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ABSTRACT

Large scale detailed simulation is used to drive
simulations of sensors and systems for development and
testing. One such simulation is the Dynamic Ground Target
Simulator (DGTS), used at the Rome Air Development
Center. However, the current implementation of the
simulation is too slow, too small in area covered, and lacks
some functionality necessary for long term needs. An
analysis of the simulation was conducted, which looked at the
performance characteristics of the existing simulation and
projected a need for three or more orders of magnitude
greater computational performance than that of the existing
system. Technologies were surveyed, and a design plan
originated which is expected to achieve the desired
performance utilizing coarse grain shared memory parallel
processing. The technique chosen can be characterized as
having consistent time, in that groups of events of the same or
nearly the same time are executed together as a set of parallel
tasks. The state space management mechanism ensures
determinism and task independence by handling state data
changes as updates while maintaining a read-only reference
copy of the state. This technique is appropriate to this
simulation due to the large proportion of time-step like event
processing, as for movement, and the requirements of
modeling a perception rich environment in which efficient
read access to information about one object by another is
important.

1. BACKGROUND

A number of large scale simulation problems are of an
event stepped architecture, but have large numbers of events
or objects to be processed which are simultaneous and
regularly sequenced. The combat simulations of interest to
the authors are a case in point. Movement, perception and
some other processes (which are continuous in the real world)
are modeled in a discrete time stepped manner, while
messages, decisions, and other mode changes are modeled as
events.

Most other parallel event processing strategies such as
Time Warp [Jefferson and Sowizval 1985], Moving Time
Window [Sokol and Briscoe 1986], and the Misra-Chandy
method [Bagrodia et al. 1987] are based on allowing events
which are at different times to be processed in parallel. This
is at a cost of requiring all object interactions to be by
message. Limiting all interactions to the form of messages
prevents the use of very fast direct memory accesses of a
shared state space, and so fails to take advantage of the
principal strength of shared memory machines. For
simulations in which events are randomly and continuously
distributed in time, simultaneous processing of objects which
are at different times is necessary to achieve speedup. This
inconsistent time characteristic of the simulation state space
has not been addressed by other than object oriented
techniques mentioned.

However, for the large scale simulations of interest,
events and processing is highly correlated in time, allowing an
approach in which the state space is maintained at a
consistent time, while all of the events for that time are
processed in parallel. The consistency of time allows direct
access to state variables without the protocol and overhead of
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messages (although a message like facade may be used for
software engineering reasons). An extreme case of such a
simulation is one that is purely timestepped. A benchmark
effort has shown very good performance for a large scale
simulation used by the U.S. Army, CORBAN, which typically
has several hundred objects, and has been run at about 50%
efficiency on a 40 node GP-1000 [Gilmer 1987, 1988].

The end result sought in the current effort is high
performance for a more general class of simulations that is
event driven, and includes a significant mix of both correlated
and uncorrelated event types. The particular simulation of
interest is DGTS, originally developed by PAR Government
Systems Corporation (PGSC), and used at the U.S. Air Force
Rome Air Development Center. That simulation currently
runs at least a few orders of magnitude too slowly on a
VAX11/780. DGTS represents a large number of ground and
air vehicles moving on a battlefield and interacting with each
other as targets for sensors. A previous paper reported on
state space representation issues and methods developed in
the course of evaluating that simulation, and other reports
report the findings of the initial exploratory effort in [Trott et
al. 1986; O'Brien et al. 1989; O'Brien and Gilmer 1989].

In the previous work it was discovered that the event time
correlation in DGTS is such as to offer the potential of
significant speedup. In the case of singular events which do
not occur at times common to many other events, there is
potential for moving the processing of these events to another
time due to event effect latency. This should allow almost all
events to be processed simultaneously with numerous other
events. The techniques developed require that all events at a
given time be completed before any events for the next time
be started, allowing the state space to be consistent in time.
This paper looks at the mechanics of dispatching such events
and the structuring of the event list. The methods should be
applicable to any shared memory machine, or distributed
memory machine having virtually shared memory supported
by very fast message passing hardware.

An effort to prototype the scenario driver on meaningful
scale is underway as of this writing with completion expected
by the end of the Summer, 1990. The prototype follows
earlier structural prototypes which tested event dispatching
and state space representation mechanisms appropriate to the
parallel environment. The large scale prototype is
incorporating large sections of code from the original version
of DGTS, using automated translation to make the transition
from the original Modeling Description Language (MDL, a
variant of PASCAL ) to C, while incorporating the parallel
state space reference techniques. A new executive was
written that groups events into compatible sets that can be
dispatched together in parallel. The prototype is run on a
BBN TC-2000, a Motorola 88000 machine having about 10
MIP per processor performance, a low latency interconnection
network, shared memory, and scaleability to 504 nodes and 8
GBytes RAM.

2. PARALLEL PROCESSING CONSIDERATIONS

On a shared memory parallel machine, there are a
number of hazards that can significantly reduce the benefits
of parallelism. The first two of these apply to any MIMD
processor. A “serial bottleneck” exists if a significant amount
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of the code must be executed outside of parallel constructs.
For a simulation of the type envisioned, a sequential
bottleneck exists in the dispatching of events. A second effect
is the fact that if the number of tasks is not much larger than
the number of processors, or if task execution processing
requirements vary greatly, some processors will be idle while
waiting for others to finish as the events at a particular time
are mostly finished. This is a “load balance” problem in that
the processing loads assigned to the various processors varies
under a synchronization constraint.

A third potential problem is one of “memory contention”,
which is applicable to shared memory machines. If numerous
processors all try to simultaneously access the same memory,
some will be refused access, resulting in delays. On some
machines there can also be “switch contention” in which
accesses to different memories can cause problems if the
switch is near capacity, or a “hot spot” has developed. An
earlier machine, the Butterfly, with a switch architecture
similar to that of the TC-2000, was demonstrated not to have
significant problems from switch contention [Rettberg and
Thomas 1986]. Potential problems with memory contention
can be dealt with by scattering data structures across the
various memories of the machine, so that accesses made to
random blocks of data will be uncorrelated in the memories
that they access. This means that, in general, access to such
data will be remote rather than local, at some additional cost
in processing speed. However, on the TC-2000 the time to
access remote data is within a factor of 10 of that for local
data [BBN 1989]. Since such data references are a low
percentage compared to code and local variable references
which are generally local, the problem of remote access time
is not severe as long as memory contention does not occur. In
fact, projections from benchmarks of the current DGTS
prototype indicate that by distributing memory to very large

[o] [0]
[0]
(0]

1. Movement of S-type events
in time to give clusters

2. creation of a task
for each event of the
same time

3a. creation of a task for each of
several objects of a class affected by
a time stepped process

3b. hierarchical creation of tasks
corresponding to subordinate
objects

4. creation of multiple tasks for given object

in order to handle independent interactions

with multiple entities in parallel.

numbers of processors (in which case all shared storage can
be considered remote) performance will be 61% of that
achilev‘ed with 100% local data. These results are prior to any
optimizations or intelligent use of cache, both of which are
possible.  The event list structure is distributed to minimize

memory contention by scattering the event blocks among the
Processors.

A generalized form of contention can take place not only
for memory, but for entry into a critical region of code which
must be used by only one process at a time. Given the state
space management techniques developed for this project, this
is not expected to occur during the processing associated with
particular events. The generation of tasks for each event does
involve some critical regions or contended resources, but the
extent is minor.

3. A LAYERED VIEW OF TASK ACTIVATIONS

Four distinct types of events within DGTS have been
identified:
1. S-type: Single events which activate an individual
entity. Example: “start a radio transmission”
2. O-type: Similar to S-type events, but tend to appear
in simultaneous clusters in time. Example: “react to
vehicle detection”

3. N-type: Single events which activate large numbers
of objects. Example: “move all objects of a given
type”

4. M-type: Involve interactions of a single entity with
many others. Example: “attempt to detect all other
objects”

The possibilities for parallelism occur in four distinct
layers, which happen to correspond to the events identified
above, as illustrated in Figure 1.
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Figure 1. A Layered View of Task Activations
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Parallel execution of events which are scheduled for
different times is in general quite difficult. These events tend
to have a unique time, and correspond to the kind of events
for which Time Warp etc. are optimized. However, many
S-type events have latencies associated with their effects, or
have independent effects such as message transmission, or for
some other reason may be shifted to some extent in their
execution time to allow clustering. This allows S-type events
to be converted into O-type events. The methods and
conditions under which this kind of time shifting can be done
has not yet been fully explored. It is not yet known how
critical this will be to overall simulation performance. It is
believed that as the simulation scales the proportion of
singular S-type events will decrease, and that they will
constitute an even smaller proportion of overall processing.

Parallel execution of events which are scheduled for the
same time is the most basic source of parallelism. If the state
space management issues are dealt with to allow the
simultaneous events to be independent in their effects as well,
then this kind of parallelism is at surface fairly
straightforward. A parallel event task dispatcher is used to
create a task for each event. This use of parallelism
specifically applies to O-type events, and N and M-types with
which they may happen to be clustered.

Another opportunity for parallel execution is for
processes that apply to a objects of a large set simultaneously.
The creation of a task for each of many objects which are
activated together is a most necessary form of parallelism for
DGTS. Such N-type events constitute the bulk of the
processing in the DGTS simulation as it currently exists.
Conceptually, such  parallelism  should be fairly
straightforward: one need only create a task for each of the
objects to which an N-type event pertains. In the case of
hierarchically organized objects such as formations, however,
this is more complicated. Hierarchical activations could be
considered a separate level potential parallelism below the
parallel activation of “top-level” for independent entities.

Use of parallel tasks within the processing of a single
object’s event is most directly applicable to M-type events
where an entity interacts with numerous other entities in fairly
independent fashion. The most obvious example is
perception, where an object conducts trials against particular
vehicles or regions to determine what can be detected. Such
events can be large, and have the potential to be broken up
into parallel tasks corresponding to individual targets, regions,
or groups of targets or regions. The goal of isolating
parallelism to the simulation executive is difficult to reconcile
with the very representation specific nature of such tasking. It
will probably be necessary to embed parallel structures in
functional modules to achieve this form of parallelism.
Parallelism of this kind will be deferred unless it proves
necessary. Whether immediately utilized or not, it remains a
potential source of improved performance.

4. THE EVENT LIST AND THE SHARED MEMORY
PARALLELISM CONTEXT

For the class of simulation of interest one can expect to
have many events with equal time values, for which ordering
is unimportant. It is appropriate to modify the simple
sequential list often used for event lists to a binary tree having
a branch for every distinct time, as shown in figure 2. The
left branch, or time header nodes, are a convenient repository
for a count of the number of events for that time. The event
selection is similar to that of the sequential event list except
that an entire list of events having the same time are selected
for execution. (The set can be thought of as one event for
selection purposes). Each event selected for that time needs
to be initiated as a parallel task.

Many of the techniques of structuring the event list used
in sequential simulations to minimize time to add or delete an
event are equally applicable here, with the “events” so
structured being the event headers in this usage. These
optimizations are not inherent to parallelism, are not believed
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Figure 2. Event List Organized by Time of Event

necessary on the basis of statistics gathered on the sequential
version. However, more clever structuring of the event list
could be added later.

5. STATE SPACE REPRESENTATION REQUIREMENTS

The requirements listed below are driven by the specific
current structures and software methodology of DGTS, the
shared memory consistent time design approach to
parallelizing it, and the desire to conform to good software
practice to the extent we can given the state of knowledge for
this context.

The objects in the simulation state must be accessed such
that they are available to processes on multiple processors
simultaneously. This implies they are in global memory.
Objects must be accessible without creating contention for
their access structures. This implies duplicated and scattered
elements of the access structures similar in principle to the
scattered array supported by the Uniform System for
programming the TC-2000.

The duplication of objects to create scratch copies and
update of the state should be supported by utilities, and
should be transparent to the functional event code. This event
code should be the same for either scratch or reference copies
of objects, and the functional code should not have to be
conscious of which is being manipulated. Parallel processing
of updates without access structure contention must be
supported. If possible, overlap of processing of events and
updates should be allowed.

Since on the TC-2000 code is duplicated on every
processor while global data (including the state space) is not,
software solutions should seek to minimize the code, even at
the expense of more data. For example, packing of variables
in the state space is counterproductive.

The state space representation issue is how to configure
the state data so that determinism is preserved, routines that
implement events operate correctly, and updates can be made
efficient. State data falls into the following categories:

1. State data that may only be read or written by a single
type of event in the context of the owning object, with
only one such event possible at a given time. No
synchronization hazard exists for such data, so such
events may be executed safely with any others. The
limit of movement of such an event in time will
depend on the time latency of its effects (for
example, the receipt time of a message generated).
State data that is private to a given object is safe from
synchronization hazards as long as there is no more
than one event affecting that object in any given event
set. Thus, in such circumstances no special state
space structuring is necessary. However, if there is
more than one event for that object, some form of
update recording or scratch space is needed.

Visible state data in the objects for which a given
event is called can potentially be perceived, and
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possibly written, by other objects. To make matters
even more complicated, some of the changes are
accessed from within the code that implements the
change, so that these data cannot be simply accessed
in their original “read only” state. For example, as
the movement routine processes formation, after each
incremental change of the state data for all of its
vehicles, the routine “calculate centroid” is called
which accesses the updated locations. Some such
state data may be updated more than once.

Global variables such as terrain that may
simultaneously be accessed by other events, but are
not changed by events being processed. For these, a
simple read only access to the previous value is
sufficient.

In general, for any event, the state data at the beginning
of the event may need to be copied to supply a version that
can be updated and referenced within the event, leaving the
original for read-only reference by other, coincidental events.
In addition, when more than one event generates changes for
the same object, it will be necessary at the end of event
processing to combine their updates into a single copy that
becomes the reference for the next set of events. The
handling of state space will need to go through a number of
steps listed below:

1. When an event set is initiated, it must be determinea
whether any special update treatment is needed. If
there is only one event (of any type besides N), or if
all events are independent in the objects they affect
(for example O-type events affecting only the
scheduled object), then the updates to the state space
need no special treatment, since no synchronization
hazard exists. However, if there is any possibility of
simultaneous write and read of the same object data
by two tasks, state space management is necessary.
Information on circumstances must be passed to the
tasks associated with each event.

When a particular event is initiated, and a parallel
access hazard has been found to exist as discussed
above, the event must cause to be created an update
copy of the data structures that may be modified.
(Possibly the creation could be deferred until an
actual change takes place, but such a complication is
beyond the capabilities of the current prototype, since
it would need to use address error exception handling
to recognize and respond to such a case).

The code that implements the event must be caused
to reference the proper copies of various structures,
both for the object whose structures are to be
updated, and perhaps for those other objects merely
referenced. In most, but not necessarily all cases, the
object being modified is that for which the event is
scheduled.

Upon completion of an event, the processor handling
the event must catalog any state update information
for later incorporation into the reference copy of the
simulation state, and reset its access paths to
reference only the reference state.

After the event set completes, the updates must be
reincorporated into the reference copy of the state
space. In most cases there will be at most one update
for a particular structure, in which case either copying
or substitution can be used. Substitution is quicker,
but cannot be used if there are pointers to the
structure from elsewhere (unless a method is included
for tracking down and changing those pointers). If
more than one update to a given structure exists, the
updates must be combined. |
field, with some fields added or concatenated (to give
a sum or list), and others replaced, as appropriate to
the particular datum. )

One possible effect of an event is the allocation of a new
object. Space does not permit an elaboration of the treatment
of this case. The general approach is to provide a global

This is done field by"
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resource protected by a lock for allocation of objects which
must have unique identifiers. The newly created or deleted
objects and modifications to the numbers of objects are
reflected in the reference state space only as updates of
various sorts are incorporated.

6. SUPPORTING META-INFORMATION
EVENTS AND STRUCTURES

To support the above steps, the simulation (or, more
properly, its executive) will have to have available to it
meta-information about the events, objects, and structures
that are used by the simulation. This must include:

ABOUT

1. Event characteristics:
a. Event type (S,0,M,N) to support reasoning about
event combinations
b. Object access: data to allow an event, including
those of type N, to find the objects whose point of
view is being processed, and whose state data is
accessed, and whose state data is changed.
c. A means of identifying those data structures and
fields to be updated.
d. A means of identifying how to combine multiple
updates on an individual field basis.
2. Data Structure characteristics- needed to support the

above

a. Data structure access characterizations of a
general nature.

b. Data block overall characteristics-length,
associated objects.

c. Links to other Data blocks (characterized)

d. Identification of fields (that may require update)

e. Identification of data combiner operations by

field.

The basic approach proposed for the data structures is a
system of block descriptors which characterize each type of
data structure component which is stored in contiguous
memory. Each block descriptor includes a list of field
descriptors that characterize the relevant information about
the fields. The block descriptor is illustrated by example in
figure 3.

route
method |
length
number_of_segmentq
first_segment

Block Type: route
Overall characteristics:
block size: 16 bytes
access: Indirect
data characteristic: variable
update by replacement

closed

Data flelds (by exception)

Field Bytes Type Refers to:
4 8-11  linked list count field #5
5 12-15  linked list memory pointer route_segment, fleld #5

counter in field #4

Block Type: route_segment
Overall characteristics:
block size: 20 bytes

route_segment

distance _ access: Indirect
segment_id access array/structure
number_of_points data Sd field #2)

= —] ata characteristic: variable
first_point > update by replacement
next_segment EEE——

Data fields (by exception)
Field Bytes Type Refers to:
2 4-07  block id self
i lg-l; :lnked Iist count field #4
-1 inked list memory pointer route_point, field #4
- 16-19  linked list memory pointer l'ou(e_ls:.egmenuE field #5
counter in field #4 of
route
route_point
distance Block Type: route_point
X Overall characteristics:
block size: 16 bytes
Y access: Indirect
next_point e data characteristic: variable

update by replacement

Data fields (by exception)

Field Bytes Type Refers to:
4 12-15 linked list memory pointer route_point, field #4
Figure 3. Block Descriptors used

for a Route Structure
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The illustrated route structure block descriptors provide
sufficient information to allow a process to traverse and make
a scratch or update copy of the entire structure. When a
structure is copied, the copy will be at different memory
locations, so the pointers will necessarily have different values
from those in the original copy. The simulation executive
uses the above structure information, together with an
expression from the event descriptor to guide traversal, in
order to create any necessary scratch/update copies of objects
for a particular event. An expression that allows the entire
route structure to be traversed is:

spSp4p4*"(5(4pr*"))*"
where s=traverse using the route structure pointer (start),

S=traverse using field 5, 4=traverse using field 4, a “p”
following a number implies a stack push of the block
(pointer), " means a stack pop, and * means iteration for an
arbitrary number of times (possibly zero). It is possible that
for some purposes, for example an event that may change the
segments but not the points, the entire data structure does not
have to be traversed, copied, or updated. In such cases a
different and simpler expression would apply.

The traversal of data structures using such expressions
can also be used as a way to implement modeled events. For
example, an event to change the speed of a formation in fact
simply traverses the structure, setting the new value for speed
in all of the components. With an appropriate addition to the
language, this can be done at the same time as object copying,
saving the overhead of an extra traversal. If the event set is
such that the changes can be made to the reference copy, the
expression would still be used, for variable setting but not
object copying. Traversal based on such expressions can also
be used to spawn hierarchical tasks for subordinate object
processing.

The event descriptors contain information on what kinds
of data may be referenced or written by events of that type, in
the form of a series of flags for reads and writes of private
data that might be referenced by multiple events, globally
visible data belonging to the object, and data belonging to
other objects. A logical OR over such flag arrays for all
events in the event set characterizes the bounds of interactions
for the event set as a whole. The flag set indexes into an
array for each particular event type to return the action that
must be taken to set up the state space for that event. Figure
4 illustrates this process. This method provides flexibility to
allow the overhead for state space setup to be minimized,
especially for small event sets whose processing would be a
parallelism bottleneck. The flag operations needed over all
events are performed when events are scheduled, thus are
part of the parallel task doing the scheduling and hence not a
serial bottleneck. (Cancellation of an event cannot undo the
flagged implications, but this only causes unnecessary state
space setup at worst).

An additional optimization is a second set of flags into
which all object identifiers would hash. Absence of collisions
in this flag space would indicate the absence of multiple
events for the same object. Such a condition allows avoidance
of special state space setup when all events change only
private data.

7. STATE SPACE
STRUCTURES

The basic form of access structures proposed is illustrated
in figure 5. Objects are commonly referenced by side and
identifier in DGTS. An identifier, or id, is comparable to a
serial number- it uniquely identifies an instance of an object
of a given type and side. The access structure adds one
additional level of pointer beyond those for side and identifier
to indicate the type of data block (object) to which access is
sought. This enables objects to be accessed using utility type
code applicable to all kinds of objects. Access to a particular
attribute variable of an object would look like the following,

VARIABLES AND  ACCESS

exclusive of bounds checking that is omitted in the interest of
clarity:

Flags indicating

event header for time t Range Domain

t global local global local
0111 ——— IL 1 1 1

0000011010111000

event

\L000011010111000 ]

object: #3
evest :ype:l #6(move) incid
reads local, writes colncidence
local detected? flag set
0101 Table of state space | Update
management actions
0000000000001000 depending on event |
3 set conditions Action
for given event type
object: #9 object: #10
event type: #8 event type: #3(look)
reads local, reads local & global,
writes private writes local
0001 0111
0000001 0 0000010000000000
f —— ——

Notes:

Private data are defined such that multiple events cannot possibly
access the same data simultaneously.

Local data are possibly accessible by multiple events, but only those
associated with that particular object.

Global data are ible by other object:

The object identity flags refer to local (but not private) data accesses,
to detect the possibility of multiple object events for the same object.

Event set header contains flag fields that are the union of indicators
for all events in the set (logical or).

Figure 4.  Method to Determine the State Space
Management Measures for a Given
Event of an Event Set

block type D

access pointer

array “pblocks” Identifter array

Type " Side

" - l side array object
: !
=
. =

~ -

Data duplicated on

all Processors Data in global memory

Figure 5. Basic State Space Access

Method for References
value = (structure*)

pblocks([structure_id][identifier] [side]->field;

‘The first two arrays used in accessing an object are local,
an identical copy residing on every processor. Thus, these
copies cannot be contention bottlenecks. The pointers for
each of the types of object, pblocks[], will never need to
change while the simulation is running, and the size of the
array is known at compile time. The lists of pointers (indexed
by identifier) for each object type will be more dynamic.
Since the maximum number of objects of different types is
very scenario dependent, the sizes of these arrays is best
determined at the start of a simulation run. Once allocated,
these blocks should be static. Each of the elements points to
an array, indexed by side, that resides in global memory. All
of the lists indexed by identifier on the respective processors
would remain identical. If there is a contention problem for
the globally located side arrays, it will actually be memory or
object contention rather than an access structure contention,
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since there would be at most two objects associated with each
such array. This is quite unlikely given wide scattering of
these side indexed access arrays across the various memories
of the machine. The array indexed by side points to the copy
of the object itself, which is also in global memory.

The above discussion concerns the access of objects in the
reference, or read-only, copy of the state space. Some
functional routines will need to have access to a scratch copy
of an object, which will be modified, eventually becoming part
of the update set. The proposed method for accessing such
objects is illustrated in figure 6. Note that the access path is
very similar to that for the reference copy, the only difference
being that the side array is located in the local memory of the
processor executing the event requiring the scratch copy of
the object. The scratch object it points to is dynamically
allocated and initialized with the same data as the reference
copy when the event is initiated. It is necessary to point the
other side pointer back to the reference copy of the other
object. The pointer to the local (scratch) copy of the side
array replaces in the identifier array the original pointer to the
reference copy. Thus, there is no change in the code, and the
functional event code need not be conscious of whether it is
accessing a scratch or reference copy. The simulation
executive, as it dispatches and event, will decide whether a
scratch copy is needed, and generate it if necessary.

hlock type 1D
access pointer |
array “pblocks™ identilier array

- scratch
ohject

Side )
side array

~=i |

'

lype

—()-—

l“l

Statically
allocated)

Data duplicated on all processors Data in global

memon

Figure 6. State Space Access Method
for Scratch Objects

The scratch copy exists for the duration of the event. The
pointer in the identifier array, which was changed to point to
the scratch copy, is changed back at the end of the event, and
the scratch copy will (usually) be turned into an update. To
support changing pointers in the identifier list, arrays having
the unchanging pointers to the reference copy side arrays and
the scratch copy side arrays need to be maintained. These
arrays are accessed through object descriptors, which contain
various information about the different kinds of objects. An
additional array is used to indicate, on each processor, the
status of the reference path for each block: reference, scratch,
or reference with write updates to be made on a field basis.

When a write is made to an object from within a
functional module, it may do so within one of a number of
contexts, which differ in how they are handled:

1. The write is made to the reference copy: This will
normally happen only for single events or sets of
data-indeoendent events for which no
synchronization problem can occur. The overhead of
the normal update processing is avoided by allowing
writes directly to the reference version of the state
space. The object access path is the same as for a
read reference.

The write is made to a scratch copy: This is the
“normal” case. The reference is exactly like the
accessing of a scratch copy for read purposes, and
has the same access sequence as for the above case.
The write is stored in the form of a field update,
which will modify the reference object later. This is
appropriate when a scratch copy is not needed, and
only one or a few variables are changed. The
advantage in this case is that the overhead of
allocating and redirecting to a scratch copy of the
object is avoided. Also, if several processes are
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modifying the same field of a given object, the field

update method will be easier and quicker to process.

The disadvantage is that the variable changing

process as seen from the functional module is quite

different form simply writing to a copy of an object.

The method appropriate to a given invocation of the

procedure which writes an object variable may be different at

different times. For a singular event, the write may be

directed to the reference copy, while for the next discrete time

an event may generate a field update. This complicates the

state variable storage for any variable which may be updated

by a field event. The following code fragment illustrates
variable setting:

if (pstatus[structure_id][identifier][side] = FIELD_UPDATE)
| update(structure_id, side,identifier,field_id,value);
else

1(structure‘)pblocks[structure_id] [identifier] [side]->field
value;

For procedures that set more than one value, or set
attributes having more than one component, the above can be
easily expanded in like manner to the translation of read
access procedures. Again, bounds checking has been omitted
for clarity.

8. UPDATE LISTING AND CONSOLIDATION

When an event concludes, the scratch object or objects
that were created for it must be cleared out of the way for the
next event, and pointers in the identifier array restored. The
scratch copies will in most cases contain the data or data
changes that will need to be incorporated into the next time
reference state. To avoid the need to traverse all possible
objects and id’s to find the updates for any given event set, it
is necessary to list update blocks in a separate scattered array.
The array is scattered to prevent contention by the parallel
tasks doing updating. The details of these update list
structures are illustrated in figure 7. As events execute (or
conclude), updates are placed on the update lists. The
number of header blocks, N, can be adjusted to the number of
processors to trade off both potential contention and the
number of lists that must be searched to complete updates.
(N <= the number of processors). The lock in the header
must be used to gain access to the list to allow adding updates
during event set processing or removing them to make the
updates top the object during update processing. Access to
the reference copy of an object is made as usual using the
same access structures as for references during event set
processing, as shown in figures 5 and 6. To ensure
synchronization, the list should not be unlocked until the
update is completed for object updates that replace the
previous copy of an object.

Since the update process will be generic, it will have to
have available information about where the various fields are
in the object being updated. This information will be in the
object descriptors. For each field, its offset and (if packed)
length and shift will be given. Thus, the update process will
be able to extract from the update block the object type and
field to be updated, the identity and side of the object
instance, and will be able to make the change for a field
update. )

If an object update can be by replacement of the entire
object by the update object, the task is simply and quickly
accomplished, and the earlier copy can be thrown away. For
the case of object types that may be referenced by pointer
from within the state space, as indicated by flag in their object
descriptors, object replacement will actually be accomplished
by copying the data into the original block rather than by
switching blocks. Other special cases concern the destruction
or creation of an object. The destruction would be signaled by
an additional kind of update, so that the reference copy of an
object is disposed of without replacement. For creation an
object starts as scratch and then update copies, with the
update copy becoming the reference copy upon update.
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An object update may be more involved than mere
replacement. If two object updates are made, the two have to
be combined into the replacement object in some fashion.
The field descriptors in the object descriptor will include
instructions on how this is to be done. In most cases it will
involve going through the objects field by field. Thus, this
mode will generally be slower than field updates, although it
is the most general.

When an object update is to be made by replacement, it is
important that it occur before the field updates for that object,
or the latter will be lost. This order may be ensured when
appending update lists by hashing the object by identifier to a
particular scattered list, so that updates to it will always be in
the same list, and appending object updates to the head of the
list and field updates after all object updates.

9. EARLY RESULTS

An initial prototype subset of DGTS using the state space
methods described and parallelism for O and N type events is
operational as of August 1990. Run times for about a two
division scenario, 5315 vehicles, have been about 40 times
real time on an eight processor TC-2000, with five processors’
executing the simulation, one generating graphics output, and
the others performing system services and public access. This
reflects the effects of high performance for the individual
88000 based processors as well as parallelism. Benchmarks
with up to twelve processors dedicated to the simulation
showed no appreciable serial bottlenecking. A pronounced
performance drop when scaling from one to two nodes is due
to the fact that all of the state space is no longer local to the
processor accessing it. Switch delays in memory access are a
significant factor. Processing times and speedups are plotted
in figures 8 and 9. In these tests, the state space was
distributed among all of the processors even though a smaller
number was actually used for processing (cluster = 12;
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processors = N in Figure 8.) In the case of a single processor,
the state was confined to the numbers of processors being
applied to the program (cluster = N, processors = 1 in Figure
85). These results reflect the porting of nearly 22K lines of the
existing VAX/VMS Pascal code to the TC2000. So far, no
special efforts have been made toward optimization, such as
correlating tasking with the location of object data. The
prototype will continue to be developed and its performance
analyzed.
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10. CONCLUSION

In summary, the approach adopted is a pessimistic event
stepped scheme in which information about event
compatibility is used to allow processing to proceed in
parallel. All events having the same time are assumed to be,
and must be, independent, though they can affect the same
variables, and can be executed in parallel. Thus, the method
is basically a consistent-time approach. However, some
singular events which are compatible with an event set at a
nearby time may be shifted to process in that event set as a
means of increasing parallelism. Information structures
support reasoning about event compatibility and the state
space measures needed to avoid synchronization and
determinism hazards to allow overhead to be minimized for
small event sets.

The approach taken seems well suited to the type of
simulation representing continuous as well as discrete
processes on large scale. Much of the focus of this work has
been directed toward event dispatching and state space
structures to allow removal of synchronization hazards while
allowing efficient, direct access to variables. A prototyping
effort is underway to test the approach using the more
important parts of the actual DGTS simulation with full scale
data.
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