Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

PARALLEL SIMULATION OF THE SHARKS WORLD PROBLEM!

Rajive L. Bagrodia
Wen-Toh Liao

Computer Science Department
University of California at Los Angeles
Los Angeles, California 90024

ABSTRACT

The Sharks World problem has been suggested as a suit-
able application to evaluate the effectiveness of parallel simu-
lation algorithms. This paper develops a simulation model in
Maisie, a C-based simulation language. With minor modifica-
tions, a Maisie program may be executed using either sequential
or parallel simulation algorithms. The paper presents the results
of executing the Maisie model on a multicomputer architecture
using the space-time simulation algorithm.

1. INTRODUCTION

Parallel simulation refers to the execution of a simulation
program on a parallel (or distributed) architecture. A number
of algorithms [Misra 1988; Chandy and Sherman 1988a, 1989b;
Reynolds 1982; Jefferson 1985], broadly classified into conser-
vative and optimistic categories, have been suggested for paral-
lel simulation. Simulation and empirical studies have been de-
vised to evaluate the performance of various algorithms on both
shared memory and message-passing architectures [Reed et al.
1987; Fujimoto 1988a, b; Su and Seitz 1989; Jefferson et al.
1987; Chandy and Sherman 1989a]. The primary goals of the
studies have been to determine whether (variations of) some al-
gorithm may be used to minimize simulation overheads for a
specific architecture and/or a set of applications. A number of
simulation languages have also been developed to facilitate the
design of parallel simulations. Most languages were designed to
work with a specific parallel simulation algorithm. Examples
include RISE [Marti 1988], ModSim [West and Mullarney, 1988]
and TWOS [Jefferson et al. 1987] which only use optimistic al-
gorithms and an Ada-based environment [Sheppard et al. 1988]
which uses a conservative algorithm. A few languages like Maisie,
were designed to be algorithm-independent, in that the simu-
lation program may be executed using a variety of algorithms.
With minor modifications, Maisie programs may be executed
using either a sequential simulation algorithm or a parallel al-
gorithm based on null messages [Misra 1986], conditional events
[Chandy and Sherman 1989a] or optimistic space-time computa-
tion [Chandy and Sherman 1989b].

This paper has two goals: develop a Maisie model of the
sharks world problem and present the results on the execution of
the model on sequential and parallel architectures. The sequen-
tial implementation of Maisie used a single event-list and a global
simulation clock. The parallel implementation was executed on
a multicomputer architecture using the space-time simulation al-
gorithm [Chandy and Sherman 1989b]. The Maisie program for

t

This research was partially supported by a grant from NSF (CCR 88
10376)

191

both implementations was essentially identical. The next sec-
tion describes some important features of the Maisie simulation
language. Section 3 gives a brief description of our implemen-
tation of the space-time simulation algorithm and also discusses
parallel execution of Maisie programs. Section 4 describes the
sharks world problem and the Maisie model. Section 5 presents
the experimental results of executing different configurations of
the model on sequential and parallel architectures. Section 6 is
the conclusion.

2. MAISIE SIMULATION LANGUAGE

Maisie [Bagrodia and Liao 1990] is a distributed simulation
language derived from May [Bagrodia et al. 1987]. The central
construct in the language is the notion of an entity. A Maisie
entity-type models physical objects (or a collection of objects) of
a given type. An entity-instance, henceforth referred to simply
as an entity, models a specific object in the physical system.
Interactions among the physical objects are modeled by message
exchanges among the corresponding entities.

An entity is created dynamically on a specific processor and
cannot be migrated subsequently. Communication among the
entities is based on buffered message-passing. Every entity has a
unique message-buffer. A message is deposited in the message-
buffer of an entity on the execution of an invoke statement. Each
message carries a timestamp, which corresponds to the simula-
tion time at which the corresponding invoke statement was ex-
ecuted. Messages sent by one entity to another are delivered to
the destination buffer in FIFO order.

An entity accepts messages from its message-buffer by ex-
ecuting a wait statement. The wait statement has two compo-
nents: an integer value called wait-time (¢.) and a Maisie state-
ment called a resume block - a (non-empty) sequence of resume
statements. A resume statement is like a guarded command,
where the guard consists of a message-type (say m,) and an op-
tional boolean expression(say b;). A resume statement is said
to be enabled if the message-buffer contains a message of type
m., which if delivered to the entity would cause b; to evaluate to
true; the corresponding message is called an enabling message.
If the buffer contains one or more enabling message, in the most
commonly used form of the wait statement, the message with the
earliest timestamp is removed from the buffer and delivered to
the entity. If two enabling messages have the same timestamp,
they are processed in an arbitrary order. The only exception is
in the case of a timeout message (this special message-type is de-
scribed below) which is delivered to an entity only if the buffer
does not contain any other enabling message. By selecting the
guards appropriately, the wait statement may be used to ensure
that an entity accepts a message from its input buffer only when
it is ready to process the message.

R.L. Bagrodia and W.T. Liao

On the execution of a wait statement, if the buffer does not
contain any enabling messages, the entity is suspended for a maz-
imum duration equal to its wait-time t.; if omitted, ¢, is set to an
arbitrarily large value. If no enabling message is received in the
interval t., the entity is sent a special message called a timeout
message. An entity must accept a timeout message that is sent
to it. A non-blocking form of receive may be implemented by
specifying ¢,=0.

If a wait statement contains exactly one resume statement
and its guard specifies timeout as the message-type, the entity
will resume execution only when it receives a timeout message af-
ter the wait-time specified in the statement has elapsed. As this
timeout message cannot be canceled, it is referred to as an un-
conditional timeout message. Wait statements that schedule an
unconditional timeout message are used frequently and are often
abbreviated by a hold statement. The example at the end of the
section illustrates their use in a simulation. If the wait statement
contains multiple resume statements, only one of whose guards
include timeout as the message-type, the entity may resume ex-
ecution on the receipt of a message other than timeout. Thus,
the timeout message scheduled by such statements is referred to
as a conditional timeout message.

As a simple example, consider the simulation of a preempt-
ible priority server in Maisie. In the physical system, the server
receives two types of requests, respectively referred to as high and
low, where the requests of the first type have a higher priority
and can interrupt the server if it is currently serving a request
of type low. Figure 1 and figure 2 describe the Maisie model of
the system. In the interest of brevity, the program ignores issues
concerned with simulation initiation and termination.

entity server{cmeanh,cmeanl}
int cmeanh,cmeanl;
{ int hent = 0, lent = 0, remtim, lostart;
message high;
message low;
while (true)
wait until
{ mtyp(high) : {hold(ezp(cmeanh)); hent++;}
| mtyp(low) :
{ lostart= clock(); remtim= ezp(cmeanl);
while (remtim>0)
wait remtim until
{ mtyp(high) : {
remtim-=clock()-lostart;
hold(ezp(cmeanh)); hent++;}
| mtyp(timeout) : {remtim=0; lent4++;

}
}

Figure 1. Maisie Model of Priority Server

Entity-type server models the priority server and hisrc and
losre respectively model the sources for the two types of requests.
The server entity defines two types of messages, high and low, to
represent the two types of requests that may be received by it.
Henceforth, we will use high message to mean a message of type
high; similarly for low. The body of the entity consists of a wait
statement in an infinite loop. When idle, the entity accepts the
next message from the buffer by executing the wait statement. If
the buffer is empty, it waits indefinitely for the next message. If

192

entity hisrc{srvrid,meanh}
e_name srvrid; int meanh;
{ while (true)
/* delay entity by inter-arrival time */
{ hold(ezp(meanh));
invoke srvrid with high;
}

entity losrc{srvrid,meanl}
e_name srvrid; int meanl;
{ while (true)
{ hold(ezp(meanl));
invoke srvrid with low;
}

}

Figure 2. Maisie Model of High and Low Source

the entity accepts a high message, it executes a hold statement to
schedule an unconditional timeout message for the future time at
which the service of the request will be completed. On receiving
the timeout message, it simply increments the count of requests
that have been serviced and reexecutes the wait statement. If the
entity services a low message, it schedules a conditional timeout
message; this message will be automatically rescheduled, if the
entity receives a high message in the interim. In this case, the
high message is again processed by executing a hold statement,
after which the service of the low message is resumed. The service
time for a message is sampled from an exponential distribution.

The two source entities simply generate appropriate requests
at periodic intervals sampled from an exponential distribution.
The hold statement in each source is used to delay the entity
by the appropriate time-interval; after the time has expired, the
entity sends the appropriate request message to the server.

The next section discusses parallel execution of this program.
In particular, it considers the execution of this program using an
optimistic simulation algorithm.

3. PARALLEL EXECUTION OF MAISIE

In principle, a Maisie program may be executed using ei-
ther conservative or optimistic algorithms. This paper studies
the performance of Maisie programs when executed using the
space-time simulation algorithm [Chandy and Sherman 1989b).
In this section, we briefly describe the space-time algorithm and
our current implementation.

In the space-time paradigm, multiple logical processes (Ip)
may be used to simultaneously compute the state of a physical
process at different points in time. We use the terms lp and
entity interchangeably. Let T be the upper bound on the time
for which the system is to be modeled. Let p™¥ refer to the lIp
responsible for the simulation of some physical process in the
interval [, ty), t; < ty; exactly one lp computes the behavior
of a physical process for every ¢ in [0,T]. A precedence relation,
symbolized by ~+, is defined between two lp, where p*¥~sg=1 % if
and only if the state of q™%* depends on the state of p™¥ or on
some message received from p*¥. If p™¥~sq™ % | we say that p=Y
is a predecessor of ¢®*¥ and q*''*¥ is a successor of p™Y. Note
that although the exact predecessor or successor set for an lp
cannot be determined a priori, a loose upper bound on these sets
can typically be determined (a trivial bound is the entire set of

Parallel Simulation of the Sharks World Problem

Ip in the system).

Given that the preceding set of lp is executed on a distributed
architecture, the correct state of each lp is computed by using
the following iterative strategy: given some state for its prede-
cessor lp, an lp computes an estimate of its final state. During
this computation, it generates a (possibly empty) sequence of
messages for each of its successors. The message sequence is
sent to each successor after a process has computed its final esti-
mated state. When a process gets a message sequence from one
of its predecessors that is different from the one it received in
its previous iteration, the process recomputes its behavior. This
procedure is repeated until eventually the computation reaches
a fixed-point where further execution of any process does not
change its state, and the computation is said to have converged.
A complete description of the algorithm and sufficient condi-
tions for the convergence of the computation may be found in
[Chandy and Sherman 1989b).

We now consider parallel execution of Maisie using this algo-
rithm. In a Maisie program, each entity is created on a specific
processor. Entities mapped to the same processor are executed
sequentially and those mapped to different processors are exe-
cuted using the space-time algorithm. To implement this algo-
rithm, the run-time system must perform the following major
tasks:

o clicckpointing and recomputation of an entity.

o creation of multiple incarnations of an entity to compute
the state of the corresponding physical process at different
points in time.

o synchronization of entity incarnations.

e convergence detection to determine the time upto which
the simulation has been computed correctly.

As algorithm-independence is a primary goal of Maisie, each
of the preceding tasks was implemented transparently by the run-
time system. Different strategies may be used to implement the
preceding tasks. For instance, the state of an entity may be
checkpointed after every event or may be done less frequently.
Convergence detection may be done synchronously or using an
asynchronous algorithm. Each of these decisions impacts the
execution efficiency of a Maisie program. In this section, we
describe the current implementation. Alternative strategies are
discussed in section 5.

The run-time system checkpoints an entity after process-
ing any message other than a timeout message. Recomputa-
tion is initiated whenever the timestamp on a message deliv-
ered to an entity’s message-buffer is smaller than the timestamp
on the last message processed by the entity. As explained in
[Bagrodia and Liao 1990], this recomputation strategy reduces
rollbacks for some applications.

In the current implementation, at most two incarnations ex-
ist simultaneously for every entity. Let p®¥ and p¥* be the two
incarnations that respectively execute the entity over two succes-
sive time-periods, [tz,t,) and [t,t.). In a given iteration, both
p®" and p¥* are executed one after the other; however, the output
message sequence generated by the execution of p®¥ is transmit-
ted before execution of p¥~ is initiated. The two incarnations are
executed repeatedly until p*¥ converges, at which point, another
incarnation of the entity is created. Let LP, refer to an incar-
nation of some entity. Convergence detection is merged with
message communication among the incarnations as follows. Let

193

e S be the sequence of messages generated by LP, in its ith
iteration.

o R! be the sequence of messages received by LP, after exe-
cuting its it* iteration.

On receiving R, from all its predecessors, LP, executes its (i+1)*
iteration. It then sends the suffix of Si+! that is different from S}
together with the time ¢ upto which consecutive sequences were
identical, to each of its successors. The timestamp t. is simulta-
neously broadcast to other processes in the system and is used
by every Ip to compute the time upto which the entire simula-
tion has converged (also referred to as GVT in the Time-Warp
system). Note that each of the preceding tasks is transparent to
the programmer.

Consider parallel execution of the priority server simulation
described in the preceding section. Assume that the server, losre
and hisrc entities are created on different processors. Figure 3
demonstrates entity creation. The new statement is used to cre-
ate a new instance of an entity-type; the at clause is used to
specify the processor on which the entity is created. If omitted,
the entity will be created on the same node as the creator entity.

entity main {};

{e_name h1,l1,s1;
sl=new server{10,10} at proc,;
hl=new hisrc{s1,10} at procs;
l1=new losrc{s1,10} at proc.;

Figure 3. Entity Creation

For the source entities, the run-time system can transpar-
ently detect that the entities do not receive any messages other
than timeout. This implies that these entities can never be rolled
back, and their states need not be saved (this optimization is not
currently implemented in the system). The optimistic execu-
tion of the server entity is interesting. Unlike other optimistic
systems, the server entity does not generate a service completion
message when it starts to process a low message. Rather it sched-
ules a conditional timeout message, which will be generated, only
if the entity buffer does not have a high message with an earlier
timestamp. This ensures that optimistic execution is initiated at
a processor only when no messages remain to be processed.

4. SHARKS WORLD PROBLEM

The physical system consists of a 2-dimensional toroidal
ocean that contains two types of creatures: sharks and fish. Each
creature moves with a constant velocity. The lifetime of a fish
is simple: it continually swims in the ocean until it gets eaten
by some shark. A shark’s life is slightly more interesting: when-
ever it is within a specific radius e of some fish, it eats the fish.
Initially, the sharks and fish are assumed to be uniformly dis-
tributed in the ocean. We will use ny and n, to respectively refer
to the initial number of fish and sharks in the ocean.

The model makes the following simplifying assumptions:

o All creatures are point objects
e Collisions between like creatures have no effect

o Eating is instantaneous

R.L. Bagrodia and W.T. Liao

o If afish may simultaneously be eaten by two or more sharks,
any (and only one) shark (chosen non-deterministically)
eats the fish.

If the creature velocities are assumed to be static, the simula-
tion program is straightforward: initially, for each fish, compute
the earliest time at which it will be within the attacking range
of some shark. As the creature velocities remain constant, the
attack times cannot change. The simulation may then be exe-
cuted by simply stepping through the kill events in their correct
chronological order. However, in a more realistic model, the shark
and fish velocities may change dynamically. In this case, for ev-
ery change in the velocity of say a shark, the attack time for all
the fish in the system must be recomputed. If the total number
of creatures in the system is large, this operation is expensive.
One way to reduce the computation is to divide the ocean into a
number of sectors and have each sector compute its earliest kill
event. A change in the velocity of a shark will then affect only
the fish that lie within the sector. Division of the ocean into
sectors also permits the simulation to be executed on parallel
architectures, where each sector may potentially be executed on
a separate node. Multiple sectors, however, introduce additional
events involving the entry and exit of creatures among the sectors
as also the problem of handling fish that may simultaneously be
visible to sharks in multiple sectors. We describe how the model
with multiple sectors is programmed in Maisie.

4.1 Maisie Model

In developing the Maisie model, the aim was to design an
efficient program that is not biased towards a specific simulation
algorithm. Other things remaining the same, the efficiency of a
Maisie program is determined by the number of events generated
in the system and the amount of computation performed for ev-
ery event. As described subsequently in this section, the Maisie
model does not generate duplicate events or include extraneous
computation for a particular event.

Each sector in the ocean is modeled as a separate Maisie
entity. Creatures are represented by appropriate data structures
within the corresponding sector. Each sector entity contains two
lists, slist and flist which contain the respective creatures that
are visible (as defined subsequently) to the sector. The movement
of a creature from one sector to a neighboring one is modeled
by appropriate message transmissions between the corresponding
sector entities.

Due to the non-zero attack range of a shark, a fish in one sec-
tor may be killed by a shark in a neighboring sector. To minimize
the synchronization that would otherwise be necessary between
neighboring sectors, we extend the boundaries of each sector by
a in all directions. The region within the extended boundary will
be referred to as the sphere of influence or soi of the sector. This
creates regions of the ocean that lie within the soi of multiple
sectors with any fish in the region being simultaneously visible
to the corresponding sectors. However, at any time, the fish may
physically be in exactly one sector, which is referred to as the
owner. Figure 4 shows a region with four sectors in which the
western sot line of sector S2 and northern so: line of S4 have
been marked. In the figure, fish f1 is visible only to sector S1, {2
to sectors S1 and S2 and f3 to all four sectors. All three fish are
owned by S1. Note that a shark is always visible to and owned
by, exactly one sector. A fish is in the flist of a sector, if and only
if it is within the sector’s soi. A shark is in the slist if and only
if it lies within the sector boundaries. The major tasks processed

194

North sof _______ I D North soi
of S3 of. of S4

S3 S4

West soi
of S4

Figure 4. Sphere of Influence

by each sector are as follows:
o death of a fish that is within the soi of the sector.
e arrival and exit of a shark to and from the sector.
e arrival and exit of a fish to and from the soi of a sector.

We first consider creature arrivals. When a shark enters a
sector, the program computes ., the time at which the shark will
exit the sector, and tx, the earliest time at which some fish from
the sector’s flist will be within the attacking range of the shark.
If t,<t,, both the kill event and exit event are scheduled for the
shark; otherwise only the exit event is scheduled. Similarly, when
a fish enters the so: of a sector, the simulation computes #, ¢,
and t,, where t; is the earliest time at which the fish will be
within the attacking range of some shark from the slist, ¢, is the
time at which the fish will exit the sector’s so7, and t, refers to
the time at which the fish will cross the soi boundary of some
neighbor that it was not visible to earlier (a fish may cross upto
two such boundaries). If t;>t, an exit event is scheduled for
the fish, otherwise the kill event is scheduled. In addition, the
appropriate number of soi crossing events, henceforth referred to
as vigibility events, are scheduled. Note that at most one future
event can be scheduled for each Maisie entity. The preceding
events for each creature are scheduled in an internal queue, the
earliest among which is then scheduled as the next event for the
entity.

For each creature arrival, t, ¢, and ¢, may be computed by
using simple coordinate geometry. Given the current position and
velocity of a shark and a fish, a quadratic equation can be set up
and solved to determine the time at which the fish will be within
attacking range of the shark. To compute t,, the time taken
by the creature to cross both the horizontal and vertical sector
(or soi) boundary is computed and t, is set to the minimum of
the two times. Additionally, the velocity of the creature is used
to determine the neighboring sector to which the creature will
exit. We now consider how each of the three events, kill, exit
and visibility are handled in the simulation.

First consider the kill event. Assume that a shark in sector s;
kills some fish f;. If f; is not within the soi of any other sector, s;
simply removes f; from its flist and updates the statistics. If f; is
in the soi of multiple sectors, the kill event must be broadcast to
other sectors. This is accomplished as follows: sector s; removes
the fish from its flist and sends a kill message to the sector s,
that owns the fish. (Recall that every fish has a unique owner
sector.) On receiving this message, s, removes f; from its flist,
and sends a delete message to all sectors, other than s;, that have
f; within their soi. If a sector receives a delete or kill message and
the corresponding fish is in its flist, it is removed; otherwise the

Parallel Simulation of the Sharks World Problem

message is ignored. Note that in a parallel implementation, two
or more sectors may simultaneously kill a given fish. We prove
that the preceding implementation guarantees that eventually
each fish is ‘killed’ at most once in the simulation.

Assume sectors s; and s; simultaneously kill a fish f; at times
t; and t; respectively. Assume that f; is owned by s, at time ¢,
and by s, at time ¢;, When processing the kill event, both s;
and s; will remove {; from their flist and send a kil message for
f; respectively to s, and s,. Assume t;<t;. On receipt of the
kill message from s;, s, will remove f; from its flist, and send a
delete message timestamped ¢; to every sector that contains f; in
its flist. At t;, f; must be in the soi of s;. If not, the visibility
event for s; was scheduled erroneously and will eventually be
canceled, causing the kill event for f; scheduled by s; to also be
cancelled. If f; is in the soi of s; at ¢, s; must eventually receive
the delete message from s,. Receipt of this message will cause
's; to be reexecuted transparently. In its recomputation, s; will
process the delete message at time t;. As a result it will remove
f; from its flist and unschedule its own kill event for the fish. The
preceding argument also holds if t;<t;.

Assume t;=t; it follows that s,=s,. Without loss of general-
ity, assume s, first receives the kill message form s;. Once again
so will send a delete message to s; and subsequently discard any
kill message it receives from s;. As t;=t;, on receiving the delete
message s; will not be rolled back. In any case, as it had removed
f; from its flist when processing its own kill event, it simply dis-
cards the delete message. Since each kill is registered only by
the owner sector, f;’s kill is registered exactly once by s,, on its
receipt of the first kill message.

We show that subsequent rollback of any process results in
a consistent eventual state for each sector. Suppose that s, is
rolled back, such that in its reexecution it receives the kill mes-
sage from s; before that of s;(recall that messages with the same
timestamp may be processed in arbitrary order). Sector s, will
behave exactly as described in the previous paragraph, except
that it will send the delete message to s;. Once again, s; will sim-
ply discard the message. Instead of s,, assume s; is rolled back
and reexecuted such that it receives the delete message sent by s,
before it processes its own kill event. In this case, the situation is
identical to that described for the case when t;<t;. Reexecution
of s; can similarly be shown to result in a consistent handling of
the kill event for f;.

We next consider the exit event. When a shark exits a sector,
it is removed from its slist and an appropriate arrival message is
sent to the neighboring sector to which it exits. Similarly, when
a fish exits the sot, it is removed from the sector’s flist; however
the arrival of a fish in the soi of a neighbor must be handled
differently from the arrival of a shark.

The simultaneous visibility of a fish to multiple sectors com-
plicates the arrival event for a fish. In general, it is desirable to
schedule exactly one visible message for every fish in the soi of a
sector. A naive implementation may generate a visible message
whenever a fish crosses an so1 or sector boundary of a sector and
thus generate multiple visible messages. As each visible message
initiates a chain of computation, it is desirable to generate ex-
actly one visible message for the entry of a fish into a sector’s
sot.

In order to avoid duplicate messages, we distinguish between
the entry of a fish to a sector and to its so:. When a fish enters a
sector’s soi, the program computes only tx and ¢, and schedules
one or the other event as discussed earlier. Computation of %,
is done only when and if a fish enters a sector (as opposed to

195

the soi). How does a sector determine that a fish will enter
its boundary? The sector that sends a visible message simply
includes the id of the sector (if any) to which the fish will exit.
Alternately, to conserve memory, this may be calculated by a
sector on receipt of the visible message. (Note that if a fish enters
a sector s;, s; must have received a visible message earlier).

When a visibility event occurs, appropriate messages must
be sent to the sectors whose soi boundary has been crossed. Con-
sider a fish that crosses an soi boundary while it is in sector s;.
s; will send a visible message to a neighbor s;, only if the fol-
lowing two conditions, respectively referred to as Al and A2, are
satisfied:

e s; can view the particular boundary that is crossed

o the co-ordinates at which the crossing takes place is not
already within the soi of s;

We prove that the preceding implementation guarantees a
unique visible message for each entry of a fish to a sector’s soi.
We first prove that at least one visible message must be generated
for every crossing. Assume that a fish f; is in the soi of a sector
si, but s; has not received any visible message for f;. Consider
the earliest so: boundary of s; crossed by f;. Assume that f; is
in sector s; when the boundary is crossed. From conditions (Al)
and (A2) and the assumption that a visible message was not sent
to s;, it must be that f; was within the soi of s;. But this violates
the assumption that the visibility event was the earliest entry of
f; into the soi of s;. The result follows.

Assume that a sector s; receives a visible message for a fish
f; from sector s; and another from s;. Further assume that the
messages are respectively timestamped t; and t;. If ¢,<t,, it
follows that when f; crossed an so: boundary of s; in sector s,
it must already be in its soi. Due to condition (A2) s¢ will not
generate the visible message. We can argue similarly for ¢,<¢%,.
Assume t;=t;. The visible message is sent by a sector only if the
fish is in the sector. As a fish may be in at most one sector at any
point, t;=t, implies that, s; and s, must be the same sector. As
a sector schedules at most one visible message for every neighbor,
we conclude that the assumption is erroneous.

We summarize the preceding discussion by describing the
primary message types used by a sector entity:

o c_enter{c_type,c_rec}: message sent by a sector s; to a
neighbor s; (si#s;), when a shark leaves s; to enter s; or
a fish that is in s; crosses into the soi of s;. c_type indicates
the creature type, fish or shark and c_rec contains relevant
information about the creature (velocity, position, ...).

o c_ezit{c_type,c_rec}: A sector sends this message to itself
when a shark leaves the sector, or a fish its sos.

o kill{f;,s;}: If sector s; kills a fish that it does not own, it
sends this message to the owner sector.

o delete{f;}: On receiving a kill message, the owner sends
this message to all sectors, other than the killer sector, that
include f; within their soi.

4.2 System Initialization

In executing the sharks world problem with multiple sectors,
program initialization is an important concern. The number of
events generated in the model depend on the initial configuration
of the creatures. As each experiment was executed for a constant

R.L. Bagrodia and W.T. Liao

simulation time, it is imperative that the system be initialized
identically and independently of the number of sectors that are
used. One way of guaranteeing identical initial configuration is
to store the initial creature configurations in a file and initialize
every experiment using that configuration. However, for parallel
executions, this imposes some overhead as the data may have to
be input sequentially from the front-end.

We adopt a different approach to ensure identical initial con-
figurations independent of the number of sectors used in an ex-
periment. Creature initializations are handled by a special entity
called init. Let M be the upper bound on the number of sec-
tors. In every simulation exactly M instances of init are created.
Each init entity corresponds to a unique region of the ocean and
is assigned a unique serial number. Let ¢ be the number of crea-
tures in the system (for simplicity, assume ¢ is a multiple of M)
and N be the actual number of sectors used in the experiment.
Each init entity is associated with exactly one of the N sector
entities. The init entity generates a sequence of random num-
bers (using its serial number as the initial seed) to determine
the initial position and velocity of each of its ¢/M creatures and
sends the initial configuration to the corresponding sector entity.
For a given number of creatures, each init entity must generate
the same sequence of random numbers, independent of N. This
ensures that an identical initial creature configuration is gener-
ated for each simulation that is executed for a given number of
creatures.

5. EXPERIMENTAL RESULTS

The experiments reported in this paper were executed for
a square toroidal ocean which is 65K units on each side. The
attack range of a shark was fixed at 50 units. The creature speeds
were chosen uniformly at random from the interval [50,200] and
the direction chosen uniformly at random from 0 to 360-¢, for
a sufficiently small, positive e. Every experiment had an equal
number of sharks and fish, with the total number of creatures
varying from 64 to 2048. For a given number of creatures, the
effect of increasing the number of sectors in the ocean on the
execution time of the simulation was recorded. Both sequential
and parallel experiments were executed with 1,2,4,8,16 and 32
sectors. Each experiments was executed for 5000 simulation time
units.

Both parallel and sequential implementations were executed
on a Symult $2010 multicomputer. Each node of the multicom-
puter uses a Motorola 68020 cpu and has 4MB of main memory.
The front-end is also a 68020 based Sun-3 workstation. For the
sequential implementation, the Maisie run-time system used a
sequential simulation algorithm based on a single event-list and
a global clock. The results for the sequential implementation are
shown in figure 5. For a given number of creatures, the graph
plots the cpu time used to simulate the system as a function of
the number of sectors of the ocean (note that the x-axis uses a
log scale). As seen from the figure, in general, as the number of
sectors is increased for a given creature configuration, the execu-
tion time of the simulation initially decreases and then begins to
increase. This may be explained as follows: for a given number
of sectors, each arrival event in a sector causes the next kill event
for the sector to be recomputed. As the number of sectors are
increased, the average number of creatures per sector decreases,
decreasing the amount of computation required to calculate the
next kill event. However, increasing the number of sectors also
increases the total number of arrival events in the system. The

196

relative contribution of each factor is responsible for the pattern
of change in the elapsed time as a function of the number of
sectors in the system. In the Maisie program, the largest per-
centage improvement seems to occur with 2048 creatures, where
the elapsed time decreases from 206 seconds for 1 sector to an
optimal value of 44 seconds with 32 sectors, Similar behavior is
also reported by Conklin et al. [Conlkin et al. 1990]. However,
in their simulations (executed on a single node of the Butterfly),
increasing the number of sectors reduced the execution time by
o significantly larger factor.

& T T T T
\ Q. 28%8 creatures
L ...+.. 1024 creatureg
500 \ ...0.. 512 creatures
\ .. X.. 256 creatures
. \ ..\, 128 creatures
T1me400 L \ ...%. 64 creatures]
(sec) \
300 . i
200 i
100 4
I S -
A A A

0 1 2 3 4 5 6
Number of sectors (Log2(N))

Figure 5. Sequential Execution

This difference may be explained by the different amount
of computation required to schedule a kill event in the two pro-
grams. In the program described in [Conlkin et al. 1990], each
sector entity only records the time for the earliest kill event in
the sector. This implies that whenever the sector processes an
arrival or a kill event, the kill time for all creatures in the sector
must be recomputed to determine the next kill event for the sec-
tor. If the model has only one sector, this implies an O(ns*n,)
computation for every arrival or kill event in the system. For
a fixed number of creatures in the ocean, as the number of sec-
tors are increased, the number of fish and sharks in each sector
decreases by approximately the same factor. However, the com-
plexity of the computation of the next kill event decreases by a
quadratic factor. As a result, increasing the number of sectors
shows an overall improvement in the execution time of the se-
quential simulation even for configurations with a small number
of creatures.

In contrast, in the Maisie program, the earliest attack time
for each creature in a sector is calculated when the creature enters
the sector and is subsequently maintained in an internal event-
list. This implies that when any arrival event occurs, say the
arrival of a fish f;, it is only necessary to compute the attack time
for f;, with respect to all sharks in the sector. The attack time
for the remaining fish in the flist does not change. Furthermore,
after processing a kill event for the sector, the next kill event for
the sector entity is selected from the internal event-queue and
does not have to be computed all over again. The two factors
together imply that other things remaining the same, the average
computation per event is significantly less in the Maisie program

Parallel Simulation of the Sharks World Problem

than in the preceding model. For a fixed number of creatures,
as the number of sectors is increased, the number of creatures in
each sector again decreases. However, unlike the previous model,

the complexity of the computation decreases only by a linear
factor.

140 T T T T T
‘\ ...<.. 2048 creatureg
\ ...+.. 1024 creature
120 F Y ..0. 512 creatures-
\ ... X.. 256 creatures
\ ..\, 128 creatures
Time 199f + ...%. 64 creatures |
(sec) Voo
\ \
sof \ \]
\ \
\ Y
60 [\ \\ <, E
40 Tx .
20 : f 'x\\ gy g b
0 1 2 3 4 5 6
Number of sectors (Log2(N))
Figure 6. Parallel Execution
6 1O 2048 creatlires T !
...7+.. 1024 creatures
5F ...0. 512 creatures o A
... X.. 256 creatures
Speed 4l ... 128 creatures]
up ...%. 64 creatures

w b

4

2 3
Number of sectors
(Log2(N))
Figure 7. Speedup (tpar/tseq)

Figure 6 presents the results for the execution of our model
on multiple nodes of the Symult. For the parallel implementa-
tions, each sector was mapped to a unique node. The figure gives
the elapsed time as a function of the number of nodes used to ex-
ecute the simulation. Once again, the elapsed time decreases as
the number of sectors are increased and then begins to increase
once again. Note that as the number of creatures is increased,
the number of nodes for which the performance of the simulation
is optimal, also increases. In general though, for a given num-
ber of creatures, the number of sectors for which the sequential
implementation was optimal is different than that for which the
parallel implementation was optimal. Figure 7 plots the speedup
obtained by the parallel implementation, where speedup is mea-
sured as the ratio of the execution time of the sequential program
to the execution time for the parallel program. As seen from the

197

figure, the speedup increases monotonically as the number of
creatures is increased. Figure 8 compares the optimal sequential
simulation time with the optimum parallel execution time for
each creature configuration studied in these experiments. The
number in brackets indicates the number of sectors (which is
also equal to the number of nodes for the parallel implementa-
tion) that yielded the optimum time for the corresponding con-
figuration. As seen from the figure, the slope of the curve for
the parallel implementations is significantly flatter than that of
the sequential implementations. This data is replotted in figure 9
as a speedup curve, where the speedup is the ratio of the best
parallel time (pqr) to the best sequential time (t,.q).

200 F T T T T T [16})
...<O.. Best Sequential
Timks0 | -+ Best Parallel / i
(sec) /

N] Timing with N sectors

/

100 6t]
50 B [?b IIIIIII +[32]
132
o [4]¢hﬁg—-l$hm' 'tm +T32]
5 10 11 12
Number of creatures (Logz(N))
Figure 8. Best tp,, vs Best 2,
5 T T T T T T
45t ©
41 i
<
Speed .5 |- o -
up 3L 4
25+ © 1
2t o]
1.5 o B
1+ 4
0.5 B
O 1 1 1 1 1 1
5 6 7 8 9 10 11 12

Number of creatures (Log2(N))
Figure 9. Speedup Over Best Sequential Time

Previous studies on optimistic simulations have indicated
that state saving overheads are the primary source of inefliciency
for distributed simulations. Many optimistic simulators check-
point the system after each event (a message is roughly an event).
This seems to have the benefit of minimizing the rollback dis-
tance, in case of an error. However, if an entity has a large state
space and does relatively little computation per event, it would
seem more efficient to save state less frequently even at the ex-
pense of a slightly longer roll-back. By default, the Maisie run-
time system checkpoints the state of an entity after processing
any message other than a timeout. We experimented with two
other schemes for state saving. In the first variation, the entity is
checkpointed after every message including the timeout message.
In the second variation, an entity is checkpointed only when it
begins to execute every iteration. As seen from figure 10, check-
pointing an entity after every event is considerably less efficient
then the other two schemes.

R.L. Bagrodia and W.T. Liao

With 128 Creatures

20 T T T T T T
18 F ..Q.. each event

Q ..+.. only message event
6F ¢ O. beginning of iteration .-

4 1 1 1 1 1 1
0 10 20 30 40 50 60
Number of sectors
Figure 10. Elapsed Time vs Frequency of Checkpointing
6. CONCLUSION

This paper described the design of a Maisie program to sim-
ulate the sharks world problem and presented the timings for
both sequential and parallel executions of the model. In writ-
ing a Maisie simulation, the programmer is essentially unaware
of the specific simulation algorithm that will be used to execute
the program. The flexibility of changing the underlying simu-
lation algorithm without having to change the program will be
of considerable utility in comparing the performance of a vari-
ety of simulation algorithms. For instance, in going from the
sequential to the parallel version, the only change that was made
to the Maisie program, was the creation of sector (and initial-
ization) entities on different nodes of the multicomputer. This
uniformity was of significant benefit in the design stage, as the
program could be tested and debugged on a SUN workstation,
before being executed on the multicomputer. Program mainte-
nance was also facilitated, as different versions did not have to
be maintained for the sequential and parallel implementations.

The experimental results indicate that reasonable speedups
may be achieved for a relatively small number of creatures; fur-
ther the speedups increased linearly as the number of creatures
in the system were increased. For a configuration with 2048 crea-
tures, the parallel implementation with 32 nodes and 32 sectors
was better by a factor of almost 5 over the best sequential im-
plementation. The performance of the space-time algorithm de-
pends on a number of factors. The more important factors in-
clude frequency of checkpointing, time-length for which multiple
incarnations of an entity are created and the algorithm used to
detect the time upto which the simulation has converged. For
the purpose of this study, we experimented with a few varia-
tions in the value of these factors. But every variation seemed to
suggest many other ways to improve the performance of the algo-
rithm, only a few of which could be tried. Further experience is
needed with the system in order to extract optimal performance
improvements in the execution of a simulation program with the
space-time simulation algorithm.

ACKNOWLEDGMENTS

We are grateful to Mani Chandy for discussions on the space-
time simulation algorithm. We are also grateful to Chuck Seitz

198

for arranging unrestricted access to the Symult S2010 at Caltech
and to Sharon Brunett for her assistance in using the machine.

REFERENCES

Bagrodia, R.L, K.M. Chandy, and J. Misra (1987), “A Message-
Based Approach to Discrete-Event Simulation,” IEEE
Transactions on Software Engineering, SE-13,6,654-665.

Bagrodia, R.L., and W. Liao (1990), “Maisie: A Language And
Optimizing Environment for Distributed simulation.” In
Proceedings of the 1990 SCS Multiconference on Distributed

Simulation, D. Nicol, Eds. SCS, San Diego, CA, 205-210.
Conkli];, ll)t., J. Cleary, and B. Unger (1990), “%he Sharks World:

A Study in Distributed Simulation,” In Proceedings of
the 1990 SCS Multiconference on Distributed Simulation,

D. Nicol, Eds. SCS, San Diego, CA, 157-160. .
Chandy, K.M., and R. Sherman (1989a), “The Conditional

Event Approach to Distributed Simulation,” In Proceed-
ings of the 1989 SCS Multiconference on Distributed Sim-
ulation, B. Unger, and R. Fujimoto, Eds SCS, San Diego,
CA, 93-99.))

Chandy, K.M., and R. Sherman (1989b), “Space-Time and Sim-
ulation,” In Proceedings of the 1989 SCS Multiconference
on Distributed Simulation, B. Unger, and R. Fujimoto, Eds
SCS, San Diego, CA, 53-57.

Fujimoto, R. (1988a), “Lookahead in Parallel Discrete Event
Simulation,” In International Conference on Parallel Pro-
cessing, D.H. Bailey, Eds Pennsylvania State University

Press, University Park, PA, 34-41.
Fujimoto, R. (1988b) “Time Warp on a Shared Memory Mul-

tiprocessor,” Technical report UUCS-88-021a, Computer

Science Dept., University of Utah, Salt Lake City, UT.
Jefferson, D., B. Beckman, and F. Wieland et al. (1987), “Dis-

tributed Simulation and the Time Warp Operating Sys-
tem,” In Proc 12th SIGOPS Symposium on Operating Sys-

tems Principles, 77-93.
Jefferson, D. (1985), “Virtual Time,” ACM TOPLAS, 7,3,404-

425.

Marti, J. (1988), “Rise: The Rand Integrated Simulation Envi-
ronment,” In Proceedings of the 1988 SCS Multiconference
on Distributed Simulation, B. Unger, and D. Jefferson, Eds
SCS, San Diego, CA, 68-72.

Misra, J. (1986), “Distributed Discrete-Event Simulation,” Com-
puting Surveys, 18,1,39-65.

Reynolds, %’ (1982), “A Shared Resource Algorithm for Dis-
tributed Systems,” In 9th International Symposium on

Computer Architecture, Austin, TX, 259-266.
Reed, D.A., A.D. Malony, and B.D. McCredie (1987), “Parallel

Discrete Event Simulation: A Shared Memory Approach,”
In Proceedings of the 1987 ACM SIGMETRICS Confer-
ence, ACM, 36-39.

Sheppard, S., C. Davis, and U. Chandra (1988), “Parallel Sim-
ulation ‘Environments for Multiprocessor Architectures,”
In Proceedings of the 1988 SCS Multiconference on Dis-
tributed Simulation, B. Unger, and D. Jefferson, Eds SCS,
San Diego, CA.

Su, W., and C.L. Seitz (1989), “Variants of the Chandy-Misra-
Bryant Distributed Simulation Algorithm,” In Proceedings
of the 1989 SCS Multiconference on Distributed Simulation,

B. Unger, and R. Fujimoto, Eds SCS, San Diego, CA, 38-

43.

West, J., and A. Mullarney (1988), “Modsim: A Language for
Distributed Simulation,” In Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, B. Unger, and
D. Jefferson, Eds SCS, San Diego, CA, 155-159.

