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ABSTRACT

We give an overview of simulation modeling and analysis from
the perspective of prospective users wanting to use simulation as a
decision aid. Important considerations in building simulation
models and analyzing their outputs are discussed. A brief overview
of available software is given. At the end of this tutorial, you should
have a general understanding of simulation and its applicability to
your situation.

1. INTRODUCTION

In today's competitive business climate, careful planning and
analysis of alternative strategies and procedures is essential. In an
effort to derive maximum benefit from available resources,
engineers and business planners have made mathematical and
computer modeling an important part of their planning activities.
Among these modeling techniques, simulation has experienced a
particularly dramatic increase in popularity due to its broad range of
applicability. In this tutorial, we first describe briefly what
simulation is, then we show how simulation models can be built and
used to provide information useful to decision makers.

1.1 Simulation In Decision Making

Simulation is simply the use of a model to mimic the behavior
of a system and thereby gain insight into the performance of that
system under a variety of circumstances. Simulations are often used
to determine how some aspect of a system should be set up or
operated. For example, we may want to understand how the
number of operators working at a phone bank affects the percent of
callers getting a busy signal. To arrive at this understanding, we
would first build a computer model representing the arrival and
handling of calls. This model would use random variables to
replicate variability in quantities such as the time between calls, the
time speaking with an operator, and the time between getting a busy
signal and calling again. Then we would run the model (i.e.,
operate the simulated phone bank), accumulating data on the
individual simulated callers. This data would then be used as a basis
for determining how many operators to use.

Simulation modeling is becoming a popular tool for the analysis
of a wide variety of problems. The most recent growth in simulation
applications has been in the manufacturing area. Almost all major
manufacturing process designs currently benefit from some sort of
simulation analysis of the proposed design. Figure 1 lists a few
questions that can be answered by simulation in the manufacturing
context.

Capacity and Feasibility Questions:

How large must the factory be?

Does the building design include enough elevators?
Comparing Alternatives:

Process jobs according to first-come-first-served priority or

shortest-processing-time-first?

Use materials requirements planning (MRP) or just-in-time?
Trouble Shooting and Fine Tuning:

Will the bottleneck be caused by the grinder or the mill?

What should the inventory reorder point be?

Figure 1. Some Questions That Can Be Answered By Simulation

14

Laurel E. Travis

Department of Finance and Management Science
University of Alberta
Edmonton, Alberta, Canada T6G 2R6

Applications outside of manufacturing also abound. Figure 2
shows a few areas in which simulation has been applied. Possible
performance measures (i.e., variables used to gauge the performance
of the system) are given for each application.

Application Area Performance Measure
Alr traffic control Delays in landing

Bank teller scheduling Customer waiting times
Cash management Interest earned

Harbor management Delays

Location of fire stations ~ Response times

Parking facility planning ~ Cars turned away
Computer Networks Delays

Figure 2. Some Typical Applications of Simulation
1.2 What is Discrete Event Simulation?

We frequently hear of simulation being used for tasks such as
driver training, rocket flight analysis, and weather prediction. These
simulations describe how a system changes continuously over time
in response to continuous controls (such as the turning of the car's
steering wheel) that may vary smoothly through time. In contrast,
discrete event simulation (the topic of this tutorial) describes systems
that are assumed to change instantaneously in response to certain
sudden or discrere events or occurrences. For example, if we were
doing a capacity planning study involving a grain elevator, we might
simulate how the quantity of grain stored changes over the course of
ayear. For this purpose, we would probably model the arrival of a
truckload of grain as a discrete event. In other words we would ig-
nore the fact that the quantity of grain stored changes slowly while
grain is being poured into the storage facility and assume instead that
the grain level jumps up to the new value instantaneously at a spe-
cific point in time. This assumption would be appropriate since we
are modeling the system on a day-by-day, truckload-by-truckload
basis instead of a second-by-second, grain-by-grain basis.

When we choose to model a real world system using discrete
event simulation, we give up the ability to capture a degree of detail
that can only be described as smooth continuous change. In return,
we get a simplicity that allows us to capture the important features of
ina;ny systems that are too complex to capture with continuous simu-

ation.

1.3 Drawbacks and Pitfalls of Simulation

Simulation analysis is not without drawbacks. First, the quality
of the analysis depends on the quality of the model; model building
is an art. Second, it is often difficult to determine the extent to
which an observation made during a simulation run is due to a
significant underlying relationship in the system being modeled or
due to the built-in randomness of the run; simulation results are hard
to interpret. Finally, simulation analysis is usually a time-
consuming and expensive process, and an adequate analysis may not
be feasible within the time available; analytic methods may be better
for "quick and dirty" estimates.

For simulation to be effective, it must be focused on a well de-
fined problem (otherwise we do not know what elements of the
system to include in the model and what information to collect).
Using simulation before a specific problem is articulated may lead to
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a large number of unfocused simulation runs that use inappropriately
designed models, and produce little or no information of value. This
is perhaps the most common pitfall of simulation analysis. To avoid
this all too common waste of time and money, a simulation project
should not be undertaken unless there is a clearly defined question to
be answered or decision to be made. This question or decision
should be used to guide the development and analysis of the
simulation model.

It is also important to use a model with an appropriate level of
detail. Long term planning projects often evolve through a series of
stages with the level of detail increasing at each stage. For example,
questions about overall plant capacity are frequently asked early in
the project when few details about the design are available, and fairly
rough answers may suffice. In this case a simple model is appropri-
ate. On the other hand, questions about the efficiency of different
scheduling rules in an automated manufacturing line can only be an-
swered when the detailed design of the system is finalized and pre-
cise speeds, capacities and part routings are known. In this case a
detailed model is required and a fairly sophisticated analysis of the
simulation output is called for.

When beginning a simulation, it is often tempting to build a
model describing all of the phenomena that are easily observed. For
example, if we want to understand the effect of the reliability of a
given machine on overall throughput in a plant, we may be tempted
to describe in detail how the machine works. This may be
inappropriate, as the level of detail and time resolution required to
completely describe machine operation is different from that of
describing the general pattern of machine failure. It is therefore a
good idea to begin with the simplest possible model that provides the
necessary information. Starting with such a rough model enables
the modeler to describe some of the important relationships in the
system without excessive detail. The insights gained from this
simple model can then be used to aid in the effective development of
a more detailed model.

Although systems of high or low detail can be simulated, many
of the questions that arise at the early stages in a design project may
be answered with sufficient precision using purely analytic
(mathematical) models or specialized computer packages that are not
simulation based. These techniques, when applicable, can be easier
and less costly than simulation.

For example, a simple spreadsheet model may be used initially
to balance a production line so that each station works at approxi-
mately the same rate. Also, there are quick modeling tools that avoid
simulation by using mathematical equations to answer a limited num-
ber of pre-specified questions. One such tool, Manuplan, makes use
of analytical models and numerical approximation to estimate the av-
erage time required for a product to move through a factory.

The advantage of analytic approaches is that they provide very
fast answers to "what-if" type questions. The disadvantage is that
they are often unable to capture all of the important aspects of the
system in question. When such features are ignored, the model may
give results that are off by an indeterminate amount, perhaps 15-
30% or more. Sometimes these rough answers can be quite valuable
if obtained early in the planning of a project. If, however, the level
of precision required and the uniqueness of the system make these
analytical tools inappropriate, simulation must be used. The pitfalls
discussed here, and a few others, are listed in Figure 3.

T. Failure to state a clear objective

2. Failure to frame an answerable question

3. Using simulation when a simple analytic model would suffice
4. Inappropriate level of complexity

5. Bad assumptions in model

6. Misinterpreting simulation outputs

7. Budget overruns

Figure 3. Some Pitfalls in Simulation
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2. ELEMENTS OF SIMULATION MODELING

Our ability to develop simulation models of a wide range of dif-
ferent phenomena is due to the fairly universal nature of the building
blocks on which the models are based. In particular, the representa-
tion of dynamic behavior and the use of random variables are funda-
mental to all discrete event simulations. These two concepts are dis-
cussed in this section.

2.1 Modeling Elementary Random Processes

Our goal is to mimic real life phenomena in the computer. For
example, if we are studying the effect of different repair policies, we
need to generate intervals between machine breakdowns that
represent the intervals observed in the factory. Instead of carrying
out a detailed analysis of the state of each machine in the system so
that we can predict the exact time of specific breakdowns, we use
random variables to mimic the overall pattern of breakdowns
regardless of cause. The time of any one simulated breakdown will
be different from what we observe in real life but the long range pat-
tern of breakdowns should be indistinguishable from the real life
process.

Most simulation models use random variables this way to com-
pensate for our lack of detailed knowledge of what is going to hap-
pen at any one instant in a real life process. Phenomena modeled
this way include choices, quantities, frequencies, intervals and
durations. (Figure 4).

Phe- Example Distribution that

nomenon often describes
phenomenon

Choice- Tossing a coin(heads or tails) Bernoulli

Outcome Quality of product (good or bad)

Frequency | Number of breakdowns per hour | Poisson

Quantity Weight of a shipment Normal

Interval Time between breakdowns Exponential

Duration Time to complete a heart transplant| Erlang

Figure 4. Phenomena Frequently Described by Random Variables

Given a phenomenon that we intend to model with a random
variable, we must select an appropriate probability distribution. The
computer will then be programmed to generate random variates
(observations of random variables) from this distribution for use in
the simulation. The selection of appropriate probability distributions
is critical to the art of model building. If we draw a data set of ran-
dom observations from the distribution we have selected for our
model, we want that data set to be statistically indistinguishable from
empirical observations of the phenomenon we are modeling.

We are frequently asked to simulate situations about which we
have limited knowledge -- we cannot fit a distribution to the data
when there is no data. For example, we may be asked to evaluate
the effect of different scheduling policies in a not-yet-constructed
production system. Many modelers, in this situation, would select
an exponential distribution for the random variable representing
service time simply because this is a distribution that is well known
and easy to work with. This choice, however, might severely
decrease the accuracy of the model since exponential distributions
tend to over-estimate the variability of a process. While incorrect
variability may seem like a minor oversight when the mean of the
distribution is correct, it can in fact cause extremely misleading
results. Systems with lower variability tend t6 run much more
smoothly and have fewer bottlenecks than systems with higher vari-
ability, so using distributions with inappropriately high variability
can lead to pessimistic models and wasteful recommendations.- Thus
we see that selecting appropriate distributions in the absence of good
data requires a great deal of experience and judgement, or the gather-
ing of additional information.

In sum, we use random variables to mimic real world events in
the computer. The choice of probability distributions for these ran-
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dom variables involves collecting data on the real world processes
and fitting distributions to this data. Since the choice of these distri-
butions has a large impact on the validity of the model, it is well
worth the modeler's time and effort to collect good data.

2.2 Describing Dynamic Behavior

Discrete event simulation models are run by tracing events over
time, particularly those events that change the state of the system of
interest. Since we do not normally think of systems in terms of
events and state changes, we usually use a simulation language or
software package that allows us to represent the model more natu-
rally. The computer then translates this to an event oriented
approach (i.e., events and state changes) to actually run the model.
One such "natural” approach, the transaction flow approach, will be
described here.

Many simulations describe how transactions flow through a
block diagram. For example, transactions may represent sub-
assemblies (e.g., car transmissions) and the block diagram may
show how these subassemblies flow from station to station in an
assembly process. As a second example, transactions may represent
customers (e.g., patients at a hospital) and the block diagram may
show how these customers progress through multiple stages of ser-
vice. Using a limited number of standardized building blocks to de-
scribe what happens to transactions, these languages are able to rep-
resent the behavior of a wide range of different systems.

The first block in a model often generates transactions. For ex-
ample, transactions representing individual customers in a waiting
line or queueing system might be generated at random time intervals.
Once generated, a transaction immediately flows through the
diagram until it hits some obstacle that causes it to be delayed.
Eventually, conditions change and the delayed transaction is allowed
to move again. Two important mechanisms that cause the flow of
transactions to be impeded are:

transaction waits for a specified period,

Explicit delays:
transaction is refused entry to the next block.

blocking:

Blocking usually occurs when a transaction wants to use a re-
source that is currently not available. For example, the transaction
may want to receive the attention of a server that is busy serving
somebody else. Since many transactions may be waiting for
service, a running model may contain a large number of transactions
simultaneously.

A feature of the transaction-flow approach is that resources are
not always explicitly shown in the model. Instead, we show how
the resource and the transaction interact. Accordingly, simulation
languages provide blocks to request the use of aresource and blocks
to release control of resources. A block diagram of a single server
queueing model is shown in Figure 5. Instead of explicitly showing
the server, a request for service is represented by the SEIZE block
and the release of the server is represented by the RELEASE block.
This diagram corresponds to a seven line program in the popular
simulation language called GPSS. When run, the program would
simulate the arrival, service, and departure of customers. The
analyst could use the program to collect data on the simulated system
and use this data to make decisions about various system redesign
possibilities.

Several different dialects of GPSS are available. However, the
resulting model would in most cases be almost identical regardless
of which version (such as GPSS/H or GPSS/PC) was used.
Furthermore, since most major simulation languages use very
similar approaches for modeling dynamic behavior; conceptually
similar models would result if one of the other major languages
(such as SIMSCRIPT, SIMAN, or SLAM) were used. These simu-
lation languages all use similar approaches for modeling dynamic be-
havior. (Information on these, and other simulation packages, can
be found throughout this volume and in the references listed at the
end of this paper.)
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Allow cars arriving for
GENERATE service to enter the model
at a specified rate
Mark i
QUEUE ark car for data collection
GARAGE
SEIZE An individual car monopolizes
the mechanic so she is not
MECHANIC available for other jobs
DEPART : 5 i('l.“ollect data on time car waited
oE queue
ADVANCE Car stays here for time it takes
to be serviced
RELE ASE Mechanic is freed to work
MECHANIC on next car
ERMINAT]

Car leaves the shop

Figure 5. GPSS Block Diagram of a Single Server Queueing

Model

In this section we have focused on two basic i
common to all discrete event simulation: the need tsclycu;gi:;cg;fng:
Iz?nd thq nped to describe dynamic behavior. While these
"underpinnings" are the same for all discrete event simulations, their
implementation varies widely. In the next section we will describe
some different types of computer packages used by simulators.

3. SOME SOFTWARE PACKAGES

~ Since it can be exceptionally difficult to capture th i
situation or system on a computer, we try, wh};never ;gsestﬁ)l}e()ftg
design models that draw upon previously developed models and
programs. The more closely we follow a common model, the fewer
choices we have to make. The further we deviate from c’:ommonly

ggc;lie?odels, however, the more difficult the modeling process be-

3.1 Template Packages

On one extreme, with special purpose simulator:
XCELL+, users are shown a model tempfgte giving modei sst.:f:tu?:
and default parameters. After changing a few parameter values, the
model is ready to run. It is not necessary for the modeler to write a
program describing the model structure, since this structure has al-
ready been built into the software. Although these template
packages are convenient if the pre-programmed model accurately re-

flects the problem at hand, th i i
Hects the probl » they are unable to describe many special

_ As an illustration of a template based simulatio
sider the simple pallet loop system shown in Figun;1 g.ysfznsll’a%ogf
processed meat is loaded onto a pallet at the loading station. The
pallet transports the slab to the slicing station on an automated con-
veyor. At the slicing station, the slab is cut into individual slices and
stacked on trays. The trays then move to the inspect station. If a
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problem exists, the entire stack is discarded. Good stacks are
moved to the packing station. Here, stacks are packaged in a
vacuum sealed plastic container. These packages leave the system
and the empty pallet returns to the first work center.

Buffer
Size = 10

Buffer
Size =

10

Loading Tnspection]
station

station

—

._>
Discarded

Infinite Stacks
Buffer
Size Pallet Buffer
Size = 10
Finished
Packages

Figure 6. Simple Pallet-Loop System

This system could easily be simulated using a template system.
If we used one such system, called TBS, we would use several
different templates to describe model elements such as workstations,
parts, part routings, and the material handling system. One of these,
the workstations template, is shown in Figure 7. Note that we
specified limited buffer capacities simply by entering the size of the
buffer in the appropriate field. Also note that unreliable machines
are modeled simply by entering data about the failure and repair
processes. Data is entered in the other templates in a similar manner.
Once all the parameters have been specified, the simulation is ready
to run. Several different reports are produced at the end of the run,
giving the decision maker information such as average time to
produce a package, and work center, buffer, and pallet utilization.
With this information, bottlenecks and problems can be spotted, and
capacity decisions can be made.

Work Capacities Reliability
Index | Center Input | No. of Output | Mean Time | Mean
Name Buffer| Machns Buffer | To Failure | Repair
(Hrs) Time (Hrs)
1 Load 9999 1 0 999,999 0
2 Slice 10 1 0 10 0.25
3 Inspect 10 1 0 999,999 0
4 Pack 10 1 0 999,999 0

Figure 7. Work Centers Template for Luncheon Meats Example

This example is typical of template simulation in that the user
needs to do no computer programming, but the system being
simulated must “fit” the assumptions built into the template package.
TBS, for example, is well suited for modeling the flow of parts
between workstations, but of no use for modeling many other
situations, such as inventory systems.

3.2 Simulation Languages and Animation

Users writing their simulations in a simulation language use
model building blocks such as GENERATE, ADVANCE,
TERMINATE, SEIZE, to specify the flow and logic of their model.
While statements in a simulation language often correspond to activi-
ties in the system of being modeled (ADVANCE, QUEUE) rather
than to activities in the computer (multiply, divide), these languages
have much of the structural flexibility of programming languages.
Simulation languages therefore are appropriate when the modeler re-
quires more flexibility than provided by template packages.

Many simulation languages can be used with graphical user in-
terfaces. These interfaces allow the user to write a simulation pro-
gram by selecting blocks using pull-down menus and a mouse.
Once a block is selected, the user is prompted to supply any
accompanying parameters. The software then puts the blocks
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together in the order they were chosen and inserts any punctuation
needed. to create a simulation program with the correct syntax.
These intérfaces radically change what the model builder views on
the screen, but they do not change the underlying logic or level of
detail of the model; the modeler still requires the same detailed
knowledge of how the model and the language work, and still
retains the flexibility of a simulation language. While many
beginning simulators find these graphical user interfaces an attractive
way to avoid syntax and typographical errors, more advanced
programmers often find it less cumbersome to type the program
directly into a text editor or word processing package.

Software packages for animation of simulation models are also
available for most of the common simulation languages. These
packages allow the modeler to draw pictures representing the trans-
actions and resources used in the model. When the simulation pro-
gram is run, these pictures are used to create an animation that
shows the events taking place in the model.

For example, the modeler might write a simulation program rep-
resenting automatic guided vehicles moving pallets of materials on a
factory floor. When the simulation program has been written, the
modeler draws a static background depicting the layout of the factory
floor and icons depicting the vehicles and pallets. When the simula-
tion program is run, the animation package displays the static back-
ground on the computer screen and moves the vehicles and pallets
through this background as dictated by the simulation program.

It should be noted that animation does not change the nature of
the underlying simulation; it is simply a tool that aids in the debug-
ging and presentation of a simulation model. But it can be a power-
ful tool. When used during program development, animation gives
the programmer a simple overview of the internal workings of the
program, allowing logical errors to be quickly pinpointed and de-
bugging time to be dramatically reduced. When used with a finished
model, animation helps the modeler present results to decision mak-
ers and convince them that the simulation adequately reflects the real-
world system.

Animation, however, is not without pitfalls. Since the creation
of a highly detailed animation can take days or weeks, the modeler
should keep in mind that a rudimentary animation can be as useful as
a visually elaborate one. The amount of time spent on purely aes-
thetic detail should usually be kept to a minimum.

Although the potential for wasted time is a serious pitfall of ani-
mation, even more alarming is the temptation for simulators using
animation to perform little statistical analysis on their finished mod-
els. An animated simulation can give the impression of a completed
project; proposed modifications to the real-life system can be imple-
mented in the simulation and the results can be viewed on the screen.
A simulation project is not completed until the model has been run
many times and the results have been analyzed statistically. This fact
can be difficult to remember when viewing a polished animation;
intuition gathered directly from watching the animation can be
wrong--a single run of the model may give the viewer the
impression that a specific proposed system alteration has a positive
effect when, in fact, random variation caused that particular run of
the model to go smoothly. Animation in no way replaces
responsible, thorough analysis of simulation results.

With or without the support of graphic user interfaces and ani-
mation, simulation languages provide an attractive alternative for the
modeler who has some programming expertise and needs more flex-
ibility that template packages can provide.

3.3 Other Software Tools

Occasionally a situation is so unique that it cannot be effectively
modeled using a template package or simulation language. For ex-
ample, this might occur when complex material handling systems
using fairly elaborate control schemes are simulated. If the control
scheme used is quite complex, it may be cumbersome or even im-
possible to model it using the blocks provided by a simulation lan-
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guage. In these cases general purpose programming languages such
as Fortran, Pascal, or C must be used. Approximately 1000 lines of
Pascal code would be required to implement the simple model de-
picted in Figure 5.

Finally, there are certain discrete event simulation systems that
fall outside our classification scheme. For example, simulation
models can be fully integrated with a factory's production
scheduling system. When this integrated simulation is used, data
giving the current status of the shop floor is input whenever the
model is used. In this way, simulation can produce solutions that
are specific to the problems of that particular day or even that
particular instant.

The three more common types of computer implementations of
discrete event simulation are summarized in Figure 8. Notice that
those packages which allow the user to specify more aspects of the
model are also more difficult to use. Thus a novice simulator will
have less flexibility in model specification than an expert.

For a comprehensive survey of simulation software, see Law
and Haider (1989), or the yearly proceedings of the Winter
Simulation Conference.

Model Interface User Input Flexibility  Typical
Type & Difficulty Tool
Template Menus Parameters Very Low XCELL
Graphical TBS
Simulation  Text Structure High GPSS
Language Editor/ Parameters SIMAN
Graphical ~ Performance SIMSCRIPT
measures SLAM
Programing  Text Structure Very High C
Language Editor Parameters FORTRAN
Performance Pascal
measures
Time Keeping

Figure 8. Four Approaches to Model Representation
4. INTERPRETING SIMULATION DATA

Regardless of the type of software used to perform the
simulation, the use of simulation data for decision making should be
approached with care. Since discrete event simulations are based on
randomness, statistical analysis must be used to interpret simulation
results.

Say, for example, that we are interested in the average time it
takes a customer to get through a service facility. If we simulate this
facility, we can easily record the length-of-stay for each individual
customer during a run, and at the end of the run we can compute the
average length-of-stay for customers in this run. If we run the pro-
gram a second time, the computer will generate different
observations of the random service and arrival times. Since the
events that occur within the simulated system all depend on these
times, the resulting average length-of-stay will be different from the
first run. In fact, every time we run the simulation, we will in all
likelihood observe a different average length-of-stay. We would like
to draw conclusions and make decisions based on the average
length-of-stay, but every time the model is run a different value
results. We are observing values of a random variable whose
distribution we do not know. In other words simulation follows the
RIRO principle -- random input, random output. It is essential to
keep this in mind when interpreting your results. The purpose of
most simulation is to estimate the true mean of the distribution of
these averages and to develop an understanding of its variability.

Since we deliberately introduce randomness at many different
points in most simulation models, it is not surprising that the outputs
from these simulations include randomness. Unfortunately, this
randomness may cause the output from any one simulation to be of
limited value. (Is the observed performance due to chance or is it

18

due to some intrinsic property of the system?) We use statistical
analysis to understand the effects of this randomness. Statistical
tools for data analysis are used in a wide variety of different fields,
and, generally speaking, tools that are useful in one area often work
well in many other areas. However, as we summarize in Figure 9,
several important differences exist between the way statistical tools
are used in simulation and in other settings, and a naive application
of tools that work in other areas, may give very misleading results
when used to analyze simulation data.

Other Contexts Simulation
Data collection May introduce errors | perfect
Outliers Present None
Randomness Assumed Under user control
Replications Not always possible | Under user control
"Noise" May have unknown|Fully accounted for
origin
Scenarios May not be con-|Under user control
trollable
Underlying model | Unknown Fully specified.

Figure 9. How Simulation Experiments
Statistical Experiments

Differ From Other

4.1 Performance of a Single System

Say, for example, we want to determine whether the long run
average length-of-stay in a system is greater than or less than 10.
Perhaps we have run the model 20 times and collected this average
during each run; for some runs the average was below 10, for some
above. The overall average of these averages came out to, say 10.3.
Can we conclude that the overall long-run average (i.e., the true
mean) is greater than 10, or would additional replications be likely to
reverse this conclusion? Questions such as this are generally ap-
proached using statistical techniques such as confidence intervals
and hypothesis testing. Simulation data, however, often present
difficulties that make the computation of meaningful confidence
intervals somewhat involved.

4.1.1 Autocorrelation

Most simple statistical data analysis techniques require that the
data be observations of independent, identically distributed random
variables. Raw simulation output data often does not satisfy this as-
sumption. Say, for example, we are collecting data on the time it
takes for a customer to wait in line at a busy cash register.
Individual data points represent waiting times for individual cus-
tomers. Two consecutive customers, due to their proximity, often
wait for the same people ahead of them in the line. Consequently
these two are likely to have similar waiting times; the corresponding
data points are not independent (they are positively autocorrelated).
The difference in the pattern of consecutive observations of
independent and positively autocorrelated data is shown in Figure
10. Observe how there is no obvious pattern in the independent data
while large (and small) values tend to be clustered together in the
positively autocorrelated data set.

This lack of independence between consecutive data points is an
example of autocorrelation, a property of most simulation output
data. Since autocorrelated data does not satisfy the assumption of

independence, naive application of conventional statistical techniques
will lead to misleading results.

Changes often occur more slowly in positively autocorrelated
data. If we ignore this, and naively compute the sample variance
from a simulation data set, this estimate of variance is usually less
than the true variance of the system. Confidence intervals based on
small variance estimators are too narrow, and they may lead us to
believe that our simulation results include much less error than they
actually do. The actual percentage of time that a procedure for com-
puting confidence intervals includes the true mean is referred to as
the coverage of that procedure. The coverage of confidence intervals
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is often quite poor if the data is positively autoccrrelated and that fact
is ignored.
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Figure 10. Two Types of Simulation Output Data

Several techniques have been developed for computing confi-
dence intervals based on autocorrelated simulation data. Perhaps the
simplest of these techniques, the method of batch means, is based on
a simple idea. Assume, for example, that we have a data set
composed of the time in the system for each of the first 12,000
customers in a simulation of a single server queueing system. We
partition these 12,000 observations into twelve batches each
containing one thousand consecutive observations. We then
compute the average value of the observations in each batch, and
base our confidence interval computation on this new twelve point
data set. Our hope is these twelve averages (called batch means) are
sufficiently independent to make the resulting confidence interval
meaningful.

In Figure 11 we show that the coverage of batch means
confidence intervals is substantially better than the coverage of the
confidence intervals that result when the autocorrelation is simply
ignored. To generate the data in this figure, an M/M/1 queueing
system with different levels of utilization was simulated.
Confidence intervals for the mean time in the system were
computed, using a total of 12,000 departures to compute each
interval. For the batch-means intervals, one thousand departures
were used for each batch mean. Each point shows the fraction of
100 90% confidence intervals that contained the true mean.

We see that the batch means technique worked reasonably well
for server utilization up to about 85% but that the coverage rapidly
deteriorated as the utilization increased beyond this point. We also
see that the coverage of conventional confidence intervals (computed
without assuring that successive data points are independent)
decreased at a constant rate regardless of server utilization. Thus we
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conclude that if the data set has significant autocorrelation (as in the
case of time-in-system data for a queueing system), we should never
compute confidence intervals straight from the original data. Batch
means analysis can be used with reasonable accuracy unless the
autocorrelation is very high (in our data, high autocorrelation was
caused by high server utilization). More sophisticated techniques
compensate more effectively for high autocorrelation. While outside
the scope of this tutorial, some of these output analysis techniques
are discussed elsewhere in this volume.
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Figure 11. Coverage of Some 90% Confidence Intervals
4.1.2 The Initial Bias

Unfortunately, autocorrelation is not the only property of
simulation data that makes analysis challenging. Another such
property is known as the initial bias.

We often want to use simulation to evaluate the performance of
fairly crowded and busy systems. For example, we may want to
simulate an assembly system with fourteen different stations and
several hundred parts in process at one time. It is often convenient
to start such simulations with an empty model (i.e., no parts at any
of the stations). This does not seem to be too unreasonable, since
the model will quickly "fill up" and reach a representative state.
Unfortunately, unless properly handled, this practice may cause
serious distortions in the data that we collect. Since the first
simulated parts flowing through the system encounter little or no
congestion, these parts have shorter than average transit times. By
including these values in our data set, we bias the average transit
time downward.

To show the impact of initial bias, we computed five separate
confidence intervals for the mean time-in-system for a simple
queueing system. The data for each confidence interval was
collected using a different number of replications, and a different
number of simulated departures per replication (see Figure 12).
Notice that each confidence interval was based on the same total
number of departures. We did not take any special measures to
eliminate initial bias.

To compute the first confidence interval, we ran 240
independent replications of our simulation, each starting with an
empty system, and for each replication we computed the average
time in the system. These 240 independent averages were then used
to estimate a confidence interval for the true mean of the time in the
system.
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Trial Number Number of Departures per  Total Number
Replications Replication of Departures

1 240 50 12,000

2 120 100 12,000

3 60 200 12,000

4 30 400 12,000

5 15 800 12,000

Figure 12. Number of Replications and Departures per Replication
for Each of Five Separate Confidence Interval
Calculations.

We then repeated the entire process four more times, using a
different number of replications each time (but each time using the
same total number of observations). The resulting confidence
intervals are shown in Figure 13. For comparison, we have also
computed the true mean of our performance measure (mean time in
system) using queueing theory and included it on the graph.

We see that the first confidence interval (based on the fifty
departures per replication) gives information that is very precise
(since the confidence interval is narrow), but also very incorrect
(since the interval is very far away from the true mean of 9.0
minutes). The analyst who made the mistake of believing this
computation would have a result that seemed quite convincing but
was, in fact, off by approximately a factor of three. This disturbing
miscalculation is a consequence of initial bias. As the number of
departures per replication increased, however, the confidence
interval moved towards the true mean (since the effect of the initial
bias was only present in the early observations of each run).
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Figure 13. Effect of the Initial Bias.

We see that failure to take into account the effect of the initial
bias can lead to very serious estimation errors, especially when the
simulation runs are short. The easiest way to reduce the effect of the
initial bias is to run the model for a suitable length of time before
beginning data collection. Other more sophisticated techniques for
compensating for initial bias can be found elsewhere in this volume.

4.2 Comparing Designs

Simulations are often used to compare the performance of dif-
ferent potential solutions to a problem. This requires careful
planning. Since the observed value of a performance measure for
any single simulation run may be thought of as a random variable,
the observed difference between the performance of multiple sys-
tems will also be a random variable. Say we are interested in
comparing system A to system B, and we run a computer simulation
of each. If the simulated performance of system A is slightly better
than that of system B, can we conclude that this difference is due to

a genuine difference between the systems, or might it only be caused
by the inherent randomness of our simulation runs? Careful analysis
is necessary to see if this performance difference is statistically sig-
nificant. This type of analysis can answer questions such as the
following:

One decision variable:
Which system has the fastest response time?
Is throughput increased if the buffer size is increased 10%?
What is the optimal size of my maintenance crew?

Two decision variables:
Does throughput change when scheduling rules and buffer
sizes change?
What is the best combination of order-point and order
quantity ?

Many decision variables:
What factors affect throughput?
What staffing pattern, truck routing and fire station
territories minimize response time?

As an example, recall the simple pallet loop system discussed
earlier. A decision maker involved in the design of such a system
might have two potential configurations in mind. These two
configurations might differ, say, in the number of machines and
buffer space at each work center. The decision maker may wish to
know which of these systems is likely to produce a higher
throughput in the long run.

Say we simulated the two potential setups and ran each
simulation ten times collecting throughput data for each replication.
We might for example get an average throughput of 1117 packages
per hour for the first setup, and 1178 packages per hour for the
second. Do we then conclude that, since 1178 > 1117, the
throughput will, on average, be higher for the second setup and
therefore this setup should be used? Shall we, on the other hand,
say that the observed difference between the averages is too small to
be conclusive given that only ten replications were made and
additional runs might give the opposite answer?

We generally use hypothesis testing to answer questions such
as these. In this example we would start from the hypothesis that
the two setups result in the same average throughput, and then if our
data provides strong enough evidence, we would reject this
hypothesis, and conclude that the average throughput does indeed
depend on which setup we use.

Sometimes our data does not provide enough evidence to reject
the hypothesis we have stated, and the analysis is therefore in-
conclusive. This inconclusiveness is either due to the fact that there
indeed is no difference in performance, or, it could be due to the fact
that the variance in the observed data was too high (i.e., the data was
too "noisy" for us to extract useful information from a data set of
this size). If the observed difference was due to the built-in
randomness of the model, then we could either perform many more
(perhaps expensive) simulation runs or we could use special
techniques called variance reduction techniques to strategically
collect a data set that is likely to be more conclusive.

In Figure 9 we pointed out that there are a number of important
differences between simulation experiments and other statistical ex-
periments. One of the most important of these is the fact that the
random behavior observed in simulation experiments is completely
under our control. There are many ways in which we can exploit
this to increase the information gained in a simulation experiment.
For example, we can use identical "random" streams of customers to
evaluate two different management policies. Since the random
factors are identical in the two simulations, the observed differences
are more likely to be due to intrinsic differences between policies.
Data collected using this technique is more likely to yield a
conclusive statistical analysis.
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_ Techniques such as the one described above are referred to as
variance reduction techniques. Their use can significantly reduce the
data requirement (and hence the cost) of many simulations. Variance
reduction requires a thorough understanding of simulation and
statistics; information on this topic can also be found in this volume.

We have seen that the RIRO principle (random input, random
output) has implications critical to the interpretation of simulation re-
sults. Observed differences between individual runs of two simu-
lated systems do not necessarily imply actual performance dif-
ferences between the two models. Many replications of the simula-
tion runs, careful data analysis, and perhaps variance reduction
techniques, are required to get conclusive results.

In sum, since performance measures generated by simulations
are random, any decisions made from simulation generated data
must be based on statistical inference. However, simulation data
often does not satisfy the assumptions underlying the most common
techniques for computing confidence intervals and performing
hypothesis testing. Application of inappropriate statistical
techniques may lead to misleading conclusions and hence expensive
errors in policy. Consequently, a great deal of effort has been
devoted to the development of valid, efficient techniques for
extracting information from simulation data.

5. SUMMARY

We have attempted to provide an introduction to the uses of
simulation, the underlying concepts, and the types of computer
packages available to the analyst. While some of these tools require
significant expertise and experience, others are quite accessible to the
novice. Some guidelines for the beginning analyst are:

1) Define your objectives before simulating.

2) Use the correct level of detail -- begin with a simple
model.

3) Select software that is appropriate for your problem, level
of experience, and time frame.

4) Remember that simulation results are observations of ran-
dom variables, and learn to interpret your results ac-
cordingly.

We have also pointed to a few of the many technical considera-
tions involved in effective simulation. Finally some useful
references are given in the following bibliography.
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