Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

SIMULATION OF A REAL-TIME FAULT DETECTION AND ANALYSIS SYSTEM
FOR A CIM TOKEN RING NETWORK

Mark D. Pardue

Department of Electrical Engineering
0Old Dominion University
Norfolk, Virginia 23529

ABSTRACT

One of the major problems with conventional Manu-
facturing Automation Protocol (MAP) that is based on
ISO/OSI international standards lies in the inability to
handle real-time interrupts. The token passing architec-
ture makes no provisions for situations that call for
breaking into the token passing operation out of se-
quence.

Real-time fault detection and correction for CIM op-
erations in a distributed system architecture is intro-
duced in this paper. Initially, an architecture is formu-
lated that addresses problems related to the ability to
handle real-time data and uncertain information. The
technique developed establishes a secondary channel for
reallocation of critical resources and provides for priori-
tization of channel assignment. An intelligent interface
is designed to handle situations involving uncertain in-
formation that is initiated by sensors located in the CIM
facility. Simulation results show that this approach sat-
isfies 99.1% of all data transfer needs and all of the high-
est priority data transfers were satisfactorily made.

1. INTRODUCTION

The system architecture that provides the most effi-
cient and effective use of computers in CIM is a dis-
tributed system architecture (DSA) with hierarchical
control interconnected via local area networks (LANs)
[Palmer and Liang, 1987]. DSA provides for operation of
multiple simultaneous CIM functions and permits in-
formation exchange between compatible devices without
end user or application concern with communications
detail. DSA interfaces directly with the Manufacturing
Automation Protocol (MAP) through use of the interna-
tional standards and recommendations as specified in
the ISO/OSI seven-layer protocols. [Day and Zimmer-
man, 1983] The layered architecture represents a con-
tinuum of functions involved in communications ar-
ranged in a logical order to provide inter-connectivity.
MAP was developed out of user requirements for non-
proprietary, remote management capabilities in a multi-
vendor network [Green, 1987] and allows intelligent fac-
tory equipment such as robots, computers, machine
tools, and programmable controllers to communicate
with true plug-in compatibility [Palmer, 1987]. However,
this system architecture in its present form of adhering
to IEEE Standard 802.4 will not handle real-time inter-
rupts for fault detection and analysis. A study of dy-
namic assignment in hierarchical networks found that
use of a heuristic assignment strategy had qualities simi-
lar to those found in probability strategies [Nance and
Moose, 1988, and Moose, 1989]. In the approach taken in

813

James D. Palmer

School of Information Technology
and Engineering
George Mason University
Fairfax, Virginia 22030

this work, we utilized a separate communications chan-
nel managed by an expert system to provide the assign-
ment strategy for real-time interrupts that contains
uncertain information.

The goal of managing information and not simply
manipulating data requires an architecture that must be
able to address problems related to real-time data and
uncertain information. Intelligent interfaces that exam-
ine and sort information and assist in the decision mak-
ing must become a compliment to existing nodes and
databases to realize this goal of handling real-time sig-
nals that contain information uncertainty. As the use of
inferential processes and databases becomes integrated,
it becomes feasible to utilize the rich information base in
real-time signals and uncertain information available
within the manufacturing enterprise. This relationship
between information and the manufacturing enterprise
[CAM-I Report, 1988], has led to the development of
"islands of information". Use of an information back-
bone unifies the information within the enterprise and
enables the enterprise functions to be integrated.

In this paper we address the issues of interfacing in-
dividual subsystems to the backbone that serve the dis-
tributed information system. Current systems architec-
ture for CIM interface nodes do not allow for:

1. Reallocation of communications resources for
handling real-time data transfer requirements;
and

2. Uncertain information related to conditions in the
distributed information system.

One possible solution to these problems is to add intel-
ligence to the interface nodes used to connect the subsys-
tems to the communications backbone, and then utilize
generally accepted interface standards. The intelligent
interface node design that we have developed consists of a
Knowledge-based Expert System (KBES) integrated with
an interface node. The broadband token-passing back-
bone specified in MAP is the standard for CIM applica-
tions, and we have selected this standard approach for
the application of intelligent interface nodes to be con-
nected [Allen, 1986]. This node is intended to perform re-
allocation of communications resources to satisfy real-
time data transfer requirements enhancing MAP net-
work performance to handle time-critical functions. It
also effectively handles uncertainty in the area of diag-
nostics in CIM implementations. The node performs re-
allocation of communications resources to satisfy real-
time data transfer requirements and enhances MAP
network performance so as to enable handling of time-
critical functions. It also effectively allows handling
uncertainty in the area of diagnostics in CIM implemen-
tations.

M.D. Pardue and J.D. Palmer

The intelligent interface node was simulated to pro-
vide an indication of performance. In the simulation
runs, the intelligent interface node was able to satisfy
99.1% of the real-time data transfer resource shortfalls
that otherwise would have resulted without implementa-
tion of the KBES, including all of the highest priority data
transfers. Also, the KBES was able to correctly deduce
problem situations in the manufacturing cell operations
and take appropriate corrective action, including the ser-
vicing of priority interrupts. These problem situations
involved uncertain data and conflict. Thus, the intelli-
gent interface node was able to effectively address the two
major problem areas in CIM applications.

2. TECHNIQUE FOR REALLOCATION OF REAL-
TIME COMMUNICATIONS RESOURCES

In any environment communications resources are
limited, and when communications requirements are
greater than the resources available to support them,
some requirements will not be met. Many systems pro-
vide means for prioritizing these communications re-
quirements and subsequently attempting to satisfy
higher priority requirements at the expense of lower pri-
ority requirements [Nance and Moose, 1988]. In a CIM
environment, the IEEE 802.4 standard, access to the
backbone is through token-passing which makes no al-
lowance for prioritizing requirements. The token to al-
low a station (node) to transmit is passed from one station
to another in a predetermined order, with no deviation
from that order possible [Weigard, 1987]. Thus, there is
no method to request the token in the case of a station
suddenly encountering a situation where it needs to
transfer data, but does not hold the token.

2.1 Next Station Reallocation Approach

One approach to resolution of this problem in a token
bus network environment is the re-prioritization of data
transfers through the use of an alternate or secondary
channel architecture that provides control information
between intelligent interface nodes that have been de-
signed to address this particular problem [Pardue and
Palmer, 1988]. This use of a secondary channel for net-
work control is a common approach in circuit-switching
applications (common-channel signaling) and has been
given consideration in some recent work with IEEE
Standard 802.3 which deals with LANs [Spracklen and
Smythe, 1987]. Although the token-passing order is de-
termined using IEEE Standard 802.4, it can be altered if
the nodes involved cooperate in the reordering. However,
the standard for the token-passing protocol requires each
node to pass the token to the next station (NS), upon com-
pletion of its data transfer which was determined upon
network start-up. Following this protocol, the NS of a sta-
tion (node) is altered only upon the entry of a new node in
the network, or the exit of an existing node from the net-
work (including node failure). This is achieved through
procedures requiring the use of a data transfer channel.

The next station (NS) reallocation approach that we
have taken to resolve these critical issues establishes a
secondary channel (control channel) for real-time reallo-
cation of data transfer resources. The media access pro-
tocol, CSMA/CD (IEEE Standard 802.3), for the control
channel has been chosen because it provides excellent re-
sponsiveness, which is essential for control channel op-
erations. CSMA/CD has been found not to operate well
under heavy load. Therefore the use of the control chan-
nel must be restricted to the transfer of the control infor-

mation required for real-time reallocation of data trans-
fer resources of the main data transfer channel. This
channel uses the token bus (IEEE Standard 802.4) proto-
col, as specified in MAP.

The minimum information required from each node
to determine data transfer priorities is:

1. Interface node ID;

2. Time-to-live (TTL) of the real-time data to be trans-
ferred, in number of data transfer opportunities;
and

3. Next data transfer opportunity.

With this information, the restrictions of the required
data transfer can be calculated, and any surplus com-
munications capacity can be identified and reallocated.
This is illustrated using the very simple example shown
below in Table 1.

Table 1. Identification and Reallocation of Commu-
nications Capacity
Node Time-to- Next Data Surplus (+)
ID Live Transfer Shortfall (-)
1 4 3 +1
2 3 4 -1

It is clear from this example that simply switching
the order of data transfer opportunities will solve the
shortfall for node 2. It is also clear that there is no ad-
verse affect on the data transfer for node 1.

With the approach that we have taken, each node pe-
riodically transmits information over the control channel
to indicate its data transfer requirements, as discussed
above. This transmission is in broadcast mode for all
nodes to receive. Both the TTL and NT are in stated
terms of "Time Periods" equal to the maximum allowable
time between one node starting data transfer and the
next node starting data transfer. This time period is
equal to the token holding time defined by the network,
the delays associated with station (node) delay, and the
transmission delay, which is denoted slot time by IEEE
Standard 802.4.

22 Node Prioritization using the Reallocation Approach

The concept of prioritization is an essential feature of
our approach and is embedded within the reallocation
technique for nodes transmitting critical real-time data.
There are several examples that require priority for the
transmission of real-time data. One example would be
for priority interrupts in life-threatening situations or
when glamage to equipment is imminent. Another ex-
ample is when it is critical that all real-time data from a
node bg transmitted with no interruptions or missing
data points, such as is found in situations with sensitive
continuous processes (e.g., mixing chemicals, etc.). An-
other would be fault detection for overheating in bearings
that could disrupt the entire manufacturing process and
pote::ltlally lead to life-threating fires and loss of equip-
ment.

One possible priority scheme designed to address
problems such as these is presented in Table 2. Priorities
for dpta transferred are assigned values from 0 to 4, with
0 being the least priority and 4 covering the instance of a
leg-threatlng event. Using this scheme, any node with a
priority 4 data transfer would have its data transfer re-
quirements met before a node with a priority 3 data trans-

814

Simulation of a Real-Time Fault Detection and Analysis System for a CIM Token Ring Network

fer, priority 3 before priority 2, priority 2 before priority 1,
and priority 1 before priority 0. If two nodes of equal pri-
ority vie for the same data transfer opportunity, the node
with the highest ID (station address) has priority over the
other. This is in concert with the IEEE Standard 802.4
priority scheme and will prevent deadlock situations. In
fact, node IDs can be initially assigned based on the rela-
tive importance of the information the node will be
transmitting, or assignment may be made on any other
criteria required by the situation in the CIM facility.
Table 2. Priority Scheme used for Reallocation of
Real-Time Data Transfer

Priority Description
4 Life-Threatening
3 Equipment-Threatening
2 Continuously-Critical
Real-Time Data
1 Last Data Transfer Oppor-
tunity Missed
0 No Priority

3. TECHNIQUE FOR DEALING WITH UNCER-
TAINTY

Our approach for handling uncertainty in a CIM en-
vironment related to problems in a manufacturing cell
indicated by sensor data is based on the methodology for
handling uncertainty developed for the MYCIN Model.
Sensor readings are used to determine positive or nega-
tive evidence instances, as these occur. Positive evidence
instances indicate that a problem exists, negative evi-
dence instances indicate the absence of a problem.

Evidence instances are used to calculate Measures of
Belief (MBs) and Measures of Disbelief (MDs) in problem
hypotheses. The MB and MD for each problem hypothe-
sis are combined to determine a Certainty Factor (CF) for
the problem hypothesis. When a CF is above a predeter-
mined threshold for a problem hypothesis, corrective ac-
tion is taken. The technique also identifies situations
where inoperative sensors lead to conflicting hypotheses.
Troubleshooting procedures for the involved sensors can
then be printed out for the cell operator. This technique
effectively handles uncertainty for these areas of diagnos-
tics in CIM implementations.

3.1 Adaptations to the MYCIN Model
3.1.1 Handling Serious Problems

In a manufacturing environment, the cost of not
identifying an emergency situation that exists has signif-
icantly greater importance than the cost of identifying an
emergency situation when in fact it does not exist. Thus,
it becomes clear that for a hypothesis that has dangerous
consequences, the technique used to determine if the hy-
pothesis is correct should err toward false alarm rather
than allowing a dangerous situation to go unidentified.
Given the setup procedure of hypotheses for this adapta-
tion of the MYCIN Model, it becomes a simple matter to
resolve conflict in potentially dangerous situations. All
hypotheses in this adaptation are established in a nega-
tive sense, that is, a hypothesis alleges that there is a
problem. All MBs support the allegation that there is a
problem. All MDs refute the allegation that there is a
problem. For those hypotheses with dangerous conse-

quences (e.g., equipment damage, personnel injury) all
MDs are removed from the CF calculations. This has the
e_ffect of being overly cautious and erring on the conserva-
tive side in discounting a possibly dangerous problem.
This is exactly the desire in a manufacturing environ-
ment. The negative impact in the use of this procedure is
that dangerous problems may be identified when in fact
they do not exist. However, this is a viable trade-off given
the positive effects of the procedure.

3.1.2 Conflict and Incorrect Evidence

A potential inconsistency can be seen whenever both
a substantial value of MB and a substantial value of MD
exist for a hypothesis Hj based upon evidence instances
Ej (generating an MB) and ~Ey (generating and MD).
This situation is caused by conflict and could indicate an
invalid evidence instance. To resolve the apparent incon-
sistency in this case, hypothesis H; would be presented to
the operator with instructions to check the sensors asso-
ciated with the applicable evidence instances. If hypoth-
esis Hj is correct and the sensor providing evidence in-
stance ~E) is bad, the operator would easily be able to de-
termine the problem and take corrective action replacing
the sensor. If hypothesis Hj is incorrect, then the sensor
providing evidence E;jis bad and the operator would take
corrective action by replacing this sensor and correcting
the problem indicated by H;j, Given any other similar
problem situation, this same procedure will be able to iso-
late the faulty operation.

3.1.3 Missing or Incomplete Evidence

Given the evidence structure developed for this tech-
nique, incomplete evidence results from neither Ej or ~E;
existing. This state in itself means that there is some
problem in the system. This could be caused by a bad
sensor producing no output, by a problem in the commu-
nications link from the sensor (e.g. broken wire, protocol
error), or because of noise making the sensor reading
undecipherable.

For any situation involving missing or incomplete ev-
idence E;j or ~E;, the worst-case evidence instance Ej is
assumed. This allows all possible problems to be identi-
fied. This may lead to belief in one or more hypotheses,
but with the caveat that these hypotheses may not really
be correct. In this situation, the sensors associated with
these problem hypotheses would be investigated through
troubleshooting procedures supplied to the operator. The
operator would also be given instructions to check the
sensors and communications links from the sensors as-
sociated with E; or ~Ej because of missing or incomplete
evidence. This would also apply to situations where a
gsensor continues to indicate a problem, when in fact
there is no problem. The troubleshooting procedures
should be able to isolate this type of sensor failure. As be-
fore, this approach is extremely conservative, but is
much preferable to one that does not identify system prob-
lems.

3.2 Implementation

The technique described above for handling uncer-
tainty is incorporated into a rule-based expert system that
provides support for problem identification and correc-
tion. This system is used to handle problems with the
control of the particular manufacturing cell served by the

815

M.D. Pardue and J.D. Palmer

interface node containing the production system. Given
the well-defined domain of a CIM implementation, the
precise definition of the rules to be used in the production
system for each cell should be possible. In fact, produc-
tion rules can be pieced together (and even modified for
flexible manufacturing operations) in a modular fashion.
This requires sets of data for each sensor type and type of
machine in use to be combined in a manner defined by
the layout of the manufacturing cell.

4. SIMULATION OF INTELLIGENT INTERFACE
NODE

The approach that we have taken for reallocation of
real-time data transfer resources was simulated to
demonstrate the effectiveness of our solution to this
essential problem with token passing networks. The
sample manufacturing cell shown in Figure 1 was se-
lected as being typical of situations found in small facto-
ries or in islands of automation. Figure 1 depicts an is-
land of automation with raw material being fed to two
separate operations represented by Stations A and B.
Sensor locations and applications are designated by the
letter S. We will use this information during the simula-
tions that we perform to analyze or approach to real-time
fault detection and correction.

that runs on IBM PCs or compatibles. Together these
hardware and software selections provide very good
portability and will allow future work to build upon these
efforts.

4.1 Simulation for Reallocation of Real-Time
Communications Resources

4.1.1 Assumptions Used in Simulation

A broadband communications backbone using the
IEEE Standard 802.4 token-passing protocol such as that
commonly found in factory operation is assumed to be the
network of choice. The simulation was developed to han-
dle 100 interface nodes, with each having a total potential
of nine subsystems involved in operations. It is our ob-
servation that a small factory may have five to ten inter-
face nodes, and the selection of 100 nodes for the simula-
tion represents a situation that might occur in a
medium-sized factory or a worst-case situation for a
small factory. The number of interface nodes was re-
stricted for purposes of efficiency of simulation, rather
than being a limitation on the ability te handle larger sit-
uations.

Five priority levels of data transfer were assumed,
although the simulation could have been expanded to
handle many more priority levels. The priority of the

S S S S
Sa SwSp Ba ST OB data transfer for each node is determined randomly with
the distribution presented in Table 3. It was further as-
Raw sumed that the majority of data traffic on a CIM back-
Material | g bone would be routine and that higher priority emer-
Inventory gency traffic typically represents no more than 5% to 10%
of total data traffic. This distribution of data transfer pri-
ority may be adjusted to suit any particular situation. A
Conveyor Belt Motor Conveyor Belt sensitivity analysis was performed to note effects of
changing the distribution.
Sensors Table 3. Selected Distribution of Data Transfer Priori-
Sp - Parts Input to Station A (Binary) ties for use in Simulation
Sv - Parts Input to Station B (Binary) —
S - Motor Stator Temperature Priority % of Data Transfers
Sy - Power to Motor 4 29,
Sp - Conveyor Belt Tension 3 8%
Sg - Conveyor Belt Velocity 2 20%
1 30%
Figure 1. Manufacturing System Example 0 40%

Since much of the information from real-time fault
detection contains a high degree of uncertainty, we have
introduced this aspect into the simulation so as to be as
close as possible to actual practice as possible. The tech-
nique for handling uncertainty was simulated to demon-
strate the effectiveness of our approach under uncertain
conditions such as those found in general operating situ-
ations. Three separate simulations were developed to
analyze the intelligent interface node operation. These
are real-time fault detection using deterministic infor-
mation; real-time fault detection under uncertainty con-
ditions; and a combination of these two. The last simula-
tion was accomplished by combining these. It was devel-
oped to demonstrate the entire operation of the intelligent
interface node. The simulations are developed on an
IBM-compatible personal computer in the object-oriented
programming language Objective-C and the program-
ming language C. Objective-C was chosen because it can
easily model objects such as nodes and sensors, and
when used with Microsoft C provides executable C code

816

The Time-to-Live (TTL) of the data to be transferred by
an interface node was also determined randomly using a
uniform distribution and a maximum TTL of 200 time
slots. This represents a more realistic distribution than
a simple Gaussian distribution, because each type of data
transfer in a CIM implementation (real-time, transac-
tion based, or batch) will have widely different critical
perishability (TTL). However, for completeness Gaus-
sian distributions for TTL were examined. Distributions
were varied from means equal to 100 and standard devia-
tions equal to 25 to means equal to 50 and standard devia-
tions equal to 15. The results from these sensitivity runs
showed that all data transfer shortfalls were easily satis-
fied using the reallocation approach that we have se-
lected. The Gaussian distribution for TTL represented no
challenge for our approach nor did it represent a realistic
situation. As a result of these preliminary investiga-
tions, the uniform distribution with maximum TTL
equal to 200 was used for simulation runs.

Simulation of a Real-Time Fault Detection and Analysis System for a CIM Token Ring Network

4.1.2 Description of Simulation

The simulation consists of two programs; a baseline
program (BASELINE) that was run without reordering
of the token-passing sequence, and the same program
(REALTIME) with reordering of the token-passing se-
quence based upon the reallocation approach. For both
programs, input data on the nodes to be included in the
simulation was read from the same data file. The initial
token-passing sequence for the nodes was determined as
specified by the IEEE Standard 802.4 protocol, with the
higher address nodes appearing further up in the token-
passing sequence.

The program, BASELINE, was run through 25 token-
passing sequences collecting statistics on the resulting
data transfer resources shortfalls. REALTIME was also
run through the same 25 token-passing sequences, how-
ever this program first reorders the token-passing se-
quences based upon our approach for the reallocation of
real-time data transfer resources. Statistics were col-
lected on the resulting data transfer resource shortfalls
after the reordering.

The simulation of nodes was made extremely easy
through the use of object-oriented programming. A sub-
class of objects named "Node" was created to model an
interface node. Another benefit of using object-oriented
programming was the ability to use the library of com-
plex pre-defined groups of objects that Objective-C pro-
vided, as do most object-oriented programming lan-
guages. To model the communications order for the
nodes (called the token-passing sequence), the nodes in-
herited the properties of an ordered collection, called
OrdColl in Objective-C, to allow the correct sequencing
and re-sequencing of nodes to take place. Because this
research effort involved extensive use of dynamic token-
passing sequences, this use of the library definition saved
a tremendous amount of effort in simulating the token-
passing protocol for the communications backbone.

4.1.3 Results of Simulation

A comparison of the statistics on the data transfer re-
source shortfalls as collected by the two programs is
shown in Table 4. As shown in this table, our approach
for reallocation of data transfer resources results in the
system satisfying 99.1% of the shortfalls encountered
during the 25 token-passing sequences. The shortfalls
that could not be satisfied by the reallocation approach
involve only the two lowest priorities of data transfers.
Table 4. Simulation Results: Comparison of Data
Transfer Shortfalls by Priority

Without With
Priorityl Reallocation2 Reallocation3

4 14 0

3 39 0

2 114 0

1 195 2

0 275 4

Total 637 6

1 Priority 4 is the highest priority, priority 0 is
the lowest

2 Data from 25 simulation runs of program
BASELINE

3 Data from 25 simulation runs of program RE-
ALTIME

A sensitivity analysis was performed by varying the
distribution of priorities for a wide range of TTL distribu-
tions. The reallocation approach satisfied 100% of the top
30% to 35% highest priority data transfers in all cases,
and satisfied 99% of the remaining 65% to 70% lower pri-
ority data transfers. This indicates that our approach
will be able to satisfy all situations for real-time fault de-
tection in a small to medium sized factory and will be
able to handle peak emergency data traffic, as well.

4.2 Simulation of Technique for Dealing with Uncer-
tainty

4.2.1 Assumptions Used in Simulation under Uncertain
Information

The sample manufacturing cell shown in Figure 1
was simulated to demonstrate that our approach for
handling uncertainty was applicable to general situa-
tions found on the factory floor. Four problem hypothe-
ses, shown in Table 5 and the ranking of these hypothe-
ses shown in Table 6 and the six sensors (with their re-
sulting evidence instances) from Figure 1 of the sample
cell were simulated. This represents a realistic configu-
ration, although the simulation can be expanded to han-
dle more than those numbers. As the number of sensors
grows, the problem can be partitioned to handle the
greater complexity.

Table 5. Possible Hypotheses given Evidence E3 (No
parts received at Station B) Description of
Hypotheses
Hypothesis Description
H; No Raw Material Inventory
Hy Slippage in Conveyor Belt
Hj Conveyor Motor is Seized
Hy No Electrical Power to Conveyor Belt
Motor
Table 6. Ranking of Hypotheses in Table 5 by Seri-
ousness of Consequences
Hypothesis MB'(H; Eg) Seriousness
(1 = Most)
Hj 0.10 1
Hy 0.30 2
H; 0.40 3
H, 0.25 4

4.2.2 Description of Simulation

The positive evidence instances for the cases used in
this simulation (KBES) are read from an input data file.
These positive evidence instances were then used to drive
the procedures described in the implementation of the
uncertainty technique. These procedures calculate Mea-
sures of Belief (MBs), Measures of Disbelief (MDs), and
Certainty Factors (CFs) for the problem hypotheses. If
the CF of a hypothesis is over the threshold of believability
for the hypothesis, the correction procedure for that hy-

817

M.D. Pardue and J.D. Palmer

pothesis is called. If both the MB and MD are over the
threshold indicating a conflict, the evidence instances
leading to that conflict are identified, and troubleshooting
procedures for the sensors leading to those evidence in-
stances are called. The thresholds used in the proce-
dures are adjustable in the program modules. The cor-
rection procedures and sensor troubleshooting proce-
dures as implemented in this simulation consist of dis-
play messages indicating which procedures would be ac-
tivated.

As part of the expert system implementation, several
Implementation Tables were used containing parame-
ters for testing hypotheses, among other things. Some of
these tables were fairly simple and could be programmed
very easily, others are quite complex and require consid-
erable time and effort to program. The Implementation
Table shown in Table 7 is an example of a complex table
for which there was not a simple programming imple-
mentation other than object-oriented programming.
There are four hypotheses (Hj through Hy) listed in Table
7. The threshold value above which the hypothesis is
considered true is listed for each hypothesis. Each hy-
pothesis also has a an MB (Measure of Belief) column
and an MD (Measure of Disbelief) column. In each MB
and MD column a variable number of applicable evidence
instances (E;) are listed. Across from each of these evi-
dence instances, the associated MB or MD value associ-
ated with that hypothesis is given for that evidence in-
stance. The complexity of programming for this table
arises from the interrelationships between the evidence
instances and hypotheses and the sub-column divisions.
The table was implemented by creating a subclass of
"Object" called "Table_D". That class has a separate in-
stance for each subsystem that utilizes the expert system.
The characteristics of the class include threshold values,
the applicable evidence instances, and MB and MD val-
ues. The programming of the Implementation Table was
performed easily and very naturally using Objective-C.
Standard techniques for programming the table without
object-oriented techniques failed due to difficulties in
writing all of the possible relationships in standard high
level languages. Standard techniques proved cumber-
some for the Implementation Table and hid the impor-
tant characteristics and relationships within the table.

4.2.3 Results of Simulation

Seven cases representing the worst cases confronting
this configuration were run using this simulation pro-
gram. In all seven cases, the results were identical to
those calculated manually for the same cases. All be-
lievable hypotheses were identified as believable and their
associated correction procedures were called. All evi-
dence instances leading to conflict were identified and

their associated sensor troubleshooting procedures were
called.

4.3 Combined Simulation for Reallocation of Real-Time
Data Transfer

4.3.1 Assumptions Used in Simulation

All of the assumptions discussed earlier were pre-
sumed to hold true for the combined simulation. The
correction procedures for each problem hypothesis as-
sumes the values of TTL and priority presented in Table 8
remain as initially selected.

Table 8. Parameters used in Combined Simulation
for Corrective Action for each Problem Hy-
pothesis

Hypothesis Corrective Action Corrective Action
Required Required
TTL Priority

H; - No Inventory 40 2

Hj; - Belt Slippage 20 2

Hj - Seized Motor 10 3

H, - No Power 50 2

4.3.2 Description of Simulation

This simulation (SIMULATION) used program
modules from each of the two previous simulations
(REALTIME and KBES). Input data on the 100 nodes
was read in from a data file, and the initial token-passing
sequence was determined as in the REALTIME program
above. At this point, the approach for handling uncer-
tainty was simulated for one of the nodes, Node 50 of the

Table 7. Implementation Table "D" for use in Methodology for Dealing with Uncertainty
* H, 0.25) H, (0.40) H (055 H4 0.75)
MB MD MB MD MB MD MB MD

Ei Value ~]3i Value Ei Value "Ei Value Ei Value - Ei Value Ei Value "Ei Value

E 0.60 “E; 1.00 E, 0.50 |°E, 1.00 Ej 0.35 “E 0.60 E, 025 | “E; 0.40

E, 0.50 E, 1.00 E, 030 |~E, 1.00 E, 1.00 "E, 0.60 E, 025 | "E, 1.00

E; 0.10 “E,4 1.00 Eg 080 |7Eg 1.00 “Ej 1.00 E4 1.00 | "E, 1.00
“E,4 1.00 “E, 1.00

NOTES: (1) This table is a static table, changing only as cell configuration changes

(2) The asterisk with a hypothesis denotes a serious consequence
(3) The numbers in parentheses are the threshold values for each hypothesis

818

Simulation of a Real-Time Fault Detection and Analysis System for a CIM Token Ring Network

100 nodes. Any one of the nodes could have been selected.
The simulation could, in fact, be modified to implement
KBES for all of the 100 nodes. However, this is unneces-
sary to demonstrate the validity of the approach. The
output of KBES, as modified for this simulation, was used
only to determine the TTL and Priority for the particular
node for which KBES is implemented. The real-time re-
allocation approach simulation (REALTIME) operates on
given TTL and Priority values regardless of how these
values are determined. The new TTL and Priority values
required for correction of the problems identified by the
KBES program module are used in the combined simula-
tion as the values for node 50. The token-passing se-
quence is then modified to alleviate data transfer re-
source shortfalls, as noted in the previous section.

Differentiating between those nodes that have the ex-
pert system implemented and those that do not, requires
two subclasses of the class "Node" to be developed for
later phases of the effort. Selected characteristics of the
parent class "Node" will be inherited by each of the two
subclasses, the intelligent subclass and the non-intelli-
gent subclass. The selected characteristics may be dif-
ferent for each subclass, and additional characteristics
may be specified for one subclass or the other. This abil-
ity is extremely powerful but very simple to implement,
and the most important factor is that it will be completely
compatible with the existing simulation.

4.3.3 Results of Simulation

The simulation was run for four different problem
states in node 50, corresponding to the four problem hy-
potheses. In each case, the problem in the manufactur-
ing cell served by node 50 was correctly identified by the
KBES program module and the appropriate correction
procedure was invoked. The required data transfer TTL
and Priority requirements for the correction procedures
were in each case satisfied by the real-time data transfer
reallocation procedure.

5. SUMMARY

The two approaches developed for use in an intelli-
gent interface node (approach for reallocation of real-
time data transfer resources and approach for handling
uncertainty) were simulated on an IBM-compatible per-

sonal computer. The approach for reallocation of real-
time data transfer resources was shown to satisfy 99.1%
of all data transfer resource shortfalls that would exist
without the benefit of implementation of our approach.
Most importantly, the highest priority data transfers
were always satisfied. The technique for handling
uncertainty was shown to correctly deduce problem situ-
ations in the sample manufacturing cell even in situa-
tions involving conflict. The concurrent simulation of the
two approaches showed that problems in the manufac-
turing cell could be correctly deduced, and the resulting
interrupt messages for the corrective action were able to
be transmitted within the given time constraints. Thus,
the results of the simulations demonstrated the efficiency
of both techniques and the effective interaction of the two
techniques.

REFERENCES

Allen, R. (1986), “Factory Communication: MAP
Promises to Pull the Pieces Together,” Electronic De-
sign, 34, 11,102.

“An Architecture of CIM” (1988), CAM-I ATPC Report R-
88-ATPC-01, Arlington, TX,

Day, J.D. and Zimmerman, H., (1983), “The OSI Refer-
ence Model,” Proceedings of the IEEE, 71, 12, 1334.
Green, Lee. “Gearing Up for CIM, (1987),” Information

WEEK, 112, 24.

Iyer, V. and Joshi, S., (1985), “FDDI's 100 M-bps Protocol
Improves on 802.5 Spec's 4 M-bps Limit,”Electronic
Design News, 30, 10, 151.

Moose, R.L., Jr., (1989), “Modeling Networks with Dy-
namic Topologies,” ORSA Journal of Computing 1: 4
223-231.

Nance, R.E. and Moose, R.L., Jr., (1988), “Link Capacity
Assignment in Dynamic Hierarchical Networks,”
Computer Networks and ISDN Systems, 5: 1, 189-202.

Palmer, J.D. (1987), “Information Backbone Characteris-
tics in Contemporary and Future CIM Operations,”
In Proceedings, SMC International Conference.,
Washington, D.C., 666-670

Palmer, J.D. and Liang Y., (1987), “Distributed Systems
Architecture and Decision Support Systems in Com-
puter Integrated Manufacturing,” In Proceedings, ,
IEEE Computer Society Conference on Computer and
Applications, Beijing, PRC, 537-543.

Pardue, M.D. (1987), “Fine-Tuning the OSI Model: Layer
Functions and Services,” In MILCOM 87 Conference
Record, 1, 10.1.1.

Pardue, M.D. and Palmer, J.D., (1988), “Real-time Data
Transfer in an Intelligent CIM Mode,” Proceedings
IEEE International Conference on Intelligent Con-
trol, Arlington, VA., 730-735.

Spracklen, C.T., and Smythe, C., (1987), “Direct Sequence
Spread Spectrum Access to Local Area Networks,”
In MILCOM 87 Conference Record, 1, 10.6.1.

Wiegard, J., (1987), “LAN ICs for IEEE-802 Networks,”
Electronic Design News, 32, 9, 130.

819

