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ABSTRACT

Qualitative representations provide a method for obtaining
coarse-grained descriptions of dynamic system behaviour. These
can be valuable where a general result is required, or where the
available information is not adequate for a numerical or analytic
representation. If qualitative methods are to find wider use, it is
clearly important to understand the limitations in accuracy which
are inherent in the representation. This paper discusses the
relationship between qualitative representations and results ob-
tained from more conventional mathematical approaches. A
simple second order system is used to illustrate the use of quali-
tative methods, including a qualitative calculus. An extension to
cater for a non-linear case is also shown. A clear correspondence
is demonstrated between qualitative and conventional results.

1. INTRODUCTION

The use of abstract descriptions of reality has been well
established for a considerable time as a basis for predicting states
of dynamic systems. Impressive results have been obtained in all
fields in which dynamic situations figure, with simulation becom-
ing recognised as a particularly important tool. The ability of
computers to perform extensive calculations has made them
natural partners for simulation since their earliest appearance.
More recently, interest has grown in symbolic computation: the
direct use of abstract representations within a computer.

This paper is concerned with a part of Artificial Intelligence
sometimes termed Deep Knowledge Based Systems (DKBS).
The main aim of DKBS is to enhance the capabilities of intelligent
systems beyond the simpler rule-based approaches which are now
commonplace. The limitations of such first-generation systems
are becoming well known, although they are perfectly capable of
providing valuable service in a wide range of applications.

Observation of humans dealing with dynamic situations
shows that they often reason with approximate or qualitative
values. Emulation of this capability by machine therefore in-
volves the use of similar non-numerical values, and methods of
calculation which use them. Although a relatively new field, a
number of applications for qualitative reasoning have been pro-
posed, of which the following are typical.

e Simulation: the generation of a description of system
behaviour under a specified set of constraining
conditions [Kuipers 1985].

e Envisioning: the identification of all possible
behaviours of a system, possibly indicating conditions
under which certain behaviours may arise [de Kleer
and Brown 1984].

Understanding: the production of soundly based
explanations of the relationships and processes
operating in the system [Forbus 1984].

Control: the selection of actions based on qualitative
values, possibly producing qualitative inputs to the
controlled system [Clocksin and Morgan 1986].

Diagnosis: the recognition of incorrect system

behaviour and the identification of possible causes of
that behaviour [Pan 1984].
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The first two of these are of particular interest here, and are
obviously related: for example, a simulation can be considered as
a selection of behaviours from a larger envisionment set. The
accuracy of simulation results is obviously a matter of concern.
Deployment of qualitative reasoning systems for operational use
will require some confidence that results produced are “correct”.
This paper explores some of the issues involved, and shows how
qualitative techniques can produce accurate behavioural descrip-
tions, using a typical dynamic physical system as an example.

2. QUALITATIVE MODELLING

It is clear that the actions of humans in many complex situ-
ations can be explained on the basis of a mental model, which
constrains and guides the mind in reaching decisions or conclu-
sions [Gentner and Stevens 1983]. One possible explanation for
the limitations of some current approaches to intelligent systems
is the lack of a corresponding model. Much of the work in
qualitative reasoning is based implicitly or explicitly on the use of
a model, and this has important implications when considering
accuracy.

Models are a simplified version of reality. However, the
simplification must preserve the aspects of reality which are
relevant to the task at hand. The designer of the model has to
make choices about the model scope, since there are always
trade-offs involved; normally size or speed versus accuracy or
resolution. The issues involved include:

e what facets should be represented in the model?
(electrical, thermal, mechanical, etc.),

o the extent of the model; what should be included and
what left out?,

o the relationship between the model and reality;
typically, scaling of variables or time,

o the level of detail and closeness of approximation
required,

® any standards or conventions which must be adhered
to by the model.

A prime consideration is the accuracy of the model: the
fidelity with which it describes reality. Accuracy must be distin-
guished from resolution, which relates to the ability to distinguish
between similar behaviours. In a qualitative model, the resolu-
tion is clearly going to be lower than in a model based on (say)
real number representations. Although a low resolution imposes
limits on the degree of accuracy which can be expected, the model
%l%ould be accurate within these limits. Two criteria are relevant.

ese are:

® Completeness: all real behaviours should be identified
without omissions.

o Consistency: no spurious behaviours should be
introduced by the reasoning process.

Some compromise is usually necessary when mapping reality
onto amodel, since it is not practical to build fully comprehensive
models. Models are built for a purpose, typically to solve a
particular problem or range of problems. Representing facets of
reality not relevant to the problem at hand would involve a great’
deal of unnecessary work. It is therefore normal for the designer
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of a model to look for simplifications which can reduce the
modelling task, along the directions of choice outlined above.
Although the resulting model will clearly be deficient in some
respects when it comes to representing reality, the designer will
have determined that these deficiencies are acceptable for the
current task. Kuipers [1986] discusses the need for a “gold stand-
ard” by which results may be judged.

These issues must be taken into account when considering
the accuracy of a reasoning system. The compromises selected in
building the model will restrict the scope of the results which can
be produced. The best that can be achieved is the production of
results which are consistent with the model. In fact, nothing less
than this should be acceptable. The position is summarised in
Figure 1. Discrepancies between positions A and B in the figure
are acceptable for the reasons outlined above. However, there
should be no discrepancy between positions B and Cin the figure,
since this would indicate some shortcoming in the reasoning
system and/or the model itself. Before looking at examples of
possible sources of such problems we first need to look at meth-
ods for qualitative representation.

model-based reasoning system

constrains constrains

reality model processing

C

behaviours identified E
by the reasoning |
system '

A B

behaviours possible
given a specific
model

behaviours possible
in the real world

Figure 1. Relationship between Model and Reality
3. QUALITATIVE VALUES

In a qualitative reasoning system, variables can be repre-
sented as scalars in a coarse system of measurement, defined by
partitioning the range of possible values. The simplest useful
division splits the range into two partitions. In this case three
symbols are required: one for each of the partitions, and one for
the boundary between them. Any possible value can then be
described with just one of the three symbols. The most common
set of qualitative reasoning symbols uses exactly this repre-
sentation. The symbols + and - are used to denote the two
partitions, and the symbol 0 to denote the boundary between
them. The set is extended to include the symbol ?, representing
a value which is presently unknown but which must ultimately be
one of +,0, or -.

In a scalar qualitative system, values are represented by
symbols drawn from the {+0-?} set. Both straightforward
quantities, such as distance, and rates of change of quantities, such
as velocity (which can be expressed as a change in distance per
unit time), can be represented. These are sometimes referred to
as “levels” and “rates” in the literature on systems dynamics; see
[Coyle 1977] for example.

This scalar qualitative mathematics can be seen as a kind of
interval arithmetic, with the symbol + representing the open
interval (0, ), the symbol - representing the open interval
(-, 0) and the symbol 0 representing the closed interval [0, 0];
see [Struss 1987] for an extended discussion. An important point
to note is that the identification of the symbol 0 with a boundary
between ranges implies that zero is a range of infinitesimal size.
A corollary of this is that dynamically changing values will occupy
the zero “range” for an infinitesimal time. Any qualitative values
representing such states must therefore be transitory. In contrast,
the + or - ranges have a significant extent, and values can
therefore be persist in the range for a significant time. Engineers,
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as opposed to mathematicians, may prefer to accept a very small
but finite zero band, to take account of the practicalities of
measurement devices (the transition rules discussed in Section 6,
below, were framed with this in mind).

Qualitative mathematical operations can be defined, corre-
sponding to their quantitative counterparts. As an example,
Table 1 shows the qualitative addition and multiplication of two
values, [a] and [b].

Table 1. Qualitative Arithmetic

(a) Addition (b) Multiplication

[a] (al
+]0] - +]0]| -
+|l+[+]7? +|+]0]| -
[b] o+ |0]|- [} oJofo0 )0
1?2 - - -l-10f+

Qualitative vectors are an extension to the use of scalar
qualitative values. The description here is necessarily brief: a
detailed treatment is given in [Morgan 1988]. The vector repre-
sentation expresses not only the value of the variable but also its
successive derivatives. Scalar values can be seen as the zeroth
derivative and the initial element of the vector. Successive vector
elements represent the first derivative, the second derivative, and
so on. The notation used here is to enclose qualitative values in
square brackets, and to denote qualitative vectors in the form
[dO dl d2 ..), where the d® stand for qualitative values drawn
fromthe set {+ 0 - ?}.

For a function of the general form y =f(x), a change in x will
lead to some corresponding change iny. Taking increasingx as
a convention, we can express a corresponding change toy in the
form of a qualitative vector. In graphical terms, this corresponds
to a description of the shape of the curve of y againstx.

Various functions will have their own characteristic curve
shapes, and some illustrative examples are given in Table 2 for
simple x-y relationships. The qualitative vectors are produced by
successively differentiating the function and noting the sign of the
derivative. Note that the coarse resolution of the qualitative
values does not always allow functions to be distinguished, be-
cause their curve shape may be similar, as can be seen by com-
paring y=x""/“ and y=e¥in the table.

Table 2. Typical Functions and Vectors (positive x, y)

y= [ successive derivatives | qualitative vector

x| 2x 2 0 0 L+ + +00 ..
e* | -e* e™ e~ e L+ -+ -+ ]
x 12 |.1/2x32 3145”2 _15/8x72 105/16x92 L |[ + - + - + .. ]
X512 | 5232 15/4x'2 15/8x 2 1516x32 ([ + + + + - ]

Since each vector can be viewed as a segment of a curve,
consecutive vectors can be seen as consecutive curve segments.
In physical systems, quantities normally change value in an un-
broken way, L.e. they are continuously differentiable. This implies
that adjacent curve segments must meet in a way which preserves
continuity. A series of rules can be defined to express the conti-
nuity conditions governing adjacent curve segments, as described
in [Morgan 1988]. For example, any element cannot change sign
in adjacent vectors (from + directly to - or vice versa), since the
element must pass through zero in transition. Vectors containing
zero derivatives are transitory; this follows from the definition of
“zero” as a boundary of infinitesimal width between + and -.

The qualitative mathematics of the scalar case can be ex-
tended to support corresponding operations on vectors. As
examples: vector addition is achieved by adding corresponding
elements; multiplication of a vector by a scalar by multiplying
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each vector element by the scalar, and multiplication of two
vectors by application of the general rule for differentiation of
products.

An important additional property arising from the vector
representation is the ability to integrate or differentiate vectors.
Since the vector elements represent successively higher deriva-
tives, each element is the derivative of its preceding element.
Differentiation is therefore achieved by shifting the vector ele-
ments to the left; integration by shifting to the right. With each
differentiation, an additional element has to be inserted at the
right (left for integration) to maintain the vector length. It may
be possible to infer the value of the new element from informa-
tion available, otherwise the value ? must be inserted. The
application of the rules for continuity and qualitative mathema-
tics to typical first and second order systems is discussed in
[Morgan 1987].

4. A CONVENTIONAL SYSTEM MODEL

In order to illustrate the issues involved, a simple second-
order case will be taken as an example. The same mathematical
description can be applied to several physical systems; the easiest
to visualise is probably a mass connected to a fixed frame by a
spring and a damper, so that the mass is free to move under the
influence of any force that might be applied. The forces on the
mass (fm), the damper (fd) and the spring (fs) can be found from
a definition of their basic properties:

fm=M.a, s=K.x, fd=B.v,
where acceleration, velocity, and displacement are indicated by
a, v, and x respectively. The applied force (F) is equal to the sum
of the forces on the mass, the damper and the spring.

F=fm+fd+fs
Assuming an unforced response (F=0) and using the basic
properties of the components, the system can be expressed in
differential equation form as:

Mdx y Bd&X 4 Kx=o,

dt? dt

Using the Laplace variable s, this can be written as:

(Ms?2 + Bs + K)x = 0.
In general x = 0, and so:

Ms? + Bs + K = 0.

Of course, this model is a simplification of reality. For
example, it does not take into account the resistance of the air to
the movement of the mass, the damping inherent in the spring,
or the mass of the damper. The choice of this model implies that
all of these minor effects can be ignored. All predictions of
behaviour of the real system are therefore made on the basis of
the “pure” version of reality represented in the second-order
differential equation. This equation is known as the characteristic
equation of the system, because it characterises the system’s
behaviour. The equation commonly appears in the form:

52 + chnS + wn2 =0
where ¢ is the damping ratio and wn is the undamped natural
frequency. Interms of the component parameters here, these are
t = B/2(MK)2, and wn = (K/M)V2,

In conventional systems dynamics, a block diagram repre-
sentation is commonly used. This captures the essential proper-
ties of the system; in this case in terms of the mass, spring, and
damper parameters (M, K, and B respectively) and the integral
relationships between acceleration and velocity, and between
velocity and displacement. Figure 2 shows a typical diagram.

The fact that the system is second order can immediately be
seen from the two integration blocks. It is important to note that
the model implicitly assumes a non-zero value for the damping
constant B. If the value of B were to be zero, the values fed
around that branch of the network would be multiplied by the
scalar constant zero, making all vector values zero. The branch
containing B would then have no impact on the system behaviour,
and would, in effect, be removed from the model. The resulting

system has the characteristic behaviour of a simple harmonic
oscillator: a continuous sinusoidal oscillatior, with an amplitude
determined by the initial conditions.

Note: 1 indicates Integral

B
fg
+ A7 fm a X
F—Cr—— "m I Y I
fs
K

Figure 2. Block Diagram of Mass-Spring-Damper System

The dynamic behaviour of the system can be found from the
characteristic equation and the initial values of displacement,
x(0), and velocity, x'(0). A detailed derivation can be found in
many standard references on systems dynamics, such as [Palm
1983] and [Shearer et al 1971].

The roots of the characteristic equation are given by:

s =-fwn *_-wn(cz- 1) 12
which may be real or complex. Determination of the roots re-
quires a knowledge of the relevant parameters (M, K, and B in
this case). For second order systems, three general behaviours
can be distinguished, depending on the size of ¢ :

underdamped: 0<t<1,
critically damped: ¢ =1,
overdamped: > 1.

. Foragivenset of parameters, the form of the system response
will be similar for a wide range of input values. As an example,
if the system is underdamped, the response to step inputs will be
of much the same form regardless of the size or the sign of the
step (although a negative step will clearly produce results in the
opposite sense to a positive step). Also similar will be the free
response, in which the system 1s allowed to “relax” from some

initial starting position. Figure 3 shows a typical underdamped
response.

zeta=0.1

max= 2181

max= 69.36

Figure 3. Free Response for zeta = 0.1
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Figure 3 shows the free response from initial conditions:
x(0)=d0=1, x'(0)=d'=0

with ¢ — the damping ratio — equal to 0.1. The values of
successive derivatives (d?, d? etc.) have been scaled on the graph
for convenience. A description of behaviour such as that repre-
sented by Figure 3 is valid only for particular parameter values.
The aim of a qualitative representation is to find a more general
description matching a range of parameter values.

5. A QUALITATIVE MODEL

Construction of a qualitative model is straightforward. The
component parameters are positive constants. From Table 1,
multiplication of a variable by a positive constant leaves the
qualitative value unchanged. The blocks in Figure 2 representing
1/M, K. and B can therefore be ignored. The resulting qualitative
equations are:

[v]=int[a], [x]=int[v], and [a]=[F]-[v]- [x],

where int[ ] represents qualitative integration. Each of the vari-
ables can be expressed as a qualitative vector, and the equations
above constrain the combinations of vectors which are per-
missible. The resulting qualitative model is consistent with the
conventional model, and makes the same assumptions about
“pure” components. We should therefore expect to find a clear
correspondence between results from the two models.

Conventional systems analysis assesses the performance of
systems in relation to a number of standard test inputs; impulse,
step, and ramp inputs are common. In a similar way, the qualita-
tive equivalent can be assessed against standard inputs such as a
step (e.g. [+00]) or aramp (e.g. [+ +0]). The impulse has no
direct representation as a qualitative vector. In the qualitative
case there is also a choice over the granularity of the response
investigated; for example, whether to be concerned with the
shape of the input as it rises from [0 0 0] to [ + 0 0].

A qualitative representation abstracts away from the particu-
lar values associated with an input but preserves the essential
form of the result. Since the qualitative results are derived
without knowledge of the system parameters, they will include all
of the possible responses of the system; underdamped, critically
damped, and overdamped. This paper concentrates on the
underdamped response, which shows an oscillatory behaviour.
Similar analyses can be performed for the overdamped and criti-
cally damped cases, which also show results corresponding to the
analytic mathematical forms, although less interesting than the
underdamped case.

Dynamic behaviours can be generated in a straightforward
way by systematically testing all possible combinations of { +0 -}
vector element values against the constraining equations. This
requires a choice of vector length appropriate to the task at hand.
Bearing in mind that some functions require qualitative vectors
of infinite length, this introduces another source of approxima-
tion. For example, choosing a vector length of 3, i.e. [dY d! d?),
implies that derivatives above second order are irrelevant.

To demonstrate the method of computation of the qualitative
response of the system we can assume a zero forcing function, Le.
[F]=[000]. If we look at a possible value for [x] of [+ + +], the
qualitative differentiation rule gives [v]=[+ +?] and
[a]=[+? ?]. Since [F]=[a] + [v] + [x], this gives us
[F1=[+? 7], a contradiction to our earlier assumption. As an-
other example, choosing [x]=[+ + -] gives [v]=[+- ?] and
[a]=[- ? ?]. Now [F]=[? ? ?];asolution which is consistent
with our earlier assumption, since ? can represent any of the
values +, 0, or -.

An alternative method of computation relies on the propa-
gation of selected scalar values from a given starting point around
a component network (similar in concept to the conventional

block diagram of Figure 2). Each component acts on values in a
manner appropriate to its characteristics. A summation is nor-
mally required where network branches join together. Localisa-
tion of inference in this way creates difficulties in networks which
have multiple branches, either feed-back or feed-forward. Since
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we are dealing with a continuous-time system, all values around
a branch must be determined simultaneously. Failure to observe
this condition is equivalent to a temporary opening of the branch,
and requires a suspension of time within the model for resolution
of propagated values. This difficulty is avoided with the qualita-
tive vector method described above, since the consistency of
vectors within the system is assured by the global test.

A standard result from the state-space representation used
in conventional analysis is that a linear system of order n requires
avector length of n for an adequate description. A corresponding
conjecture is that a qualitative representation requires a vector
length of at least n+1 elements. A vector length which is too
short does not provide the discrimination necessary to distinguish
between significantly different behaviours. This is illustrated in
the next section.

6. QUALITATIVE BEHAVIOURS

In this section a consistent set of results is shown for the free
response of the system, from an initial state where the system is
held at a positive static value. The length of system vector gener-
ated can be varied to show the effect of the system constraints on
the number of states identified. A system vector of length 1 gives
information only on the level of displacement. Since the system
can oscillate, the displacement can take any of the three qualita-
tive values +, 0, or -, with transitions between the + and - states
taking place via the 0 state.

A more interesting result is shown in Table 3 for a vector
length of 2.

Table 3. 2-element state vectors.

state x] successors
1 ++ (2)

2 +0 (3)

3 + - (6)

4 0+ (15)
5 00 (46)
6 0 - (59)
7 -+ (4)

8 -0 (7)

9 - - (8)

Nine states are possible, with transitions as shown in Figure
4. The states for the single-element vector are a simplification of
the more complex states, as shown by the dotted boxes in Figure
4. The 2-element states preserve the same transitions as the
simpler case, but add detail on state structure and transitions.

| + I
12 : 6
E +0 ) E 0-
H g
i ( ++ : 10
! i 5
Uszsssoc-czsszsozoosd | 00
L= |
! 4
1 0+

Figure 4. Transition Diagram for 2-element Vectors
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A vector length of 3 produces 13 possible states, as shown in
Table 4.

Table 4. 3-element state vectors.

state [x] successors
1 ++ - (2)
2 +0- (5)
3 + -+ (8)
4 +-0 (38)
5 +-- (4)
6 0+ - (1)
7 000 ()
8 0-+ (13)
9 -+ + (10)
10 -+0 (611)
1 -+ - (6)
12 -0+ (9)
13 .-+ (12)

Each vector represents a feasible system state. A transition
relationship between states can be determined from simple con-
tinuity rules [Morgan 1988]. For example, the only possible
transition between the first two states is from State 1 to State 2.
A consistent negative value for the third element of both vectors
implies a decreasing value for the second element. This would
be contradicted by a transition from State 2 to State 1, since the
value of the second element would be increasing (i.e. transition
from 0to +). A systematic transition analysis of this kind reveals
the set of feasible transitions shown in final columns of Tables 3
through 5.

State 7 in Table 4 represents the steady state, in which the
system is completely static. It therefore has no transition path.
Recalling that the oscillations shown in Figure 3 decay with time,
it may seem strange that the steady state can not be reached from
any of the oscillatory states. However, this is in exact accord with
the conventional mathematical expression. The decay in the
oscillations is governed by a negative exponential term which
does not reach zeroin finite time. The isolation of the steady state
is therefore a consequence of the “pure” model selected initially;
the qualitative transitions simply record this fact accurately.

The transitions are shown in Figure 5. The emerging pattern
shows a symmetry between the positive and negative states, as
might be expected from the sinusoidal nature of the under-
damped response. Again, the simpler states of the 2-element
vector behaviour are seen to be included within the 3-element
behaviour. The exception is the resolution of the [0 0] case of
Figure 4, which shows that a vector length of less than 3 does not
provide sufficient resolution to correctly identify the steady state.

Comparison of the 2-element and 3-element results reveals
a further subtle source of error. The states of Table 3 could
equally well apply to a continuous (undamped) sinusoidal oscil-
lation. As explained earlier, this could be produced by removing
the branch containing the damping coefficient B from the model.
However, since we have explicitly included non-zero damping in
our model, the qualitative results should exclude this case. Ex-
tending the vector length from 2 to 3 produces the required result,
as can be seen in Table 4. The point of inflexion in the negative-
going part of the sinusoid (State 4 in Table 4) occurs while the
value is still positive, due to the effect of the exponential decay of
the curve. For an undamped sinusoid, the point of inflexion
would coincide with the zero axis, producing a state vector of
[0 - 0]. This can be demonstrated easily by generating a corre-
sponding state table for the case where B =0.

One possible source of inaccuracy is therefore related to
resolution. A description of a second-order system using only the
level and its first derivative is certain to produce spurious beha-
viours of the type described above. A more adequate repre-
sentation (such as Table 4 and Figure 5) produces results which
are completely consistent with the results of conventional ana-
lysis, and therefore true to the model.

524

Figure 5. Transition Diagram for 3-element Vectors

A succession of states traced for [x] in Table 4 can be identi-
fied in Figure 3. For example, the first part of the d¥ curve
corresponds to State S, the first zero crossing to State 8, and the
first negative peak to State 12.

The branches between different possible successor states in
the tables and transition diagrams are not ambiguities introduced
by qualitative reasoning. They represent behaviours correspond-
ing to different combinations of system parameters. In fact, the
state trajectory of the system can be used to indicate approximate
values for components, as described in [Morgan 1990].

Table S shows the states and transitions for qualitative vectors
of length 4, which can be seen to follow the same pattern. A
transition diagram is not shown because the increasing numbers
of sltates become difficult to follow when reproduced at a small
scale.

Table 5. 4-element state vectors

state X successors
1 ++4 -+ (4)

2 ++-0 (14)

3 ++ -- (2)

4 +0-+ (9)

5 +-++ (61415)
6 +-+0 (71516)
7 + -+ - (16)

8 +-0+ (514)
9 +--+ (8)
10 0+-+ (1)

1 0+-0 (1210)
12 0+-- (2311)
13 0000 0

14 0-++ (152324)
15 0-+0 (1624 25)
16 0-+- (25)
17 -+ +- (18)
18 -+0- (1221)
19 4o+ (10)
20 -+-0 (101119)
21 -+ (111220)
22 -0 + - (17)
23 -+ + (24)
24 --+0 (2225)
25 -- 4 - (22)
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The maximum number of states possible with a vector of
lengthn is 3%, For a 2-element vector the theoretical maximum
is then 32=‘ 9 states, the same number produced by the process
for generating consistent vectors described above. For a 3-ele-
ment vector the number of generated states is 13; less than the
maximum number of 33=27. The reduction in the number of
states generated is a consequence of the application of system
constraints. In the 1-element and 2-element cases, the vector
lengths are not sufficient for the constraints to apply, and so the
internal structure of the system has no effect on the generated
states. This also illustrates the effect of the conjecture above. A
comparison of the numbers of states for vectors of length 1 to 5
is given in Table 6.

Table 6. Numbers of states for vector lengths up to 5.

length max. (3") generated
1 3 3
2 9 9
3 27 13
4 81 25
5 243 45

7. EXTENSION TO A NON-LINEAR CASE

The linear system described in the preceding section in-
cluded viscous friction. This is a close representation of the
operation of many real components, such as the dampers used as
a component of automobile suspension systems. The damping
coefficient B relates the force through the damper to the relative
velocity of its two ends. This is a linear relationship, as shown in
Figure 6a. The more general applicability of the qualitative
vector representation is shown here by the substitution of Cou-
lomb friction for viscous friction. Coulomb friction (sometimes
known as static friction or “stiction”) has a non-linear charac-
teristic. It describes the phenomenon of “sticking” until the
applied force reaches a certain level, as shown in Figure 6b.

force I force ]

velocity velocity

(a) Viscous friction (b) Coulomb friction

Figure 6. Two Types of Damping Coefficient

The effect of Coulomb friction is reflected in the system

equation:

M.d_zx + C(sign 3 )+ Kx=0
dt? dt

where C is the constant associated with the Coulomb friction.
Comparison with the viscous example shows that the damping
term is no longer proportional to the velocity, but is a term which
is “switched” to a fixed value according to the sign of the velocity.
In the qualitative case, this is equivalent to transforming the
qualitative vector for velocity into a qualitative scalar.

The block diagram of the system must be modified from the
original linear system to reflect the revised characteristics of the
damping. This entails the replacement of the damping coefficient
block (labelled B in Figure 2) with another block which switches
a fixed positive or negative value, depending on the sign of the
velocity v.

Analytic results for this case can be derived along the follow-
ing lines. A new variable, y, can be defined so that:

y=x+C (sign ™).
K dt
Substituting in the system equation gives:

M %Y 4 C(sign 9 ) + K[y- C (sign & )] = 0.

dt? dt K dt
So: Mﬁ +Ky=0
dt?
Integrating this gives:
2 2
M (dy '+ Ky” = constant,
2 dt 2
2 2
andso: (¥ )+ K¥" = constant
dt M
Substituting for y gives:
2
v2+£(x+£)=C1forv>0
M K
2
v+ K (x-C%=c2forv<0
M K

In terms of coordinates v, x(K/M)1/2, these two equations

describe circles centred at:
v=0,x= -C/(KM)“2forv >0, and
v=0,x= C/(KM)2forv < 0.

It is convenient to visualise the free response for this system
on the phase plane — a graph of v against x(K/M)V2, The system
response follows a trajectory consisting of semi-circles in each
half-plane towards the origin of the v, x(K/M)Y/2 plane. The
switch between the two circle equations occurs on the horizontal
axis of the phase plane, which of course is the v=0 line. The
trajectories continue until the v=0 line is reached between one
of the two circle centres (x= -C/(K.M)¥2 or x= C/(K.M)¥/2) and
the origin (where v=0 and x=0). The reason for the trajectory
halting at this point is that the forces due to the mass and the
spring are no longer adequate to overcome the Coulomb friction,
and so the system “sticks”. Typical phase plane trajectories for
the free response are shown in Figure 7. Two observations follow
immediately.

e Unlike the case of viscous friction, the system can
reach steady-state conditions in finite time.

o The steady-state position finally reached may have a
positive, negative, or zero value of displacement x,
depending on the sticking position.

v
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Figure 7. Phase Plane Portrait for Coulomb Friction



Accuracy in Qualitative Descriptions of Behaviour

A qualitative analysis of the Coulomb friction case produces
rather more states than the same vector length in the viscous case.
This is because the non-linear system is not able to provide such
strong constraints as the equivalent linear system. The generated
qualitative states for a system vector length of n=3 are shown in
Table 7 and as a transition diagram in Figure 8. The states shown
in the diagram and the table are produced by exactly the same
method as the previous viscous friction examples, by simply
changing the damping block in Figure 2. The generated Coulomb
friction states can be contrasted with the viscous friction case
(viscous states are listed in Table 4 and transition diagram shown
in Figure 5).

Table 7. 3-element vectors with Coulomb friction.

state [x] successors
1 + + - (4)
2 +0+ (3)
3 +00 (24)
4 +0- (37)
5 +-+ (212)
6 +-0 (512)
7 +-- (6)
8 0+- (111)
9 00 + (10)
10 000 (911)
1 00- (10)
12 0-+ (919)
13 -+ o+ (14)
14 -+0 (815)
15 -+ - (818)
16 -0+ (1317)
17 -00 (1618)
18 -0- (17)
19 .-+ (16)
2
C+00) C+0 +)
3
7 6 5
4 12
D) 0 -
9
T x>
1 10 .
19 1 .
+ 00 -
16 8
0 + 0 + -
13 14 15

18
oD

Figure 8. Transition Diagram for Coulomb Friction
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The correct identification of the three possible Coulomb
steady states (states 3, 10, and 17), and their reachability from
other states is immediately apparent. A detailed simulation of
the system’s time response shows the expected oscillation, de-
caying in a slightly different way to the damping due to viscous
friction, with the oscillations ceasing when their amplitude
becomes too low to overcome the frictional constraints. Again,
this illustrates a correspondence between the conventional and
qualitative solutions.

8. CONCLUSIONS

The discussion in this paper has illustrated some aspects of
the relationship between conventional and qualitative ap-
proaches to system dynamics. In both cases there is a need for
care in defining the model to be used, and in understanding the
limitations of the model and the corresponding impact on results.
The relationship between conventional and qualitative results is
important, because it touches on the issue of accuracy. There is
no reason why qualitative reasoning per se should not be com-
pletely accurate, within the limits imposed by the relatively coarse
resolution, and the examples in this paper have shown one way of
achieving this. Qualitative vectors prove to be a convenient and
expressive tool in representing system behaviours. In particular,
they preserve, and, in a way, even reinforce the correspondence
between conventional and qualitative mathematics. This pro-
vides a welcome degree of confidence in assuring the quality of
qualitative descriptions of system behaviour.

REFERENCES

Clocksin W.F. and A.J. Morgan (1986) “Qualitative Control”, In
Proceedings of the Seventh European Conference on Artificial
Intelligence, Brighton, UK, 350-6

Coyle R.G. (1977) Management System Dynamics, John Wiley
and Sons

deKleer J. and J.S. Brown (1984) “A qualitative physics based on
confluences”, In Artificial Intelligence 24, 7-83

Forbus K.D. (1984) “Qualitative Process Theory”, In Artificial
Intelligence 24, 85-168

Gentner D. and A.L. Stevens (1983) Mental Models, Lawrence
Erlbaum Associates, Hillsdale NJ

Kuipers B. (1985) “The Limits of Qualitative Simulation”, In
Proceedings of the Ninth Intemational Joint Conference on
Artificial Intelligence, (IICAI-85), 128-36

Kuipers B. (1986) “Qualitative Simulation”, In Artificial Intel-
ligence 29 (3)

Morgan AJ. (1987) “Predicting the behaviour of dynamic sys-
tems with qualitative vectors”, In Advances in Artificial In-
gelllzggnce, J.Hallam & C. Mellish, Eds., John Wiley and Sons,

Morgan AJ. (1988) “The Qualitative Behaviour of Dynamic
Eh)éSlcal Systems”, PhD dissertation, University of Cam-

ridge

Morgan AJ. (1990) “System descriptions thr ugh qualitative

vectors” In Proceedings of IMACS MIM-S° 90 symposium,
Brussels
Palm WJ.III (1983) Modeling, Analysis, and Control of Dynamic

Systems, John Wiley & Sons

PanJ.Y-C. (1984) “Qualitative reasoning with deep-level mech-
anism models for diagnoses of mechanism failures”, In Pro-
E;eSdgnng of the First IEEE Conference on Al Applications,

Shearer J.L., AT Murphy, and H.H. Richardson (1971) Introduc-
tion to System Dynamics, Addison-Wesley Publishing Com-
pany

Struss P. (1987) Mathematical Aspects of Qualitative Reasoning,
Technical Report, Siemens Research Labs, Munich



