Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

SIMULATION AND ANALYSIS
OF A PIPELINE PROCESSOR

P. G. Emma
J. W. Knight
J. H. Pomerene
T. R. Puzak
R. N. Rechtschaffen
Processor Organization Project
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT

In this paper we describe a software simulator (a timer)
that is used to model a wide range of pipeline processors.
A set of performance equations is developed that allow
a user to separate the performance of a processor into its
infinite-cache and finite-cache performance values. We
then use the timer to study the performance of two dif-
ferent machine organizations. Performance curves are
presented that help a user compare the performance of
each organization (in terms of MIPS and cycles per in-
struction) to the cycle time chosen to implement the de-
sign.

1. INTRODUCTION

Due to the increasing complexity of a modern computer’s
design, it is essential that software models be available
during the early design stages of a processor. Designers
must consider the effects of the many possible combina-
tions of design parameters to produce a ‘good’ design.
Technology constraints must be considered along with
computer architecture requirements, pipeline behavior,
instruction characteristics, cache effects, and many more
processor features before actual manufacturing of the
processor can begin. Once manufacturing has begun,
redesign or manufacturing changes may be cost prohibi-
tive to meet any unforeseen performance concerns over
the initial design. In many cases, even hardware proto-
types are no longer a design option due to increasing
design costs and hardware complexity. For these rea-
sons, software models that can give an accurate indi-
cation of the processor’s performance, before the
manufacturing process begins, become an essential in-
gredient in helping designers weigh the many variables
that make up a good design.

In general, there are two techniques available for ana-
lyzing the performance of a processor’s design. The first
approach is analytical in nature and involves mainly the
construction of queueing models. This approach typi-
cally requires many input parameter assumptions to
characterize the design. Additional assumptions may be
required to characterize any instruction interdependen-
cies and cache behavior. Unfortunately, many of the in-
itial input parameters may be unknown when the design
phase of the computer begins. For these reasons, these
models are typically limited to a simple description of the
processor being designed.

The second approach involves discrete simulation. This
approach requires the construction of a software model

1047

that represents the internal organization of the computer
hardware. These hardware simulators are also called
timers and these two terms will be used interchangeably
throughout this paper. The level of detail specified in a
timer can vary greatly. Some timers may require spec-
ifications down to the internal logic of the machine while
other models may try to represent the processor’s hard-
ware on a functional level. In this paper, we concentrate
on timers that only require a functional description of a
machine they are to model because, we assume, that the
timer is used primarily in the early design stages and that
a detailed logical description of the machine does not
exist. A trace tape is used as input to these simulation
models, where a trace tape contains the actual sequence
of instructions and addressing information collected from
executing a known benchmark on an existing machine.

The actual design of the software simulator can be just
as challenging as the hardware it is supposed to model.
In order to investigate the total range of design trade-ofTs,
the timer must be able to simulate a wide range of
processors since not all design variations can be foreseen
during the early stages of the processor’s design. Design
decisions may include whether to have a common or split
cache (instruction and data cache), instruction set char-
acteristics (a RISC or CISC instruction set), pipeline
length, and bus sizes. The timer must be modular and
easy to change since not all of the design variations can
be investigated through parameters supplied by the timer.
Actual software modifications should be able to be ac-
complished by the hardware designer and not require
someone with a software expertise. And finally, the timer
must be able to give detailed and accurate cycle-by-cycle
performance information as well as be efficient.

In this paper we describe the structure and use of a soft-
ware simulator that is capable of modeling a wide range
of machine organizations. In Section 2 we discuss pipe-
lining and areas of related work. Section 3 describes the
performance methodology used to analyze a processor.
Section 4 describes the structure of the timer. In Section
5 we present two experiments that use the timer to in-
vestigate two possible design trade-offs that a designer
can be faced with. Finally, in Section 6 we present our
conclusions.

2. PIPELINING AND RELATED MATERIAL

In this section we discuss pipelining and related publica-
tions. Few papers specifically deal with timers and
pipelining but there are many papers that analyze the
performance of the individual components that make up
a pipeline processor.

2.1 Pipelining

Computer designers have used pipelining as a means of
improving the performance of a modern computer.
Pipelining allows the designer to partition the computer
into separate components where each component is re-
sponsible for completing a different phase of an in-
struction’s execution. For example, Figure 1 shows six
instructions 1, 1, 1, 1,, I, and I, passing through a
pipeline consisting of the following phases: Decode, Ad-
dress Generation (AGEN), Cache Access (FETCH),
Execute, and Putaway (store the results).

I‘wo Cycle Delay

DECODE |1, |1][13]1, I |1,
AGEN L]y I | 1g
FETCH L]y, I | 1
EXECUTE Ll Ig | 1,
PUTAWAY Ll 5]y Is | 16

S time (in cycles) ---------- >
Figure 1. Pipeline and Delays

Each instruction enters the pipeline at the decoder and
spends one cycle in each of the pipeline stages. Individ-
ually, each instruction takes five pipeline cycles to com-
plete. However, if the pipeline can be kept full then each
component of the processor (decoder, execution unit,
cache) can be kept actively working on a different in-
struction, each at a different pipeline stage, and one in-
struction will complete on every cycle. Unfortunately,
keeping the pipeline full is not an easy task. Instruction
interdependencies often disrupt the pipeline and cause
delays that reduce the overall processing potential of a
pipeline. The figure shows a pipeline disruption occur-
ring after I, and lasting for two cycles. This is repres-
ented by a two cycle gap between decoding instructions
I, and I;. In this example, the delay is introduced into
the pipeline at the decoder and passes through the pipe-
line delaying each stage by two cycles. Each delay then
contributes to the average number of cycles needed to
process an instruction. A computer designer must try to
reduce the frequency and duration of each pipeline delay
in order to achieve the full processing potential of the
pipeline.

2.2 Related Material

Using a trace tape to analyze the performance of a
processor has become a widely adopted practice. The
literature is full of papers that separately measure the
performance of the individual components that make up
a processor. Many of these papers use trace tapes as
input to obtain their results. The cache serves as a good
example. There are many papers that study the per-
formance of the cache [STON87], and [SMIT82]. Re-
placement algorithms and cache behavior are studied in
[BELA66], and [MATT66]. All are trace tape driven.

1048

The effect of branch behavior on performance has also
been studied through trace tapes. Branch prediction
mechanisms are described in [POMES7], and
[SUSS71]. Each describes a different mechanism that
can be used to improve branch prediction. Instruction
unit (decoder) and execution unit performance have also
been studied. Algorithms to control multiple execution
units are given in [TOMA67]. The instruction unit and
pipeline disruptions are studied in [ANDE67]. Still
other papers incorporate trace tapes to analyze the re-
lationships of different components of a processor.
Pipeline performance and instruction behavior are
studied in [RYMA82] and [EMMA86]. Emma and
Davidison in [EMMA87] characterize branch behavior
along with instruction and data dependencies while in-
vestigating pipeline performance.

Once a processor is built its performance can be analyzed
through hardware monitors. Instruction use and
processor performance for the VAX-11/780 are meas-
ured and analyzed in [CLAR82]. Instruction set usage
in the System/370 is analyzed in [LAMA86].

A software simulator must be capable of simultaneously
analyzing the performance of all of the components in a
processor as well as collecting any information that is
consistent with having a hardware monitor attached to a
running processor. Only by gathering information on the
cache, instruction unit, execution unit, and pipeline can
a researcher perform the necessary performance analysis
to accurately weigh any design trade-offs. The number
of papers on processor simulators is limited. Many sim-
ulators represent the internal organization for a propri-
etary machine design and are rarely published.
MacDougall in [MACD84] hints at the use of a cycle-
by-cycle machine simulator while discussing pipeline
performance and processor modeling.

Once the timer is written, the system designer will use
trace tapes as input to the timer to evaluate the perform-
ance of the planned processor. The designer may want
to investigate the performance of a machine under dif-
ferent workloads, (interactive, batch, scientific), each re-
presented by a different trace tape, to be assured that the
design is robust and not customized to a specific envi-
ronment. In the next section we describe a performance
methodology and define all the terms needed to evaluate
the performance of a pipeline processor.

3. METHODOLOGY

Processor designers are constantly faced with evaluating
the performance of a pipeline processor. This includes
the organization of the instruction and execution units
as well as the performance of the memory hierarchy.
Described below are a set of equations that relate the
performance of individual components to the overall
performance of the processor. In developing these
equations, we assume that the processor has a single

processing element that can only execute one instruction
per cycle and that there only exists one level of interme-
diate storage, a cache, between the processor and mem-
ory. By analyzing systems that can decode and execute
multiple instructions per cycle and have multiple levels in
their storage hierarchy (a first and second level cache)
we would only introduce a level of complexity that is
unnecessary for the topics discussed in this paper.

The performance of a computer system is a function of
the machine’s organization coupled to the technology
used to implement the organization. An equation for
evaluating the overall performance of a computer system

is:
nanoseconds cycles 1 _ 1 1
cycle instructions 1000 / MIPS M

where the term
cycles
instructions

represents the average number of cycles needed to exe-
cute an instruction, an overall performance measure of
the machine’s organization. The designer will try to in-
clude any and all design features in order to reduce this
term. Techniques such as pipelining, cache and bus
management, and parallel processing are all used to re-
duce the average number of cycles needed to execute an
instruction.

The term

nanoseconds
cycle

defines the cycle time used in the processor and repres-
ents any underlying constraints imposed by the technol-
ogy on the organization. Clearly, the cycle time along
with the cycles per instruction term defined above interact
with each other. A designer is always faced with making
organizational trade-offs to conform to any technology
limitations. For example, certain processor enhance-
ments that can reduce the overall cycles per instruction
term defined in (1) may have to be abandoned due to a
disproportionate increase in the cycle time needed to im-
plement these enhancements. However, the product of
these two terms, when properly scaled, computes inverse
MIPS, millions of instructions per second executed.

The performance of the memory hierarchy as well as the
performance of the instruction and execution unit con-
tribute to the overall performance of the computer sys-
tem. The cycles per instruction term defined in (1) can
be expressed as:

cycles cycles . cycles)
instrucion / \ instruction /oo C instructon /FC

where
cycles
instruction /oo C

1049

represents the average number of cycles required to exe-
cute an instruction if all memory references are satisfied
at cache speeds. This term, in effect, assumes that the
cache is infinite in size and thus removes the memory
hierarchy from the processor’s design. This term relates
the performance of the processing elements of the ma-
chine (decoder and execution unit) to the pipeline struc-
ture.

The infinite cache performance of a processor can be
divided into still further components that define an in-
trinsic amount of work that is required by the underlying
organization to execute an instruction. These compo-
nents are:

cycles _ cycles + cycles 3
instrucion /oo C \ instruction / EBUSY instruction ENE;L?SY

Here the term
cycles
instruction / EBUSY

describes the average number of cycles needed to execute
an instruction provided the execution unit can be kept
busy all of the time. This term represents the peak rate
that a processor can execute instructions for a given
workload. In a machine with a single processing element
and a RISC-like instruction set this ratio will be close to
one. In computer architectures with a more complex
instruction set and multi-cycle instructions this ratio will
typically be much greater than one. Each instruction
executed by the processor contributes to this term and it
is possible to express this ratio as the sum of the individ-
uval EBUSY components attributed to each instruction.
A designer would pursue this line of analysis in order to
understand the contributions that each instruction, or
group of instructions, have on the overall performance
of the processor. For example, it may be determined that
the floating point, decimal, or string manipulating in-
structions require some additional hardware to reduce
their average EBUSY time in order to meet certain per-
formance goals that were set at the start of the project.

The term

cycles
instruction / ENBUSY

represents the difference between the infinite cache per-
formance of a processor and the EBUSY term and is
usually the result of pipeline disruptions. It describes the
average number of cycles that the execution unit is not
busy (idle) while executing the instructions found on a
trace tape. The ENBUSY term is the result of pipeline
delays and disruptions caused by instruction interactions,
cache bandwidth limitations, and pipeline length and it
is again possible to define this term as the sum of the
delays introduced by each individual instruction as was
the EBUSY term defined above. Examples of these de-
lays can be found in [RYMA82], [MACDS84), and
[EMMA86), and include interlocks between in-
structions (both address and execution), taken-branch

delays, storing into the instruction stream, and decoding
delays caused by the instruction buffer being empty.

The term

cycles
(instruction)pc

in (2) represents the delay incurred because the cache size
is, in reality, finite. Since the cache is of finite size, a
certain portion of the references made by the processor
miss in the cache and must be satisfied from main mem-
ory. These requests take several cycles longer to com-
plete since the access time to memory is much longer
than the access time to the cache. This term accounts for
the performance of the memory subsystem.

The finite-cache delay can be expressed as the product
of the following three terms:

cycles _ [sycles (misses) (references) @
instruction /FC miss reference instruction

where

cycles

miss
represents the average number of cycles of delay intro-
duced by a cache miss. This term can be reduced by
using faster main memory, increasing the bandwidth be-
tween the cache and main memory, or increasing the

amount of overlap between instruction execution and
miss processing.

The term
misses
reference
represents the average rate at which a reference misses
to the cache. This rate is also referred to as the miss ratio
and along with the hit ratio, which is (1 - miss ratio), is

the metric that is commonly used to evaluate the per-
formance of the cache.

The term

references

instruction
represents the average number of cache references that
must be made to execute an instruction. This number
includes all instruction fetches, data fetches and stores.
Cache bandwidth limitations and bus widths are the pri-
mary factors that control this value. However, other or-
ganizational features that affect this value are the

instruction buffer size, pipeline strategies that affect
branch prediction, and pipeline concurrency.

Substituting (2), (3), and (4) into (1) yields:
cycles ‘ < cycles .
(instrn)EBUSY instrn)ENBUSY

cycles (m.lsses)(refs) (ns)= 1000 ()
miss refs Instrn cycle MIPS

From (5) we see the separation of the processor’s internal
organization (the pipeline length, instruction unit and
execution unit) from the performance of the cache and
memory. Overall performance improvements can be
obtained by making organizational changes that improve
any individual component. For example, improving the
performance of the memory hierarchy will usually not
affect the infinite cache performance of the processor.
Similarly, making organizational changes that improve
the EBUSY or ENBUSY components of a processor will
generally not affect the performance of the memory hi-
erarchy. For this reason large organizational perform-
ance improvements are usually the result of several
individual design changes and not just the result of a
single design change.

4. TIMER STRUCTURE

In this section we describe the structure of the timer and
its components. An engineer will use the timer to analyze
many different machines by varying the input parame-
ters. In order to provide this function, the timer is or-
ganized into separate components where each
component allows the user to identify and isolate any
programming errors, design changes, and analyze any
performance limitations associated with the machine be-
ing modeled. The timer consists of the following com-
ponents:

. Machine Definition

U Instruction Plot

. Summary Statistics (reports)
[]

Modeling Loop (Timer structure)

A brief explanation of each component is given below:

The machine definition

component of the timer gives the user the ability to define
and model a wide variety of machines. The definition
of the machine can be logically separated into two com-
ponents:

. machine architecture
. machine organization

Each part is usually defined as a separate input file to the
timer that is read at the beginning of each simulation run.

The architectural description of the machine consists
of a table that describes the format and pipeline char-
acteristics of each instruction that is defined in the archi-
tecture of the processor. This information includes:

. The Instruction Format: The opcode, instruction
length, mnemonic.

. Instruction Type: A branch, serializer, load, store.

. Operand Information: Base, index, and displace-
ment locations, length parameters, fetch and store
algorithms

* Decoding Information: Decoding cycles, interlock
information.

. Execution Unit Information: Execution cycles, ex-
ecution algorithms, execution rate (in bytes, words).

1050

The timer will then use this information to determine the
proper cycle to decode, and execute each instruction as
well as control the pipeline behavior of all fetches and
stores. For example, the timer can maintain a list of
registers that will be changed for each instruction that is
currently in the pipeline. Register interlocks can then be
detected by comparing this list against the set of registers
needed to decode the next instruction. If a match occurs
then a register interlock is present.

The organizational description of the machine defines
the basic size and structure of the components that make
up the processor (decoder, cache, execution unit). Some
of the parameters defined in the organization file are:

. Pipeline Stages; Decode, address generation, fetch,
execute, putaway.

Cache Parameters: Cache size, replacement algo-
rithm, number of ports and widths.

Queue Sizes: Instruction buffers, execution buffers,
operand buffers.

Branch Prediction Strategies: Guess taken/fall thru
strategies, branch error delays, restart delays.
Decoder/Execution unit capabilities: Amount of
concurrency, overlap.

The amount of detail contained in these two files depends
on the amount of information known about the machine
that is being modeled. During the early design stages of
a processor, many of the design parameters may be un-
known and default values may have to be supplied.
However, as the design nears completion, new parame-
ters may be needed to describe new hardware that is in-
tegrated into the design of the machine.

The summary statistics must give a detailed report an-
alyzing the performance of the various components de-
fined in the machine’s design. Contained in the output
are the total number of cycles needed to simulate the ex-
ecution of the trace tape, instruction frequencies and
totals, and EBUSY and ENBUSY analysis. Also, each
component of the proposed design (the decoder, exe-
cution unit, and cache) is analyzed in detail.

The summary report provides a user with a detailed
analysis of all events that delayed the decoder. The most
common delays are:

o Instruction interlocks: This delay occurs when one
instruction needs the result from another instruction
in the pipeline and the value is not yet determined.

Decode Wrong Stream: This delay occurs when the
outcome of a conditional branch (taken, or not
taken) is guessed incorrectly. The decoder is de-
layed until the branch can be resolved and the cor-
rect decoding direction can resume.

Instruction buffer empty: This delay occurs when
the instruction buffer is empty and the decoder
cannot decode an instruction. This is usually the
result of cache bandwidth limitations.

1051

Serialization: Certain instructions are architected to
drain the pipeline and be executed alone (i.e. Com-
pare and Swap in IBM System/370 architecture).
These instructions disable the decoder until they
finish execution.

All operand buffers full: Typically machines have
a limit on the total number of operands that can be
accessed in any one cycle. If this limit is currently
reached and the instruction that is being decoded
requires an operand then the decoder must wait
until an operand buffer becomes available.

The summary report for the execution unit will list the
performance of the machine in terms of the EBUSY and
ENBUSY components defined above. On every cycle
of the simulation run, the timer must monitor the exe-
cution unit and determine whether it is busy or idle.
Each cycle is then identified as either contributing to the
EBUSY or ENBUSY term, respectively. Usually, each
instruction spends only one cycle in the execution unit
before completing. However, in computer architectures
with multi-cycle opcodes, an instruction may require se-
veral thousand cycles of execution before completing.
For example, the MVCL instruction in the IBM
System/370 architecture can fetch and store up to 16
megabytes of memory. The summary output will then list
the contribution that each instruction makes to the total
EBUSY term. The total EBUSY term (in cycles per in-
struction) is then the weighted sum of the individual
EBUSY terms where the weights are the relative averages
that each instruction contributes to the overall instruction
total.

Identifying the cause of each ENBUSY delay is more
difficult than was collecting the EBUSY cycles. Many
of the delays that appear in the execution unit are intro-
duced into the pipeline by the decoder (usually as a de-
coder delay) and are passed through the pipeline to the
execution unit. Also, many of the decoder delays may be
the result of multiple causes and identifying a single rea-
son may be difficult. For example, an instruction can
follow a serializer, be interlocked on an address calcu-
lation, and have all of the operand buffers full. In this
example, any one of the three delays listed above will
individually delay the decoder. Accounting for this delay
in the execution unit (if it appears) involves remembering
the sequence of events that led to the decoder delay and
recognizing these causes in the execution unit. The EN-
BUSY component can then be examined in terms of each
individual delay or taken in context with multiple delays
that happened earlier. The mechanisms and structures
needed to accurately account for these events will be
discussed in the modeling-loop component of the timer
described below.

The performance of the memory hierarchy is usually de-
rived from the performance statistics supplied from
infinite-cache and finite-cache simulation runs. An
infinite-cache simulation run assumes that every refer-

ence is found in the cache and can be satisfied at cache
speeds. In a finite-cache simulation run, the timer must
first maintain a cache directory to identify which lines of
memory are currently in the cache. Any reference not
found in the directory (a miss) is delayed and satisfied
from memory. The timer must then represent this delay
by simulating the logic of the processor to process the
miss. The performance of the memory hierarchy (in cy-
cles per instruction) is then the difference between a
finite-cache simulation run and an infinite-cache simu-
lation run. The average miss delay (in cycles per miss)
is then the product of the miss rate (in terms of in-
structions per miss) with the performance of the memory
hierarchy (in cycles per instruction).

The instruction plot provided by the timer is the design-
er’s main interface between the software description of
the machine and its physical design. The plot must pro-
vide the user with the information needed to understand
the performance of the machine on a cycle-by-cycle basis.
The plot can be used by many people and in different
ways.

The designer uses the plot to verify that the machine be-
ing modeled is the actual machine that the designer has
in mind. This usually involves examining several in-
struction sequences on an instruction-by-instruction and
a cycle-by-cycle basis to verify that each instruction is
decoded and executed in the proper cycle, and that any
pipeline delays (in the decoder or execution unit of the
machine) are properly recorded.

The programmer uses the plot as a debugging aid. If the
design of the timer is modular then its components can
reflect the components and structure of the actual ma-
chine. The programmer can then display, thru the plot,
the subroutines used by the timer to simulate the pipeline
just as the designer uses the plot to identify the internal
state of the processor. This feature allows the program-
mer to identify and isolate quickly any areas of the pro-
gram that need to be modified whenever program
enhancements or debugging changes are necessary.

Figure 2 gives an example of an abbreviated instruction
plot provided by the timer. The plot shows a program
that computes the value of (4% + B?) / C2. (Typically,
several pages of output are required to display all of the
information associated with simulating this program).
Because of the underlying architecture of the machine,
the program is written in a language that requires all
operands to be first placed in a register before any cal-
culation can occur. We assume that all values are inte-
gers, that multiply overflow cannot occur and that the
divide instruction only returns the value of the quotient.
The remainder, if any, is ignored. In order to highlight
pipeline disruptions, we assume that each operand ad-
dress is interlocked. That is, the address of each operand
(A, B and C) must be loaded into a register before that
value of the operand can be established. The actual

1052

program is given as part of the plot output. We assume
that the instruction formats are similar to those given in
the IBM System/370 Principles of Operation manual
[IBM81]. The timer parameters were set to model a
machine with three pipeline stages: Decode/AGEN,
Fetch, and Execute.

The plot identifies on each cycle all instructions, fetches,
and stores that occur over a specified interval (cycles).
The plot lists each instruction that is read from the trace
tape and identifies each instruction fetch that is made to
execute these instructions. The plot also identifies the
cycle that each instruction was decoded, lists the contents
of the execution queue and instruction buffer, identifies
each EBUSY cycle, and lists each reference (instruction
or datum) that is made to the cache and when it returns.
Each instruction that is read from the trace tape is as-
signed a tag where a tag is a letter identifier that is used
to represent the instruction as it passes through the pipe-
line. For example, the first four instructions read from
the trace tape (L, L, LR, and MR) are assigned the tags
‘A’, ‘B’, 'C" and ‘D', respectively. The plot shows that
instruction ‘A’ (the load) was decoded on cycle 2, fetched
its operand on cycle 3, and executed on cycle 4. Simi-
larly, instruction ‘D’ (the multiply register, MR) was de-
coded on cycle 6 and required six cycles in the execution
unit to complete, cycles 8 through 13 of the EBUSY line.

The plot allows the designer to follow each instruction
through the pipeline and identify each pipeline disruption.
The signals listed at the end of the plot identify each delay
that occurs in the decoder and execution unit. For ex-
ample, the decoder was idle on the first cycle of the sim-
ulation run because the instruction buffer was empty. In
this case the decoder will remain idle until an instruction
can be fetched from the cache and placed in the instruc-
tion buffer. The decoder was also idle on cycles 3, 8, and
17 of the simulation run. These delays are the result of
the three operand-address interlocks described above.
Each delay lasts for one cycle and is removed when the
address of the operand (A, B, or C) is fetched from the
cache. This allows the address generation phase of the
following instruction to complete. The remaining
amount of time (cycles) that the decoder is idle is the re-
sults of the execution unit being full.

Not all of the decoder delays appear as delays in the ex-
ecution unit. The plot shows that only the instruction-
buffer-empty delay and the first instruction-interlock
delay appear as delays in the execution unit. (These de-
lays appear as idle cycles on the EBUSY line of the plot
and are identified by the execution-unit signals listed at
the end of the plot.) The remaining decoder delays are
overlapped in the execution unit with useful EBUSY cy-
cles because of the multi-cycle instructions (the MR and
DR) that appear in the program.

The structure of the pipeline can usually be seen through
the modeling loop. Contained in the loop are the sub-

DID

| |
EBUSY CYCLE |

A BCDDDDDDEFGH
T ' Feb-H-He 1-J-

) PR
: D-E-
EXECUTION QUEUE |

I I T S S

NST BUFFER QUEUE + +
e 4« s a e e e AT
D-EXEC-QUEUE-FULL-----
D-INST-BUFFER-EMPTY--—
D-INSTR' TN~ INTERLOCK--
E-EXEC-QUEUE-EMPTY-—--

+

E-INSTR’ TN=INTERLOCK-- - - = - 1
E- INST-BUFFER-EMPTY=-- - 1 1
Figure 2 Instruction Plot Output

INSTR*TN INSTR'TN OPERAND
TAG OPCODE COUNT ADDRESS IMAGE ADDRESS PROGRAM
A L 1 00000500 5810C640 00000648 L R1,ADDRESSA
B L 2 00000504 58410000 0000F000 L R4,0(R1)
C LR 3 00000508 1854 @ ——————ee LR R5,R4
D MR 4 0000050A 1C45 ~ ————eeee MR R4,R5
E L 5 0000050C 5810C62C 00000634 L R1,ADDRESSB
F L 6 00000510 58410000 0000A000 L R6,0(R1)
G LR 7 00000514 1876 LR R7:R6
H MR 8 00000516 1C67 MR R6,R7
I AR 9 00000518 1A46 AR R4,R6
J L 10 0000051A 5810C658 00000660 L R1,ADDRESSC
K L 11 0000051E 58610000 0000B00O L R6,0(R1)
L LR 12 00000522 1876 LR R7.Ré6
M MR 13 00000524 1C67 MR R6,R7
0 DR 14 00000526 1D46 DR R4.R6
P ST 15 00000528 5040C678 00000680 ST R4,VALUE
INSTRUCTION FETCHES
TAG ADDRESS
N5 00000500
Né 00000508
N7 00000510
N8 00000518
N9 00000520
N1 00000528
N2 00000530
N3 00000538
CYCLES = 1
0 5 10 15 20
+ . + . +
| |
DECODE/AGEN CYCLE | A BCDE F G H 14 K L
L I I + . e e . +
| | N5N6A*N7B+N@N9E*N1F* N2 J+7 KkeNs'
CACHE FETCH/STORE | I1IDIDITI 1 D DI

+ .

HH H HHIJKLMMM M MMOO D o} O oo
. . +

L L—L

G-G-G-G+G+H+ [~ J-K-K-K-K+K+K+L +M-0~P-
B=C-C-D-E~F=F=F=F+F+F+G+H+=J=J+J+J+J+J+K+L+M=0-P-P+P+P+P+P+
A-A-A—B—B—C-D—E—E*E*E'E*E*F*G*H*I*l*l*I*I’I‘J'K*L*M’O*O*O*O‘O*O*P‘P‘P*P‘P’P*P*P*P*P‘P*

’ N9 NlNlN1N2N2N2N2N2N2N2 N3N3N3N3N3N3

-

N7 N8N8N9N9N9N9NlNlNlNlNlNlNlNZNZN
+ +*

+ o+

N6N6N6N7N7N7N8NGN8NBN9N9N9N9N9N9N9NlN1NlNlNlNlNlN2N2N2N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3
N5N5N5N?N6N6N6N7N7N7N7N8N8NBN8N8N8N8N9N9N9N9N9N9N9N1NlNlN2N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2NZNZNZ

B R A A A b

L IriiisriirTiiisiiiiitiidiiiiiitiiiiiiis

COMMENTS

GET ADDRESS OF A
GET VALUE OF A

COPY A

CDMPUTE AxA

GET ADDRESS OF C

GET VALUE OF B

COPY B

COMPUTE B»B

COMPUTE A®A + BuB

GET ADDRESS OF C

GET VALUE OF C

CoPY C

COMPUTE C»C

COMPUTE (AWA + BXB)/CnC
STORE RESULTS

25 35 -

~LoL+M-0-P-

L N
2N2N2N2N2N3N3N3

I +

LI R D L

routines used to model each machine. Modeling a pipe-
line is then easy. Each subroutine in the loop represent
a physical components of the machine. (decoder, cache,
execution unit). Time, in cycles, is then represented by
the order that the subroutines are arranged and executed.
For example, consider a pipeline with the following
stages: Decode, Address Generation (AGEN), Cache
Access (Fetch), Execute, and Putaway. A separate sub-
routine is written for each pipeline stage. These subrou-
tines, along with housekeeping, instruction fetching
(IFETCH), statistics and tracing subroutines, are em-
bedded in a loop to represent one machine cycle (Figure
3).

Each subroutine will have its own queue to receive in-
struction and operand information from the other sub-
routines in the calling loop. This information is presented
to each subroutine by placing a token on its queue, where
a token represents a pointer to a data structure that de-
scribes the instruction or operand. Each tokvn is used
to represent work (in the form of an instruction or op-
erand) that a subroutine must process. The concept of
instructions passing through the pipeline is accomplished
by having each subroutine pass tokens (representing in-
structions and operands) from one queue to another until
each instruction is executed and the results are processed

DO until end-of-trace
CALL HOUSEKEEPING
CALL IFETCH

CALL DECODE
CALL AGEN
CALL CACHE
CALL EXECUTE
CALL PUTAWAY

CALL TRACE
CALL STATISTICS
END

Figure 3. Timer Loop

from the PUTAWAY queue. For example, each in-
struction found on the trace tape will initially be placed
on the DECODER’s queue. The DECODE subroutine
will then move the instruction (token) to the AGEN
queues when decoding is complete. The AGEN sub-
routine will check for all interlocks and at the appreciate
time (cycle) place the operands on the CACHE queue
and pass the instruction onto the EXECUTION queue.
The instruction will then wait in the EXECUTION queue

1053

until the operands are available from the cache. The
EXECUTION subroutine will then ‘execute’ the instruc-
tion. Upon completion, the EXECUTE subroutine will
move the instruction to the PUTAWAY queue where all
stores are competed and the instruction is finished.

In the above example, we see tokens being used to pass
instruction and operand information through the pipe-
line. However, the tokens can also be used to carry
delay-information through the pipeline. Consider the
case where the decoder is idle due to an instruction
interlock. We would like to be able to understand and
record the consequences of this event as it passes through
the pipeline, especially if it produces an idle cycle (EN-
BUSY) in the execution unit. This can be accomplished
by using tokens to pass delay information through the
pipeline just as they were used to pass instruction and
operand information. Pipeline events can then be moni-
tored by having each subroutine pass a token on every
cycle. The token will describe the action of the subrou-
tine for that cycle. If the decoder was idle then the token
information will describe the events that produced the
delay (ie. instruction interlock, serializer). If the decoder
was busy doing useful work (decoding instructions) then
the token information will identify the instruction that
was decoded. Now, whenever the execution unit is idle,
a token can be found in its queue describing the events
that took place in the decoder (either busy or idle) several
cycles earlier. This mechanism allows the timer to accu-
rately identify and record each delay that appears in the
pipeline.

5. ANALYSIS

In this section we will use the timer to evaluate the per-
formance of two different machine organizations. The
machines differ in the number of stages that are used to
describe their pipelines. The first machine (Model 1) has
four pipeline stages consisting of the following steps:
decode/AGEN, operand fetch, execute, and putaway.
The second machine (Model 2) has six pipeline stages:
decode, AGEN, operand-fetch-1, operand-fetch-2, exe-
cute, and putaway. Figure 4 shows four instruction
passing through these two pipelines. The figure shows
that each instruction in Model 1 spends at least four cycle
in the pipeline while an instruction in Model 2 requires
six cycles.

The timer will be used to simulate each machine organ-
ization and produce infinite and finite-cache performance
measurements. Each measurement will be given in terms
of the performance equations defined in Section 3. A
designer would then use this information to evaluate any
design decision trade-offs.

Studies of this type are common. A designer must always
consider the effects of the machine’s cycle time on the
performance of the organization, in terms of cycles per
instructions. For example, a designer may wish to eval-
uate performance trade-offs between a machine with a
long cycle time and few pipeline stages (Model 1) versus
a machine with a very fast (short) cycle time and a much
longer pipeline (Model 2). We assume that the long cycle

1054

time in Model 1 allows a designer to place more function
(logic) into each pipeline cycle whereas the short cycle
time of Model 2 limits the amount of logic that can be
designed into any single cycle. In Model 1, the cache can
be accessed in a single cycle and the decode and address
generation phases of an instruction can be combined into
a single pipeline stage. In Model 2, the short cycle time
requires that the decode and address generation phase
of an instruction be split into their own pipeline stages
and that two machine cycles are needed to complete a
cache access.

Except for the pipeline the remaining features of the two
machines are similar. Each machine represents a
RISC-like architecture that has the processing potential
to decode and execute one instruction per cycle. The
cache can be accessed once per cycle and the data path
between the decoder, cache and execution unit is four
bytes wide. The instruction buffer can hold up to four
entries and an instruction fetch is attempted whenever the
instruction buffer is not full. However, all operand
fetches and stores are honored before any instruction
fetch. All conditional branches are assumed to be not
taken and branch prediction errors (conditional branches
that are taken) are discovered when the branch is exe-
cuted.

The timer parameters were set to reflect the machines
described above. A trace tape was generated for a
RISC-like processor running a scientific benchmark and
run through the timer. Figure S shows the infinite-cache
performance measurements from the simulation runs.

The results show that Model 2 required approximately
27 percent more cycles to execute an instruction than did
Model 1 (1.9/1.5=1.266). Each machine experienced
the same EBUSY performance component of 1.0 cycles
per instruction due to the RISC architecture, while pipe-
line disruptions (ENBUSY) accounted for an average
delay of .5 cycles per instruction in Model 1 and .9 cycles
per instruction in Model 2. The major contributors to
the ENBUSY delay were instruction interlocks, instruc-
tion buffer empty, and branch delays.

Typically, the pipeline delays in Model 2 are longer than
the pipeline delays of Model 1. This is primarily the re-
sult of the increased length of pipeline in Model 2.
Consider an interlock between two instructions. Figure
6 shows instructions passing through two pipelines re-
presented by Model 1 and Model 2.

Assume an interlock is detected during the address gen-
eration phase of instruction I, and cannot be resolved
until instruction I, finishes execution. We assume that
the decode phase of each instruction is not interlocked.
The figure shows that the interlock causes a two cycle
delay in Model 1 but a three cycle delay in Model 2. The
extra cycle of delay in Model 2 is due to the extra pipeline
stage that exists between the address generation phase
and execution phase of the pipeline, in this case the sec-

Model 1 Model 2
DEC/AGEN]| I,| L} L;f 1, DECODE L L Ljl,
FETCH LiLI LI AGEN LI L] L[],
EXECUTE LI LI L], FETCHI1 LI LI L] I,
PUTAWAY LILI L], FETCH2 L1 L] L],
< -- time (in cycles) --> EXECUTE LI LI L] L,
PUTAWAY L L[L] 1,
< -eeen time (in cycles) ----- >
Figure 4. Pipelines for Model 1 and Model 2
Model 1 Model 2
Infinite-Cache Cyc/Inst 1.5 1.9
EBUSY (cyc/inst) 1.0 1.0 S
ENBUSY (cyc/inst) .5 9 L
oL
Figure S. Infinite-Cache Performance ¢_
oL
n™)
ond cache access cycle. Similar results would be a
produced by modeling the other pipeline delays 28
(serializer, instruction buffer empty, etc.). L
The performance measurements of Figure 5 can be con- - WooEL 2 T
verted into MIPS by choosing an appropriate cycle time 5 L 4'0 L 6'0 L 8'6 m':ﬁ“')o
for the organization. It is still possible for Model 2 to CYCLE TIME (NANOSECONDS)
outperform Model 1 provided it can be implemented in
a technology that can provide a faster cycle time than the Figure 7. MIPS versus Cycle Time
technology used to implement Model 1. For example, a

bipolar technology typically offers devices that are faster
than the devices found in a CMOS technology. Also,
certain organizations may prove to be too complex to
implement in certain high-performance technologies
when considering packaging delays, and cooling require-
ments and a less aggressive implementation may have to
be pursued. Figure 7 plots MIPS as a function of the
cycle time (in nanoseconds) for machine organizations
that average 1.5 and 1.9 cycles per instruction, Models 1
and 2.

The figure shows that if a 20 MIPS processor is desired
then the cycle times for Model 1 and Model 2 must be
approximately 33 and 26 nanoseconds, respectively.
Implementing Model 2 in a technology that can produce
a cycle time faster than 26 nanoseconds will produce
more than 20 MIPS. For example, Model 2 would
achieve 30 MIPS if a 17.5 nanoseconds cycle time could
be achieved. A designer would continue to explore the
organization described in Model 2 in the hope that the
simpler pipeline structure can produce a faster cycle time,

Model 1 Model 2
DEC/AGEN| [] L, L[, DECODE LI LI L],
FETCH L[1, L1, AGEN L], L1 1,
EXECUTE L1 L1, FETCHI1 L1 L L1,
PUTAWAY L L Ll 1, FETCH2 L L L1,
< ---- time (in cycles) ----> EXECUTE Ll L] 1,
PUTAWAY L1, Ll 1,
R time (in cycles) ----------- >
Figure 6. Pipelines with delays for Model 1 and Model 2

1055

and thus more MIPS, than the organization described in
Model 1.

Once the designer is satisfied with the infinite-cache per-
formance of a processor the finite-cache performance can
be determined. The timer parameters are again set to
simulate the machines defined in Models 1 and 2.
However, the cache parameters are also defined to reflect
an 8K cache with a 16 byte linesize. All stores are sent
simultaneously to the cache and memory. This elimi-
nates the need to castout any modified line during the
miss process. When a miss occurs, we assume that the
memory access time will delay the original access by 5
cycles and that a line of memory is transferred to the
cache at the rate of four bytes per cycle, for four cycles.
Figure 8 shows the results of the simulation runs.

The overall performance of Model 1 and Model 2 is now
2.0 and 2.4 cycles per instruction, respectively. The finite
cache delay is the difference between the finite-cache
performance and the infinite-cache performance and is
.5 cycles per instruction for both models. The average
miss delay (in terms of cycles per miss) can now be de-
termined. From (4) in Sections 3 we see that the average

miss delay can be expressed as
el)

(5)=(

Substituting the values shown in Figure 8, we see that the
average miss delay for Models 1 and 2 was approxi-
mately seven cycles. Two factors contribute to the aver-
age miss delay: the speed of the memory and the line
putaway time (amount of time needed to copy a line of
memory into the cache). The memory speed affects the
average miss delay by delaying the original reference that
caused the cache miss. This reference must now be sat-
isfied from the memory which is several cycles slower
than the cache. The line putaway time is a function of
the linesize of the cache and bus width used to store lines
into the cache. Any benefit derived from increasing the
linesize to reduce the overall number of cache misses may
be offset by increasing the number of cycles used to store
the line into the cache.

Cycles
Miss

Cycles Instructions

Miss

Instruction

The organization of the cache can also affect the
processor’s cycle time. It is commonly known that the
miss ratio of the cache can be reduced by increasing the
size of the cache. However, the extra time needed to
access a larger cache may not be feasible considering the
present cycle time and technology limitations. For ex-
ample, an existing design may integrate the cache onto a
single module and technology limitations may demand
that a larger cache be spread across two modules. The
extra path delays needed to access the cache across a
second module may exceed the current cycle time. Now
any benefits derived from reducing the miss ratio by in-
creasing the cache size must be weighed against the per-
formance loss from increasing the processor’s cycle time.
A designer would continue to pursue this design change
only if it would lead to a more viable and powerful ma-
chine organization.

1056

Model 1 Model 2
Finite-Cache (Cyc/Inst) 2.0 2.4
Cycl
< e Aol) s 5
Instruction /FC
Instructions
(£) 14 14
Figure 8. Finite-Cache Performance

6. CONCLUSIONS

Timers have proven to be a very useful tool in analyzing
the performance of a processor. Indeed, since design and
engineering cost have risen so dramatically, the timer has
become the most flexible and cost effective working pro-
totype that allows a designer to study the performance
of a new machine. We have divided the performance of
a machine into three components: EBUSY, ENBUSY
and finite cache effects. These components are used to
describe the infinite-cache and finite-cache performance
of a processor. By using a common set of trace tapes, a
designer is able to compare the performance of different
machine organizations within the scope of a single ar-
chitecture.

The usefulness of a timer goes beyond that of a design
tool. A timer serves as an excellent tool for researchers
to explore the processing limits of a computer and its
design. A timer allows a user to remove a delay entirely
from an organization to investigate its performance im-
plications. For example, a user can configure the timer
to ignore all instruction interlocks or correctly predict the
outcome of each branch. These runs establish a limit on
the performance benefit that can be derived from imple-
menting a mechanism that is intended to remove one of
these delays.

Usually the performance gain derived from removing a
pipeline delay is less than expected. As one delay is re-
moved from the pipeline certain events and instruction
sequences occur closer together. This can cause a new
delay to appear that was not present in the original in-
struction sequence. A timer gives the researcher the
ability to analyze these effects and accurately evaluate a
mechanism that is intended to remove the delay.

REFERENCES

[ANDE67] Anderson D. W., F. J. Sparacio, and F. M.
Tomasulo, “The IBM System/360 Model 91 Machine
Philosophy and Instruction-Handling’, IBM Journal, Vol
11. Jan. 1967, pp. 8-24. -

[_BELA66] Belady, L., ‘A Study of Replacement Algo-
rithms for a Virtual-storage Computer’, IBM_Systems
Journal, Vol. §, No. 2, 1966, pp. 78 101.

[CLAR82] Clark D. W., and H. M. Levy, 'Measure-
ments and Analysis of instruction use in the VAX
11/7980’, Proc. 9th Int. Symp. Comp. Arch., Apr. 1982,
pp. 9-17.

[EMMA86] Emma P. G., J. W. Knight, J H. Pomerene,
R. N. Rechtschaffen, and F. J. Sparacio, ‘Components
of Uniprocessor Performance’, IBM Tech Report, RC
12203 (54836), Oct. 1986.

[EMMA87] Emma P. G,, and E. S. Davidson, ‘Charac-
terization of Branch and Data Dependencies in Pro-
grams for Evaluating Pipeline Performance’, [EEE
Trans. on Comp., Vol. C-36, No. 7, July 1987, pp.
859-875.

[IBM81] IBM System/370 Principles of Operation,
GA22-7000-7, File No. S370-01.

[LAMA86] Lamaire O. R., and W. W. White, The
Contribution to Performance of Instruction Set Usage in

System/370°, Fall Joint Computer Conference, Nov.
1986, pp. 665-674.

[MACD84] Macdougall M. H., ‘Instruction-Level Pro-
gram and Processor Modeling’, Computer, July 1984,
pp. 14-24.

[MATT70] Mattson, R., J., Gecsei, D. Slutz, and 1.
Traiger, ‘Evaluation techniques for storage hierarchies’,
IBM Systems Journal, Vol. 9, No. 2, 1970, pp. 78-117.

[POME87] Pomerene J. H., T. R. Puzak, R. N.
Rechtschaffen, F. J. Sparacio, Pageable Branch History
Table, U. S. Patent 4,679,141, July 1987.

[RYMA82] Rymarczyk J. W., ‘Coding Guidelines for
Pipelined Processors’, Proc. Symp. Architectural Support
for Programming Languages and Operating Systems,
1982.

[SMIT82] Smith A. J., ‘Cache Memories’, Computing
Surveys, Vol. 14, No. 3, Sept. 1982, pp. 473-530.

[SUSS71] Sussenguth E. H., ’Instruction Sequence
Connection’, U. S. Patent 3,559,183, 1971.

[STON8T7] Stone H. S., and D. F. Thiebaut, ‘Footprints
in the cache’, ACM Trans. on Computer Systems, Vol.
5, No. 4, Nov. 1987, pp. 305-329.

[TOMA67] Tomasulo R. M., ‘An efficient Algorithm for
Exploiting Multiple Arithmetic Units’, IBM Journal, Vol.
11, Jan 1967, pp. 25-33.

AUTHORS’ BIBLIOGRAPHIES

All of the authors can be contacted at the following ad-
dress:

IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, New York 10598

PHILIP G. EMMA received his BS, MS, and Ph.D.
degrees in Electrical Engineering from the University of

1057

Illinois. He currently works for the IBM Research Di-
vision in Yorktown Heights, N.Y. His area of special-
ization is high-end processor organization. He holds
numerous patents in this area.

JOSHUA W. KNIGHT joined IBM in 1981 as a
research staff member at the Thomas J. Watson Re-
search Center. Since joining IBM, he has studied high
performance uniprocessor machine organization, system
support for CAD applications and software cache inter-
actions. From 1978 to 1981 he was a Lecturer and Re-
search Associate at Stanford University. He received a
B.S. in Engineering Physics from Cornell University in
1968 and a Ph.D. in Applied Physics from Stanford
University in 1978. Dr. Knight is a member of the ACM
and IEEE.

JAMES H. POMERENE received his BS in Elec-
trical Engineering from Northwestern University in 1942.
He worked on radar at the Hazeltine Corporation until
1946 when he joined the Electronic Computer Project at
the Institute for Advanced Study in Princeton at the in-
vitation of John von Neumann and Herman Goldstine.
He was made Chief Engineer of the project in 1951. In
1956 he came to IBM in Poughkeepsie and was respon-
sible for the design of the Harvest System. In 1966 he led
a small group investigating a highly available system that
resulted in the cache memory in the IBM Model 85
processor. In 1967 he became a Senior Staff Member of
the Corporate Technical Committee and was appointed
an IBM Fellow in 1976. He has since pursued his Fellow
program in Research, concentrating on improvements in
high performance 370 processors. Mr. Pomerene is a
member of the National Academy of Engineering and a
Fellow of the Institute of Electrical and Electronic Engi-
neers.

THOMAS R. PUZAK received a BS and MS in
Mathematics and Computer Engineering from the Uni-
versity of Pittsburgh and a Ph.D. in Electrical and Com-
puter Engineering from the University of Massachusetts.
Since joining IBM in 1970 he has spent nearly the last ten
years working at IBM Research as a Research Staff
Member. His areas of interest include processor design
concentrating in cache and pipeline performance. While
at [BM he has received an Invention Achievement
Award and holds several patents in these areas. Dr.
Puzak is a member of the ACM and IEEE.

RUDOLPH N. RECHTSCHAFFEN received the
B.A. degree (Summa Cum Laude) from Columbia Col-
lege in 1958, and the M.S. and Ph.D. degrees in Math-
ematics from New York University, New York, N.Y. in
1968 and 1970, respectively. Prior to joining IBM in
1963, he held positions with Brookhaven National Lab-
oratories, CEIR Inc., and MITRE Corporation. At IBM
he has held positions in the marketing and the develop-
ment divisions and since 1977 he has been a Research
Staff Member at the IBM T.J. Watson Research Center.
His research has concentrated on elements of processor
design and analysis including cache performance and
pipeline organizations.

