. 4, pp
718-735.

5. Gavish, B. and H. Pirkul [1986] ‘Computer and
Database Location in Distributed Computer Sys-
tems’, IEFE Transactions on Computers, vol. C-35,
July, pp 583-590.

6. Hajek, B. [1988], ‘Cooling Schedules for Optimal An-
nealing’, Mathematics of Operations Research, vol.
13, no. 2, pp 311-321.

7. Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi [1983]
”Optimization By Simulated Annealing”, Science,
vol. 220, May, pp 671-680.

8. Lundy, M. and A. Mees [1986], ‘Convergence of an
Annealing Algorithm’, Mathematical Programming,
vol. 34, pp 111-124.

9. Mirzaian, A. [1985] ‘Lagrangian Relaxation for the
Star-Star Concentrator Location Problem: Approx-
imation Algorithm and Bounds’, Networks, vol. 15,
pp 1-20.

10. Mitra D., F. Romeo, and A. S. Vincentelli [1986]
‘Convergence and Finite Time Behavior of Simulated
Annealing’, Advances in Applied Probability, vol. 18,
Sept., pp 747-771.

11. Morgan, H. L. and K. D. Levin, [1977] ‘Optimal Pro-
gram and Data Locations in Computer Networks’,
Communications of the Association of Computer
Machinery, vol. 20, no. 5, pp 315-321.

12. Murthy, K. G. [1976] Linear and Combinatorial Pro-
gramming, (New York: Wiley).

13. Parker, R. G. and R. L. Rardin [1988] Discrete Op-
timization, (San Diego: Academic Press).

14. Smale, S. [1983] ‘On the Average Number of Steps in
the Simplex Method of Linear Programming’, Math-
ematical Programming, vol. 27, pp 241-262.

987

ACKNOWLEDGEMENTS

Supported partially through Unisys Corporation grant
5-24535. The research assistance of Ashok Vernekar at the
initial stages of this project is gratefully acknowledged.

AUTHOR'’'S BIOGRAPHY

G. ANANDALINGAM is an assistant professor of Sys-
tems Engineering at the University of Pennsylvania. Pre-
vious to this he was an assistant professor of Systems
Engineering at the University of Virginia. He received a
B. A., M. A. degree in electrical sciences from Cambridge
University (England) in 1975, and S. M. and Ph. D. de-
grees in systems engineering from Harvard University in
1977 and 1981 respectively. His current research interests
include computer communications networks, hierarchical
optimization, and applied statistics.

Table 1
Results of Numerical Analysis

Problem Size Algorithm Per Cent Distance Computation Time
(nodes) Superior* from LB+ Ave. cpu sec.
5 Parallel SA
5 Hybrid SA 40% 5.3% 66.2
5 Lagrangian Relaxation - - 33.8
10 Parallel SA
10 Hybrid SA 68Y% 5.3% 900.0
10 Lagrangian Relaxation - - 776.7
20 Parallel SA
20 Hybrid SA 60% 8.1% 1900.6
20 Lagrangian Relaxation - - 1691.7

* The algorithm produced a solution with a lower objective function
value for this percentage of the problems. Percentages do not add
up to 100% because for some problems, the solutions were identical.

+ LB = Lower Bound

988

