Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

PROVING TEMPORAL PROPERTIES OF HYBRID SYSTEMS

Sanjai Narain
Jeff Rothenberg

RAND Corporation
1700 Main Street
Santa Monica, CA 90406

ABSTRACT

Formal techniques for proving temporal properties are intended
either for purely discrete systems, or for purely continuous systems.
However, hybrid systems, i.e. those which can exhibit both discrete
and continuous behavior frequently arise in the real world. This
paper presents a formal approach for modeling such systems and
proving their temporal properties. It is based upon utilizing
intuitions about the causality relation, and the logic of definite
clauses with the SLD-resolution proof procedure. Itis illustrated by
proving a liveness property about a railroad crossing.

1. INTRODUCTION

Formal techniques for proving temporal properties are intended
either for purely discrete systems, or for purely continuous systems.
Examples of the former include Temporal Logic e.g. [Pnueli 1977,
Owicki & Lamport 1982, Manna & Pnueli 1981, Bernstein &
Harter 1981, Jahanian & Mok 1986, Ostroff 1989]. An example of
the latter is the calculus of differential equations. However, hybrid
systems, i.e. those which can exhibit both discrete and continuous
behavior frequently arise in the real world. Examples of these are
manufacturing processes, disk drives, robot arms, copying machines
or railroad crossings.

This paper presents a formal approach for proving temporal
properties of hybrid systems. It is based upon exploiting intuitions
about the causality relation, and the logic of definite clauses and
SLD-resolution e.g. [Kowalski 1979, Lloyd 1984]. No new
temporal logic is introduced. The approach is illustrated by proving
a liveness property about a railroad crossing. It can also be used to
prove properties of purely discrete systems in new ways.

Contemporary temporal logics frequently make the assumption
that the state of a system changes only at discrete points of time.
Clearly, when continuous state parameters are involved, this
assumption does not hold, at least in any obvious way. For
example, the concept of the next position of a moving object, at any
given time, is not well defined. (The logic of Owicki & Lamport
[1982] does not makes this assumption, however, the author is not
aware of its application to reasoning about continuous time and
state).

Our approach assumes that only events occur at discrete points
of time. This is quite possible, even when continuous parameters
are involved. For example, on a pool table, events of collision
between balls and between balls and table boundaries, occur only at
discrete points of time, even though ball positions change gradually.

Our approach is based upon expressing temporal properties in
terms of questions about event occurrences. Many temporal
properties are directly questions about event occurrences. For
example, does an event ever/never occur? Do at least N events
occur before time T? Is there a last event? A question such as
"does temperature ever exceed X?" could be expressed using "is an
event of turning on the heat always followed by an event of turning
off the heat within Y minutes, given that the current temperature is
less than X7".

A method of answering questions about event occurrences can
be based upon the causality relation between events. Intuitively, the
proposition causes(A,B) means event A is responsible for, or brings
about event B. As we have good intuitions about it, its definition
can be easy to provide. Event occurrences can be computed using:

occurs(B) iff (initial(B) v 3A.occurs(A) A causes(A,B))

250

This rule states that an event B occurs iff either it is an initial
event, or there exists another event A such that A occurs and A
causes B. Now, to show that a non-initial event occurs, show that at
least one of its causes occurs. Conversely, to show that a non-initial
event does not occur, show that none of its causes occurs. Proofs of
safety and liveness properties can be developed in this manner. To
determine the number of events which occur, repeatedly apply the
above rule and count. If each occurring event always causes at least
one event, then there is no last event occurrence.

Central to the success of this approach is the simplicity with
which the causality relation can be inferred from a suitable model,
i.e. formal description, of the system. To facilitate this inference,
the model can be a definition of the causality relation itself.

Frequently, however, statements (or rules) defining causality
contain guard conditions on the time interval between the causing
and caused events. These arise when delays occur between causes
and effects and during these delays, conditions arise which preclude
expected effects from occurring. For example, we have:

causes(
begins_flight_towards(Aircraft,Radar,T),
detects(Radar,Aircraft, T+Delay)
)if
intersect_path(Aircraft,Radar,T,Delay) A
—3X. T<X<T+Delay A occurs(changes_course(Aircraft,X)).

This rule states that an event of Aircraft beginning flight
towards Radar at time T causes an event of Aircraft coming in
range of Radar after Delay, where Delay is obtained by intersecting
the path of Aircraft at T, with Radar coverage, provided no event of
Aircraft’s changing course occurs in between T and T+Delay. The
detection event is predicted based upon information available at T.
If this information changes before detection occurs, then the
prediction will not be true. Hence the need for the guard condition
at the end.

Another example of such a rule is one for a preemptive server:

causes(arrives(Job,T),departs(Job,T+delay)) if
server_is_idle(T) A
—3X.3NewJob.
T<X<T+delay A
occurs(arrives(NewJob, X)) A
pr(NewJob)>pr(Job).

This states that an event of Job arriving at the server at T causes
an event of Job departing at T+delay, provided server is idle at T,
and there is no NewJob which arrives at time X in between T and
T+delay, whose priority is higher than that of Job. If such a job
does arrive, then Job’s processing would have to be interrupted, and
it would not depart at T+delay.

Spch rules can be quite difficult to reason with, in particular for
inferring causality. This is because a recursion arises between
definitions of "causes" and "occurs”. Effectively, this means that to
determine whether an event occurs in the future at T, one has to
know about all future event occurrences up to, but not including T.
As time is real-valued, the recursion can be quite difficult to control.

_ A central contribution of this paper is a new view of causality
which allows such rules to be expressed using definite clauses.
Thereby, the recursion between causes and occurs can be
eliminated. Furthermore, a sound and complete proof procedure,
called SLD-resolution, can be employed to reason with definite

S. Narain and J. Rothenberg

clauses e.g. [Kowalski 1979, Lloyd 1984]). This achieves
substantial simplification in the inference of causality. In addition, a
wide range of symbolic and qualitative knowledge can be expressed
using definite clauses.

Section 2 briefly introduces definite clauses and SLD-
resolution. Section 3 outlines DMOD, our new approach to
modeling dynamic systems. Section 4 presents a DMOD model of
a hybrid system, namely, a railroad crossing. Section 5 presents a
simulation procedure, i.e. for computing event occurrences from a
DMOD program. Section 6 discusses the general framework in
which temporal properties can be formulated and proved, and
illustrates the ideas by proving a liveness property about a railroad
crossing. Section 7 contains a summary.

2. BRIEF INTRODUCTION TO DEFINITE CLAUSES

A definite clause is of the form "A if B1,..,,Bk", k=0, each A, Bi
a predication of the form R(tl,..,m), R an n-ary relation symbol, and
each ti a term. A term is either a variable, or of the form f(s1,..,sm),
f an m-ary function symbol and each si a term. All variables in a
definite clause are universally quantified. The clause "A if
B1,...Bk" is to be read "for all values of variables in the clause, A is
true if each of B1,...Bk is true". A set of definite clauses is called a
logic program. An example of a logic program is:

anc(X,Y) if p(X,Y).
anc(X,Y) if p(X,Z),anc(Z,Y).

p(elizabeth,charles).
p(charles,william).
p(charles,harry).

The first clause (or rule) states that X is an ancestor of Y if X is
a parent of Z. The second states that X is an ancestor of Y if X is a
parent of Z and Z is an ancestor of Y. The last three clauses state
information about the royal family of England.

Given a logic program Q, the SLD-resolution proof procedure
is used to prove propositions of the form 3.P where P is a
conjunction of predications P1,..,Pk, k>0. 3.P is a shorthand for
3X1.3Xm.P where X1,.,Xm are the variables in P. If k=0, the
proposition is proved. Such a proposition is denoted by Ol
Otherwise, a clause "A if B1,...Bn", in Q is selected, such that Pi
and A unify with most general unifier 6, and then 3.(P1,..Pi-
1,B1,..,Bn,Pi+1,.,Pk)o is recursively proved. The resulting
sequence of propositions is called an SLD-derivation. If 0 is
derived, the derivation is called successful. Unification is a
generalization of pattern matching in which variables in both A and
Pi can be bound.

For example, SLD-resolution can be used to prove
3X.anc(X,harry), in particular, "return” the answers X=charles,
X=elizabeth. SLD-resolution is sound and complete. Due to a
property called strong-completeness, only a restricted set of SLD-
derivations need be constructed. This further simplifies the space of
SLD-derivations. For more details see [Lloyd 1984].

3. DMOD: A NEW TECHNIQUE FOR MODELING
DYNAMIC SYSTEMS

We assume the usual first-order logic alphabet, consisting of an
enumerably infinite list of variables, function symbols of all arities,
predicate symbols of all arities, and the logical connectives, e.g.
[Lloyd 1984]. A term is defined to be a variable. If X1,..,Xm are
terms and f an m-ary function symbol then f(X1,..,.Xm) is a term.
An expression is said to be ground if it does not contain any
variables.

Let f1,£2,... be a fixed subset of the set of function symbols
called event-defining function symbols, each of positive arity. An
event is defined to be a ground term of the form f(al,..,am,t) where
f is an event-defining function symbol of arity m+1, and al,..,am, t
are terms. al,..,am denote arbitrary objects in the modeled system,
but t denotes a non-negative, real-valued time instant, called a time
stamp.

Kn event can denote an action. For example, the event
sends(m,s,r,t) denotes the action of agent s sending message m to
agent r at time t. An event can also denote a proposition. For

251

example, the event touching(a,b,t) can denote the proposition that
the distance between positions of two pool balls a and b, at time t, is
2*r, where 1 is the radius of a and b. When this proposition
becomes true, a collision between a and b can be said to occur at t.

The event-defining functions symbols must be chosen in such a
way that the fundamental assumption above is satisfied. For
example, suppose one wished only to compute the positions and
velocities of a set of pool balls on an infinite pool table. Then, one
only needs to regard touching as an event-defining function symbol.
Other (interesting) symbols such as equilateral, where
equilateral(a,b,c,t) means positions of a,b,c at time t, are on the
vertices of an equilateral triangle, need not be regarded as event-
defining.

As mentioned in Section 1, a convenient way of computing
event occurrences is via the causality relation. As also discussed
there, if statements about causality are formalized in the obvious
manner, causality can be quite difficult to infer. We now show how
causality can be viewed in such a way that it can be defined using
definite clauses. We regard causality, not as a binary relation, but
as a ternary relation between two events and a context. The context
is a temporally ordered sequence of events. We call the new
relation causal_connection. If it holds, the two events are said to be
causally connected in the context. Causal connectedness is similar
to connectedness between nodes in a network. Two events may be
causally connected in one context but not in another. For example,
consider the following events concerning a ball dropped from a tall
building:

El=ball_dropped(0)

E2=ball_caught(5)
E3=ball_thrown_down(6)
Ed4=ball_casts_shadow_on_window_11(7)
ES=ball_hits_ground(10)

Consider the two contexts C1=E1,ES and C2=E1,E2,E3,E4,ES.
El can be said to be causally connected to E5 in C1, but not
(naturally) in C2. In C2, a causal connection which existed between
E1l and ES is terminated by the appearance of E2. Thus, it is more
natural to say that E3 is causally connected to ES in C2.

Another way to understand causal connection is the following:
let C be a temporally ordered sequence of events. Pick out E and F
in C such that E appears before F. If all events in C were to occur,
then would E be said to be a cause of F? If so, then E is said to be
causally connected to Fin C.

For convenience, causal_connection is defined to be a four-ary
relation. The condition causal_connection(E,HE,F,HEF) is defined
when its arguments are related as follows:

S is a finite context, i.e. a sequence of events sorted in
increasing order of time stamps ending in F. E appears before F in
S, HE is the sequence of all events in S up to but not including E,
and HEF is the sequence of all events in S between E and F but not
including either. If the condition causal_connection(E,HE,F,HEF)
holds, E is said to be causally connected to F in context S.

Notation convention. A*B denotes the result of appending
sequence A to sequence B.

Let S represent the history of the system till the time stamp on
F. Then, by the fundamental assumption above, HE*[E]*HEF is a
complete record of all states and events in the past of F. Now, HEF
represents a handle around which algorithms for resolving
references to the future of E, up to F, can be developed. For
example, the first causality rule of Section 1 can be expressed using
definite clauses as follows:

causal_connection(E,HE,F HEF) if
E=begin_flight_towards(A,R,T),
F=detects(R,A,T+Delay),
intersect_path(A R,Delay HE*[E)),
non_member(changes_course(A,?),HEF).

Proving Temporal Properties of Hybrid Systems

non_member(Template,[]).
non_member(Template,[EventIRest]) if
non_matches(Event,Template), non_member(Template,Rest).

The first rule states that E is causally connected to F in the
context HE*[E]*HEF*(F] provided
E=begin_flight_towards(A,R,T), F=detects(R,A,T+Delay), Delay is
obtained by intersecting the path of A at T, with coverage of R, and
no event of the form changes_course(A,?) appears in HEF. Note
that by the fundamental assumption, HE*[E] represents the state of
the system at T (the time stamp of E), after E has occurred. Thus,
intersect_path(A,R,Delay, HE*[E]) replaces the condition
intersect_path(A,R,Delay,T) in the original causality rule.

The second rule states that no event of the form Template
occurs in the empty list. The third states that no event of the form
Template occurs in [EventlRest], provided Event does not match
Template, and no event of the form Template appears in Rest.

A template is a term containing zero or more occurrences of the
special O-ary function symbol ?. ? represents a slot or placeholder.
A non-template term P is said to match a template T, provided if
occurrences of ? in T are replaced by suitable terms, P is obtained.
For example, £(1,2) matches £(?,2), but not £f(?,3). A definition of
non_matches is easy to write using definite clauses and is not given
here.

Note how the condition in the original causality rule:

—3X. T<X<T+Delay A occurs(changes_course(Aircraft,X)).
is replaced by:
non_member(changes_course(A,?),HEF).

The first represents a search over a real-valued interval of time
whereas the second a (computationally simpler) iteration over a
sequence of discrete events.

A DMOD program is a definition of causal_connection using
definite clauses. The full expressive power of definite clauses can
be employed while writing these. In particular, qualitative,
symbolic and mathematical knowledge can be freely expressed. In
the next section we give a full example of a DMOD model.

4. ADMOD MODEL OF A RAILROAD CROSSING

<=> |_< >_|

-~ /TSET\
o ¢ * E====- === ®

*=
- sl bl b2 s2

We now model a hybrid system, namely, a railroad crossing. It
has been heavily adapted from [Ostroff 1989], in particular, with the
introduction of continuous time and position. Its discrete
parameters are velocities of barriers, and engines, which change
abruptly.

In the above diagram, engines move on a track from left to
right with a fixed velocity. The track can be crossed between bl
and b2. A barrier slides back and forth to close or open the
crossing. When an engine reaches sl, sensor(l) picks up its
position and activates closing of the barrier. When an engine
reaches s2, sensor(2) picks up its position and activates opening of
the barrier. The barrier opens and closes at a finite speed vb.

An interesting feature of the system is that closing or opening
can be interrupted. For example, arrival of an engine at s1 may
activate closing, but the engine may move so fast that before the
barrier has fully closed, the engine arrives at s2, activating barrier
opening.

Notation convention. If X is an event, time(X) represents the
time stamp of X, otherwise if it is a history, the time stamp of the
last event in X.

Each event is of one of the following forms, with meanings
given in curly braces:

begin_j(e(X),P,V,T) {engine e(X) begins journcy at position P, with
velocity V, at time T}

sensed(e(X),Sensor,T) {e(X) is sensed by Sensor at T)
start(barrier,close,T) (barrier closing starts at T)
end(barrier,close,T) {barrier closing ends at T}

252

start(barrier,open,T) (barrier opening starts at T}
end(barrier,open,T) (barrier opening ends at T}
start(0) {The initial event with time-stamp 0}

The following are the causality rules:

(C1. There are k engines e(1),....e(k). For each i, e(i) begins
journey from pe, with velocity ve at ti.)

causal_connection(start(0),_,begin_j(e(1),ve,pe,t1),).

causal_connection(start(0),_,begin_j(e(k),ve,pe, k),).

{C2a. If e(X) begins journey at time T with position P and
velocity V, then it is sensed by sensor(1) after time taken to travel
(s1-P)/V. Tts velocity always remains constant. Similarly for
sensor(2). }

causal_connection(E,HE F,HEF) if
E=begin_j(e(X),V.P,T),
F=sensed(e(X),sensor(1),T+Delay),
Delay=(s1-P)/V.

{C2b. }

causal_connection(E,HE,F,HEF) if
E=begin_j(e(X),V.P,T),
F=sensed(e(X).sensor(2),T+Delay),
Delay=(s2-P)/V.

{C3. If e(X) reaches sensor(1) then the barrier starts to close
immediately. }

causal_connection(E,HE,F,HEF) if
E=sensed(e(X),sensor(1),T),
F=start(barrier,close, T).

{C4. If e(X) reaches sensor(2) then the barrier starts to open
immediately. }

causal_connection(E,HE F,HEF) if
E=sensed(e(X),sensor(2),T),
F=start(barrier,open,T).

{C5. If barrier starts to close then it ends closing after the time
taken to reach fully closed position at its current velocity, provided
no engine is sensed by sensor(1) in between. }

causal_connection(E,HE F,HEF) if
E=start(barrier,close,T),
F=end(barrier,close,T+Delay),
position(barrier,P,HE*[E]),
velocity(barrier,V,HE*[E]),
Delay=(b2-P)/V,
non_member_1(sensed(e(?),sensor(2),?), HEF).

{C6. If barrier starts to open then it ends opening after the time
taken to reach its fully open position at its current velocity, provided
no engine is sensed by sensor(1) in between. }

causal_connection(E,HE,F,HEF) if
E=start(barrier,open,T),
F=end(barrier,open,T+Delay),
position(barrier,P,HE*[E]),
velocity(barrier,V,HE*(E)),
Delay=(P-b1)/-V,
non_member_1(sensed(e(?),sensor(1),?), HEF).

The following are auxiliary rules, e.g. for computing various
state parameters such as position and velocity of engines or barriers.
. (Position of Object immediately after the last event E in a
history HE*[E] is NewPos, provided its position immediately after
the last event in HE is OldPos, its velocity then is V, and one adds
the incremental displacement.
Note the use of continuous functions +, - and *. More complex
functions can similarly be used. }

S. Narain and J. Rothenberg

position(Object,NewPos, HE*(E]) if
position(Object,0ldPos,HE),
velocity(Object,V,HE),
NewPos=01dPos+V*(time(E)-time(HE)).

_ {Position of Object at T is calculated as above, provided
Hist_Till_T is the sequence of all occurring events with time stamps
less than or equal to T.)

position_at(Object, T,NewPos,Hist_Till_T) if
position(Object,OldPos,Hist_Till_T),
velocity(Object,V Hist_Till_T),
NewPos=0ldPos+V*(T-time(Hist_Till_T)).

{Position of e(X) immediately after the last event E in history is
P, if E=begin_j(e(X),_,P,_). Similarly, for velocity of e(X). }

position(e(X),P,_*[begin_j(e(X),_,P,))).
velocity(e(X),V,_*[begin_j(e(X),V._.)]).

{Velocity of barrier immediately after the last event E in
history is 0, if E=end(barrier,_,). If E=start(barrier,close,_),
velocity is +vb. Similarly, when E=start(barrier,open,_). If E is not
equal to any of these, then velocity immediately after E is the same
as that immediately after the last event in HE. }

velocity(barrier,0,_*[end(barrier,_,_)]).
velocity (barrier,+vb,_*(start(barrier,close,_)]).
velocity(barrier,-vb,_*(start(barrier,open,_)]).
velocity(barrier,P,HE*(E)) if
non_member_2(E, [start(barrier,?,?) end(barrier,?,7)]),
velocity(barrier,P,HE).

{non_member_1 is identical to non_member of Section 2.
non_member_2 is similar, except that arguments to non_matches
are reversed. }

non_member_1(E,(]).
non_member_1(E,[AIB]) if
non_matches(A E), non_member_1(E,B).

non_member_2(E,[]).
non_member_2(E,[AIB]) if
non_matches(E,A), non_member_2(E,B).

{Initial conditions. Position and velocity of barrier after the
first event start(0) are b1 and O respectively. }

position(barrier,b1,[start(0)]).
velocity(barrier,0,[start(0)]).

5. COMPUTATION OF HISTORY

Given a DMOD program P (a definition of causal_connection)
we now show how to use it to compute a sequence of event
occurrences, i.e. a history. A history can be computed in a bottom-
up manner. Let the initial event occur. Compute the events it
causes, then compute the events these cause, and so on. However,
as causality itself requires history to be evaluable, the situation is
not quite simple. We first define the history declaratively, taking
the aid of the following diagram:

EO Ei Ej
0--0---0--0--0--=0-——=—====0--0----0 (§)
<---HEi---> <--HEiEj-->

Notation conventions. Ea,.Eb denotes the sequence
Ea,Ea+1,.,Eb. If a>b then Ea,...Eb denotes the empty sequence.
Informally, HE denotes the sequence of all events up to but not
including E and HAB denotes the sequence of events between A
and B but not including either. Thus, HEi denotes E0,E1,..,Ei-1 and
HEIEj denotes Ei+1,..,Ej-1.

Let S=EOQ,E1,E2,... be a finite, or enumerably infinite, sequence
of events sorted in increasing order of time-stamps, in which an
event appears at most once. Then S is said to be causally-sound if
every event in S has a cause in S, i.e.:

253

causally-sound(S) iff Vj.j>0o3i.i<j causal_connection(Ei,HEi Ej,HEIEj).

Of course, a causally-sound sequence may not contain all the
events which should intuitively occur, e.g. the sequence EO is
trivially causally sound. To ensure that it does, it needs to satisfy
another property.

Let S=EO0,E1,E2,... be a finite, or enumerably infinite, sequence
of events sorted in increasing order of time-stamps, in which an
event appears at most once. Then we have:

causally-complete(S) iff (a) A (b) where:

(a) is Vi.Vj.VG.
i<j A
—Ge (EO,..Ej-1) A
causal_connection(Ei,HEi,G HEIEj)> time(G)=time(Ej).

(b) is S=EO,E1,...Ek > —3G.3i.causal_connection(Ei,HEi,G,(Ei+1.,...Ek)).

Informally, condition (a) says it must not be possible for an
event G, not already occurring in EQ,..,Ej-1, to occur after Ej-1 but
strictly before Ej. Condition (b) says that if S contains a last event
Ek, then S must not be extendable at the end i.e. it must already
contain all events. Note that the sequence EQ always trivially
satisfies (a) but not necessarily (b).

Let EO be a special, unique, initial event for the modeled
system. Assume that EQ has occurred. A history of the system is
defined to be a finite, or enumerably infinite, sequence of events
starting at EO which is both causally-sound and causally-complete,
ie.

history(X) iff
initial_event(X,EQ) A
causally-sound(X) A
causally-complete(X)

Intuitively, a history contains all of the events whose
occurrence is required by the occurrence of the initial event and the
causality rules, and only these events. If there is more than one
initial event, a new initial event can be created which causes each of
these.

More than one sequence can be a history. This happens when
concurrent events occur. A different history results depending on
the order in which concurrent events are recorded. For example,
with causal_connection(p(1),[1,q(2),[1) and
causal_connection(p(1),[],r(2),[]) we have two distinct histories
p(1),9(2) and p(1),r(2), p(1) the initial event. After p(1) both q(2)
and r(2) can occur.

5.1 A Simple Procedure to Compute History

Let the initial event EQ occur. Suppose the history E0,E1,...Em
till a certain point of time has been computed. We need to compute
the next event Em+1. Let Sm=(F1,F2,..} be the set of events
where for each Fi, there exists an Ei such that
causal_connection(Ei,HEi,Fi,HEiFi) holds and Fi is not already in
EO,...Em. Here HEi is the sequence EQ,E1,..,Ei-1 and HEiFi is the
sequence Ei+1,.,Em. Take the next event, Em+1 to be the event in
Sm with the least time-stamp. If Sm is empty, the procedure halts.

Intuitively, given a partial history H we determine all the events
Fi which are caused by an event in H with H*[Fi] as context, and
not already present in H. Of these we pick the earliest event as the
next one.

As there may be more than one event in Sm with least time-
stamp, the procedure is non-deterministic. A different history
would be computed for each choice of Em+1, signifying that the
system is concurrent.

Inference of causal_connection can be performed using SLD-
resolution. For each i, one can evaluate the query
EIF.causal_connection(Ei,(EO,E1,..,Ei-l),F,(Ei+1,..,Em)) in all
possible ways to obtain Sm. We can now prove:

Theorem A. Correctness of simple algorithm. A sequence of
events EQ,El,..., where EQ is the initial event in the system, is
computed by the above algorithm if and only if it is a history.

Proof. Simple, [Narain & Rothenberg 1990], but not necessary
for this paper.

Proving Temporal Properties of Hybrid Systems

5.2 Simulating the Railroad Crossing

- St <=>
S EER —0—]

w * =
- sl bl b2 52

In the DMOD program in Section 4, let there be just one engine
e(1). Let ve=40, vb=10, and sl,s2,bl,b2 be, respectively,
10,20,30,40. Let e(1) begin journey from position 0 at time 0, i.e.
start(0) causes just one event as given by:

causal_connection(start(0),_,begin_j(e(1),10,0,0),).

To illustrate the simulation algorithm, let EO=start(0) occur.

Then, by the above rule, SO={begin_j(e(1),40,0,0)}. Clearly,
El=begin_j(e(1),40,0,0).)
Now, by C2a and C2b, we obtain

S1={sensed(e(1),sensor(1),0.25), sensed(e(1),sensor(2),1.0)}. Even
though, by Cl, causal_connection(EO,[],E1,(E1]), El is not a
member of S1 since it has already occurred. Thus,
E2=sensed(e(1),sensor(2),0.25). Proceeding this way, we obtain:

EO=start(0)

El=begin_j(e(1),40,0,0)
E2=sensed(e(1),sensor(1),0.25) (0.25 = (s1-0)/40).
E3=start(barrier,close,0.25)
Ed=sensed(e(1),sensor(2),1.0) (1.0 = (s2-0)/40).
ES5=start(barrier,open,1.0)
E6=end(barrier,open,1.75).

Note that the engine moves so fast that it reaches s2, before the
barrier fully closes. Thus, even though the event
G=end(barrier,close,1.25) is potentially caused by E3, its
occurrence is "cancelled” by E4=sensed(e(1),sensor(2),1.0). In
particular, we do not have
causal_connection(E3,[EQ,E1,E2],G,[E4]). The presence of E5
makes the last condition in the body of C5 false. Thus G is not in
S4 (or S5 or S6). Even though it is in S3, it does not appear in the
history because E4 also appears in S3, and has a lower time stamp.

Note that this algorithm makes no use of devices of event
queues, scheduling and unscheduling which are the basis of the
event-scheduling view of the discrete-event technique e.g. [Evans
1988]. The resulting simplification is of considerable importance in
reasoning about programs.

6. REASONING ABOUT MODELS

An especially important aspect of DMOD is that it yields a basis for
formally proving temporal properties of modeled systems. Thus,
questions can be answered, which cannot be answered by
simulating these systems a finite number of times, or for a finite
amount of time. Such questions include "what is the maximum
value an output parameter can ever achieve?" or "will an event ever
occur?".

We first present the general framework in which temporal
properties can be formulated and proved. Then, we present a
heuristic for guiding the search for proofs. Finally, we illustrate
these ideas by proving a liveness property for the railroad crossing
system.

Let P be a DMOD program, and EQ a special initial event for P.
Then, the definition of a history for P, in Section 5 is:

history(X) iff initial_event(X,E0) A causally-sound(X) A causally-complete(X)

where causally-sound and causally-complete are defined in
Section 5. We also need a closed world assumption to express the
fact that P embodies complete information about relations defined
by it, particularly, causal_connection. Let P |--SLD-- S mean that
there is a proof of S from P, via SLD-resolution. We now define:

CWA. SLD-correctness of DMOD programs. Let P be a
DMOD program. Let R be an n-ary predicate symbol defined by P,
i.e. there is a clause in P of the form "R(X1,..,Xn) if BI,.,Bk",
k>=0. Let * be a special symbol not occurring in P. Let A be an
expression not containing *. Define A* to be the result of replacing
each function or relation symbol F in A by F*. Then:

254

(A2) VTI,.YTm.R(T1,..,Tm) iff P* |--SLD-- R*(T1*,..,Tm*)

In particular, P can be regarded as a causality machine. To
settle a proposition of the form causal_connection(E,HE,F,HEF),
we submit it to this machine and wait for its answer. For economy
of notation, we will not, in general, distinguish between A* and A.
Any ambiguity will be resolvable from context.

Now, to show that each history X satisfies a condition r, we can
show that

VX history(X) o r(X)

is a logical consequence of (Al) and (A2). Let X0,X1,... be the
members of a sequence X. Then, an example of r is:

3k3T.Xk=end(barrier,close,T)

which denotes the liveness property that the barrier eventually
closes. Another example of r is:

—3k.3E.3Pe3Pb.
position(E Pe (XO0,..,Xk)) A
bl<Pe<b2 A
position(barrier,Pb,(X0....Xk)) A
bl<Pb<b2.

which denotes the safety property that there is no Xk such that
both the position of an engine, and that of the barrier, immediately
after Xk, are strictly between bl and b2.

Safety and liveness properties are generally proved for all
histories. However, sometimes one may be interested in knowing
whether a property r could be satisfied for some, not necessarily all,
histories. Then one could show that:

3X history(X)Ar(X)

is a logical consequence of (Al) and (A2) In principle, a
theorem prover could accept (A1),(A2) and definitions of r, and
prove appropriate properties. However, as there is no restriction on
the form of 1, proof spaces can be quite complex.

6.1 A Heuristic For Proving Temporal Properties

We now present a heuristic for guiding the search for proofs of
temporal properties. It is is based upon expressing temporal
properties in terms of questions about event occurrences. For
example, to show that the value of a parameter P eventually
becomes X, determine which event E can make it so, and show that
E occurs. Many temporal properties are directly questions about
event occurrences. For example, do at least N events occur before
time T, if A occurs before B then does C occur before D, or is there
a last event occurrence?

Questions about event occurrences can be answered in a natural
manner by utilizing properties of the causality relation between
events. For example, to show that a non-initial event occurs, show
that at least one of its causes occurs. Conversely, to show that a
non-initial event does not occur, show that none of its causes
occurs. The important liveness and safety properties can be proved
this way. If each eccurring event always causes at least one event
then there is no last event occurrence.

Central to the success of this approach is the simplicity with
which the causality relation can be inferred. As it is expressed
using definite clauses, use of the SLD-resolution proof procedure
greatly simplifies its inference.

We now make these ideas precise.
theorems are used:

Theorem 1. Every non-initial event has a cause. Let P be a
DMOD program and e0,¢l,... be a history computed from it. Then:

The following two

Vk.k>0o3i.i<k A causal_connection(ei,(€0,el,...¢i-1),ek,(ei+1,...ek-1)).

Proof: From causal-soundness of history. QED.

Theorem 2. If an event does not occur then it must not
have a cause. Let P be a DMOD program and H=e0,¢1,... a history
computed from it. Let F be an event not occurring in H. Let ek be

S. Narain and J. Rothenberg

the last event in H whose time stamp is less than or equal to that of
F. Then:

—3i.0<i<k A causal_connection(ei,(e0,el,..,ei-1),F,(ei+1,...ek)).

Proof. From causal-completeness of history. QED.

Now, for answering questions about event occurrences, two
strategies can be used. First, to show that an event F does not occur
in a history, assume that it does. Then, by Theorem 1, there must be
an event E prior to F in the history such that E is causally connected
to F. By (A2) at least one attempt to prove, by SLD-resolution, that
E is causally connected to F succeeds. Show that every such
attempt fails, and thereby derive a contradiction. Alternatively,
repeat this sequence of steps for E.

Second, to show that an event F occurs in a history, assume it
does not. Then, by Theorem 2, no event E in the history such that
time(E)<time(F), is causally connected to F. By (A2), for each such
E, every attempt to prove, by SLD-resolution, that E is causally
connected to F will fail. Show that at least one such attempt
succeeds, and thereby derive a contradiction.

In showing the existence or non existence of proofs, it may be
necessary to show that other events occur or do not occur. Then,
the above strategies can be recursively employed. The intuitive
nature of SLD-resolution greatly simplifies checks for existence or
non existence of proofs.

6.2 Proving a Liveness Property

We now illustrate the above ideas by proving a liveness
property for the railroad crossing. Let P be the DMOD program in
Section 4, with just one engine e(1) beginning journey from position
0, at time 0, with velocity ve. In particular, start(0) causes just one
event as specified by:

(C1)
causal_connection(start(0),_,begin_j(e(1),ve,0,0),).

Also, let A be the conjunction of:

§2>b2>b1>sl,

vb>0,

ve>0,

(bl-s1)/ve > (b2-bl)/vb

The last condition states that the time taken for the engine to
move from sl to bl is greater than that taken by the barrier to move
from bl to b2 (i.e. to fully close).

In the following, let e0,el,.. be a history H of the DMOD
program P, where eO=start(0). "E occurs" means there exists k such
that ek=E. We now prove the following liveness property:

There exist k,t such that ek=end(barrier,close,t).

i.e. the barrier eventually ends closing. As we saw in Section
6.2, this is not obvious. The engine may move so fast that before
the barrier ends closing, the engine reaches s2, so barrier starts
opening.

Plan of proof. We can show that start(barrier,close,sl/ve)
occurs. We can also show that the position of the barrier
immediately after this event occurs, is bl.

Now, suppose no event of the form end(barrier,close,T) occurs.
Then, in particular, end(barrier,close,t) does not occur where
t=s1/ve + (b2-bl)/vb. By Theorem 2, it must not possess a cause.
Thus, its cause must not be inferrable, by SLD-resolution, from P.
Its cause is only inferrable from Rule C5. The first five conditions
in the body can be proved. Thus, the sixth condition must not be
provable.

This means an event of the form sensed(e(?),sensor(2),?)
occurs, whose time stamp is greater than or equal to s1/ve, but less
than or equal to t, i.e. the event is between the causing and caused
events. But the only event of this form has the time stamp s2/ve.
Now, s2/ve = (s1 + (s2-bl) + (bl-s1))/ve = (sl/ve + (s2-bl)/ve +
(bl-sl)/ve). By constraint A, this is strictly greater than t which is
(s1/ve + (b2-bl)/vb). Contradiction. QED.

We now carry out this plan in some detail.

255

Lemma 1. The event E=begin_j(e(1),ve,0,0) occurs.

Proof. Suppose E does not occur. Let ek be the last event in H
whose time stamp is less than or equal to 0. By Theorem 2, there
does not exist i, i<k such that causal_connection(ei,(e0,el....ei-
1),E,(ei+l,...ek)). In particular, it is not the case that
causal_connection(start(0),[],E,(e2,..,ek)). By (A2), there must not
be a successful SLD-derivation starting at this. However, by Cl1,
we have the successful SLD-derivation:

causal_connection(start(0),[],begin_j(e(1),ve 0,0).(e2....ek)).
m]

Contradiction. QED.

Lemma 2. The event E=sensed(e(1),sensor(1),t1) occurs where
tl=sl/ve.

Proof. By Lemma 1, begin_j(e(1),ve,0,0) occurs. Proceed as
with Lemma 1, using Rule C2a. QED.

Lemma 3. The events start(barrier,close,sl/ve) and
sensed(e(1),sensor(2),s2/ve) occur.

Proof. Similar to that for Lemma 1, and using Lemma 2.

Lemma 4. If sensed(e(X),sensor(2),T) occurs, then X=1 and
T=s2/ve.

Proof Sketch. Only one event of the form start(0) occurs. By
C1, only one event begin_j(e(X),V,P,T) occurs where X,V,P,T are,

respectively, 1,ve,0,0. By C2b, only one event
sensed(e(X),sensor(2),T) occurs, where X=1, T=s2/ve. QED.
Lemma 5. Let position(barrier,P,(e0,el,...ek)) where

ek=start(barrier,close,s1/ve). Then, P=bl.

Proof. The last two rules in P, in Section 4, state that the
position and velocity of barrier, immediately after start(0) occurs,
are bl and O respectively. We show that there is no event ei, i<k,
which makes the velocity of barrier non zero. Then, by rule for
computing position, the lemma follows. If such an event occurs
then it is of the form start(barrier,?,?). Let it be start(barrier,open,t).

By Theorem 1, it must possess a cause. By C2b, this must be
sensed(e(X),sensor(2),t) for some X. By Lemma 4, X=1,t=s2/ve.
Contradiction, as s2/ve > sl/ve. Similarly, if
ei=start(barrier,close,t). QED.

Liveness property. E=end(barrier,close,tl) occurs where
t1=s1/ve+(b2-bl)/vb.

Proof. Suppose E does not occur. As b2>bl and vb>0,
tI>sl/ve. Also, by Lemma 3, start(barrier,close,s1/ve) occurs. Let
it be ei. By Theorem 2 there is no successful SLD-derivation
starting at:

causal_connection(start(barrier,close,s1/ve),he end(barrier,close,t1),hef)

he=(e0,el,..,ei-1) and hef=(ei+l,..,ek), where ek is the last
event in the history with time stamp less than or equal to t1. Let this
goal be G. Clearly, it unifies with the head of C5 with the
substitution:

o={<E,ei>, <HE he>, <F end(barrier close,t1)>, <HEF hef>)

Then, there is no successful SLD-derivation of the body of C5
to which o is applied. However, the first five conditions can be
proved immediately (using, in particular, Lemma 5). Thus,
non_member_1(sensed(e(?),sensor(2),?),hef) cannot be proved.
This means that some event sensed(e(X),sensor(2),T) has occurred
in between start(barrier,close,s1/ve) and end(barrier,close,tl).
Clearly, s1/ve<T<tl.

By Lemma 4, X=1 and T=s2/ve. We just inferred s2/ve <
sl/ve+(b2-bl)/vb. Thus, (s2-sl)/ve < (b2-bl)/vb. By given
constraint A above, (b2-bl)/vb < (bl-sl)/ve. Thus, (s2-s1)/ve <
(bl-s1)/ve. Thus, s2<bl. Contradiction with A. QED.

7. SUMMARY

Formal techniques to prove temporal properties are generally
restricted to either purely discrete systems or to purely continuous
systems. It appears far from obvious how they can be extended to
rcaslc:jn about hybrid systems which arise frequently in the real
world.

In this paper, we presented a formal technique, DMOD, for
modeling hybrid systems. It utilizes the tractable proof theory of
definite clauses, and our intuitions about causality. We presented an

Proving Temporal Properties of Hybrid Systems

algorithm to simulate with DMOD models. Then, we outlined the
general framework in which temporal properties of hybrid systems
can be formulated and proved, (given that those systems are
modeled using DMOD). Finally, we illustrated these ideas by
proving a liveness property about a railroad crossing.

REFERENCES

Apt, K.R., M.H. van Emden (1982), “Contributions to the Theory
of Logic Programming,”Journal of the ACM 29, 3.

Bemnstein, A. and P. Harter (1981), “Proving Real-time Properties
of Programs with Temporal Logic,” In Proceedings of ACM
Conference on Operating Systems Principles.

Cameron, E., D. Cohen, B. Gopinath, W. Keese, L. Ness, P. Uppa-
luru, and J. Vollaro (1988), “The IC* Model of Parallel Com-
putation and Programming Environment,” IEEE Transactions
on Software Engineering 14, 3.

Cammarata, S., B. Gates, J. Rothenberg (1988), “Dependencies,
Demons and Graphical Interfaces in the ROSS Language,” N-
2589-DARPA, RAND Corporation, Santa Monica, CA.

Cleary, J. (1990), “Colliding Pucks Solved Using a Temporal Log-
ic,” In Proceedings of Distributed Simulation Conference, So-
ciety for Computer Simulation, San Diego, CA.

Davis, E. (1988), “A Logical Framework for Commonsense Predic-
tions of Solid Object Behavior,” Artificial Intelligence in Engi-
neering 3, 3.

Davis, M., S. Rosenschein, and N. Shapiro (1982), “Prospects and
Problems for a General Modeling Methodology,” N-1801-RC,
RAND Corporation, Santa Monica, CA.

de Kleer, J. and J. Brown (1984), “A Qualitative Physics Based
upon Confluences,” Artificial Intelligence Journal 24, 7.

Evans, J.B. (1988), Structures of Discrete-event Simulation: An In-
troduction to the Engagement Strategy, Ellis Horwood, New
York.

Fishman, G. (1973), Concepts and Methods in Discrete-event Digi-
tal Simulation, John Wiley & Sons, New York.

Forbus, K. (1984), “Qualitative Process Theory,” Artificial Intelli-
gence Journal 24, 85-168.

Galton, A. (1988), Temporal Logics and Their Applications, Aca-
demic Press, New York.

Harel, D. (1984), “Statecharts: A Visual Approach to Complex
Systems,” In Proceedings of Advanced NATO Study Institute
on Logics and Models for Verification and Specification of
Concurrent Systems, NATO ASI series F 13, 1-44.

Ho, Y.C. (1987), “Performance Evaluation and Perturbation Analy-
sis of Discrete-event Dynamic Systems,” IEEE Transactions
on Automatic Control AC-32,7.

Hobbs, J. and R. Moore, Eds. (1985), Formal Theories of the Com-
monsense World, Ablex Publishing Corporation, Norwood, NJ.

1EEE (1989), “Special Issue on Dynamics of Discrete-event Sys-
tems,” In Proceedings of the IEEE.

Iwasaki, Y. and H. Simon (1986), “Causality in Device Behavior,”
Artificial Intelligence 29.

Jahanian, F. and A. Mok (1986), “Safety Analysis of Timing Prop-
erties in Real-time Systems,” /EEE Transactions on Software
Engineering.

Jefferson, D. (1985), “Virtual Time,” ACM Transactions on Pro-
gramming Languages and Systems.

Kiviat, P.J. (1967), “Digital Computer Simulation: Modeling Con-
cepts,” RM-5378-PR, RAND Corporation, Santa Monica, CA.

Kowalski, R. (1979), Logic for Problem Solving, Elsevier North
Holland, New York.

Kowalski, R. (1986), “Database Updates in the Event Calculus,”
DoC 86/12, Department of Computing, Imperial College, Lon-
don.

Kowalski, R. and M. Sergot (1986), ”A Logic-based Calculus of
Events,” New Generation Computing 4, Ohmsha Limited and
Springer Verlag.

Kuipers, B. (1986), “Qualitative Simulation,” Artificial Intelligence
29,289-338.

Lamport, L. (1983), “What Good is Temporal Logic?,” In Proceed-
ings of IFIP, R.E.A. Mason, Ed. North Holland, Amsterdam.

Lloyd, J. (1984), Foundations of Logic Programming, Springer
Verlag, New York.

256

Manna, Z. and A. Pnueli (1981), “Temporal Verification of Concur-
rent Programs,” In The Correctness Problem in Computer Sci-
ence, R.S. Boyer and J.S. Moore, Eds. Academic Press, New
York.

McArthur, P. Klahr, and S. Narain (1986), “ROSS: An Object-
oriented Language for Constructing Simulations,” In Expert
Systems: Techniques, Tools, Applications, P. Klahr and D.

Waterman, Eds. Addison Wesley, Reading, MA.

McCarthy, J. (1987), “Generality in Artificial Intelligence. Turing
Award Lecture,” Communications of the ACM.

McCarthy, J. and P. Hayes (1969), “Some Philosophical Problems
from the Standpoint of Artificial Intelligence,” In Machine In-
telligence, B. Meltzer and D. Michie, Eds. Edinburgh Universi-
ty Press, Edinburgh.

McDermott, D. (1982), “A Temporal Logic for Reasoning about
Processes and Plans,” Cognitive Science, 101-155.

Misra, J. (1986), “Distributed Discrete-event Simulation,” Comput-
ing Surveys.

Nance, R. (1981), “The Time and State Relationships in Simulation
Modeling,” Communications of the ACM.

Narain, S. (1990), “A New Simulation Technique and its Imple-
mentation in Prolog,” To appear in Prolog and its Applications,
A. Bond, Ed. MIT Press.

Narain, S. and J. Rothenberg (1989), “A Logic for Simulating Dy-
namic Systems,” In Proceedings of the 1989 Winter Simulation
Conference, E.A. MacNair, K.J. Musselman, and P. Heidelber-
ger, Eds. IEEE, Piscataway, NJ.

Narain, S. and J. Rothenberg (1990), “A New Modeling Technique
Based Upon the Causality Relation,” WD-4828-DARPA,
RAND Corporation, Santa Monica, CA.

Ostroff, J. (1989), “Synthesis of Controllers for Real-time Discrete-
event Systems,” In Proceedings of IEEE Conference on Deci-
sion Control.

Owicki, S. and L. Lamport (1982), “Proving Liveness Properties of
Concurrent Programs,” ACM TOPLAS 4, 3, 455-495.

Pnueli, A. (1977), “The Temporal Logic of Programs,” In Proceed-
ings of the 18th Symposium on Foundations of Computer Sci-
ence.

Pnueli, A. (1981), “The Temporal Semantics of Concurrent Pro-
grams,” Theoretical Computer Science 13, 45-60.

Peterson, J.L. (1977), “Petri Nets,” ACM Computing Surveys 9, 3.

Rothenberg, J., S. Narain, R. Steeb, C. Hefley, and N. Shapiro
(1988), “Knowledge-based Simulation: An Interim Report,” N-
2897-DARPA, RAND Corporation, Santa Monica, CA.

Sandewall, E. (1989), “Combining Logic and Differential Equations
for Describing Real-world Systems,” In Proceedings of Inter-
national Conference on Knowledge Representation, Toronto,
Canada.

Schruben, L. (1983), “Simulation Modeling with Event Graphs,”
Communications of the ACM.

Shoham, Y. (1987), “Temporal Logics in AI: Semantical and Onto-
ll%%ical Considerations,” Artificial Intelligence Journal 33, 89-

Suri, R. (1987), “Infinitesimal Perturbation Analysis for General
Discrete-event Systems,” Journal of the ACM.

Zeigler, B. (1984), Multifacetted Modeling and Discrete-event Sim-
ulation, Academic Press, New York.

