Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

THE MODELING OF PERFECT SEQUENCING FLEXIBILITY
IN A SCHEDULING ENVIRONMENT

Thomas J. Schriber

Computer and Information Systems
Graduate School of Business Administration
The University of Michigan
Ann Arbor, Michigan 48109-1234

ABSTRACT

The concept of sequencing flexibility and its potential
importance in such scheduling environments as those of
manufacturing systems is reviewed. The statement of a
manufacturing problem is provided, asking that a
simulation model be built for use in studying system
performance under conditions of perfect sequencing
flexibility when the rule used to dispatch jobs to
machines is FRS (fewest remaining steps). A workable
approach to modeling perfect sequencing flexibility is
then described. Finally, a GPSS/H model illustrating the
implementation of this approach in the setting of the
stated problem is presented.

1 SEQUENCING FLEXIBILITY

Suppose that manufacturing a particular product requires
that one step be performed on a unit of material by each
of 5 different machines. If these 5 steps must be carried
out in a strict sequence, then there is no sequencing
flexibility in the manufacturing process. If the S steps
can be carried out in any sequence whatsoever, then there
is perfect sequencing flexibility in the process. If some
of the § steps must be carried out in a strict sequence,
but others can be performed without adhering to a strict
sequence, then the manufacturing process has partial
sequencing flexibility.

Rachamadugu and Schriber (1990a, 1990b) have pro-
posed a squencing flexibility measure (SFM) that quan-
tifies the degree of sequencing flexibility in a multistep
process on a scale from O to 1, with measures of 0 and 1
corresponding respectively to the extreme cases of no
flexibility and perfect flexibility, as described above. For
an example in which their metric is applied to partial
sequencing flexibility, consider the following scenario:
Operations 1 through 5 must be carried out to do a job.
Operation 1 must precede 2 and 2 must precede 3.
Similarly, operation 4 must precede 5. But there are no
precedence requirements otherwise. Using their metric,
an SFM value of 0.6 results for this situation. (See
either referenced paper for quantitative details.)

331

There are important potential benefits of exploiting
whatever sequencing flexibility might be inherent in a
product structure. Suppose for example that the
machining resources in a flexible manufacturing system
(FMS) are used to make a variety of products
concurrently. A given unit of work-in-process (WIP) can
wait logically at each of two or more alternative types of
machines if there is sequencing flexibility at that stage in
the manufacturing process for the WIP unit. This in-
creases the likelihood that a next step can be performed
on the WIP earlier than if there were no sequencing
flexibility. In turn, it is likely that this will improve
such system operating characteristics as the elapsed time
between release of a job to the system and completion of
the job (system residence time).

System residence time and other important measures of
system performance depend not just on sequencing
flexibility but also on the choice of dispatching rule (the
rule used to decide which unit of waiting work to send to
a machine when the machine next becomes free). This
makes it of interest to evaluate and rank various dis-
patching rules under conditions of sequencing flexibility
with respect to such measures of system performance as
system residence time and such tardy-job characteristics
as the percentage of jobs that are tardy and the
probability distribution followed by the tardy-time
response variable. Rachamadugu and Schriber (1990a,
1990b) have shown that the relative goodness of well-
known dispatching rules does depend on whether
sequencing flexibility is present and exploited. For
example, the shortest processing time (SPT) rule
minimizes a job's system residence time in a particular
simulated setting relative to seven other dispatching rules
when there is no sequencing flexibility (or when it exists
but is not exploited), whereas the least work remaining
(LWR) rule minimizes this measure when there is perfect
sequencing flexibility. (In the SPT rule, that waiting
WIP which needs the machine for the shortest time is the
next to be dispatched to the machine. In the LWR rule,
that waiting WIP which requires the least total remaining
machining time is the next to be dispatched to the
machine.)

332

As Rachamadugu and Schriber (1990b) point out,
"there seem to be no known exact or approximate
prescriptive models for analyzing the performance of
scheduling rules under perfect or near perfect sequencing
flexibility scenarios.” This motivates the use of
simulation models to study the performance of dispatch-
ing rules under conditions of sequencing flexibility.

It is the modeling of perfect sequencing flexibility on
which our attention centers here. The logical issues in-
volved in building a model for perfect sequencing flexi-
bility are brought into focus by the request to model the
system described in the next section.

2 STATEMENT OF A PROBLEM

A particular flexible manufacturing system consists of
five different machines. These machines are used to build
to order a multiplicity of products that are manufactured
concurrently. Each order (job) is for one unit of product
and visits from 1 to 5 machines (uniformly distributed),
visiting no machine more than one time. The particular
machines visited by a job are determined at random.
Operation times for all jobs at all machines are assumed
to be identically 2-Erlang distributed, with a mean of 30
minutes per operation. Job interarrival times are expo-
nentially distributed and have a mean such that the ex-
pected overall machine utilization in the system is 90
percent. The operations required by each job can be per-
formed in any order. The rule used to dispatch jobs to
machines is fewest remaining steps (FRS). That is, the
waiting job which has the fewest remaining steps to be
performed on it before being completed is the next job to
be dispatched to a machine that has just become free. The
flow allowance factor used in determining a job's due date
is 7.5. (A job's due date is determined by adding to its ar-
rival time 7.5 times its total step time.)

Build a model that can be used to simulate the opera-
tion of this system. Design the model to measure the
percentage of jobs that are tardy, the mean and standard
deviation of the tardy-time random variable, and the mean
and standard deviation of the system-residence-time ran-
dom variable. (Base the system residence time measure
on all jobs, whether they are tardy or not). Assume only
one step at a time can be performed on a given job.

Perform a single simulation with the model. Initialize
the model by simulating until 1000 jobs have been
completed. Then continue the simulation until another
2500 jobs have been completed. For each 100 post-
initialization jobs completed, report the cumulative
number of such jobs completed, the cumulative number
of tardy jobs, the cumulative percentage of jobs tardy,
and the cumulative means and standard deviations de-
scribed above. (Figure 2 shows such a report.)

3 A SOLUTION APPROACH

The following points make up the main logical consider-
ations that need be taken into account in building a

Schriber

model for the type of problem described in section.2.

1. When a job arrives, it needs to record its time of
arrival and then sample to determine how many steps
are to be performed on it, which machines are to be
used, and what the step times are to be. Total step
time and the due date follow from the individual step
times and the flow allowance factor. All of these
individual pieces of information can take the form of
attributes carried by the job itself.

2. The job can then create enough identical copies

(clones) of itself to provide one sub-job for each step
that must be performed on the overall job. The clones
should inherit from the original the attributes
described above. (The original job itself can serve as
one of these sub-jobs. If the original job only requires
one step, then the original creates no clones and the
original is the one and only "sub-job" in this case.)

Each sub-job will then be a one-step job associated

with the overall job. When all the sub-jobs have been

finished, then the overall job is finished.

Note that an attribute of each sub-job will be the to-
tal number of steps remaining for the overall job. In
the fewest-steps-remaining dispatching rule, the value
of this attribute for all sub-jobs waiting for a given
machine will be used to determine which sub-job is
the next to get the machine.

3. Before the sub-jobs making up an overall job are sent
to their individual machines, a mechanism must be
established so that they can send messages among
themselves at appropriate times. The following
messaging needs to take place:

a. When a step is about to start on a sub-job, the
sub-job must signal this fact to all associated sub-
jobs to suspend their candidacy for machine use.

b. When the processing of a sub-job is finished, it
must let all associated sub-jobs know that they are
candidates once again for machine use.

c. When the processing of a sub-job is finished, it
must update the "number of steps remaining"
attribute on all associated sub-jobs.

The needed messaging can be supported by having
the sub-jobs making up a job become members of a
set unique to that job. Of course these sub-jobs
already are members of such a set conceptually; but
they must also be made members of such a set
operationally, to support the required messaging. If
operational sets of this type are not provided in the
modeling language used to implement the simulation,
the modeler will have to work with other language
elements to achieve the needed messaging capability.

4. When a sub-job finishes using its machine, it can test

to determine whether it is the last member of its set.
If so, the job is finished and this last surviving sub-
job needs to record its system residence time and its
tardiness (if it is tardy) before leaving the model. But
if this sub-job is survived by others in its set, then it
needs to send the messages corresponding to 3b and
3c above before leaving the model.

Modeling of Perfect Sequencing Flexibility

5. When a sub-job finishes using its machine, there is
the need to dispatch a next waiting sub-job to the
now-idle machine. The departing sub-job itself can
take this responsibility or a "watchdog" not connected
with any orders at all can take this responsibility. In
either approach, sub-jobs waiting for the machine
must be ranked on their number-of-steps-remaining
(for their overall job) attribute just before the decision
is made about which sub-job is the next to get the
machine. (A sub-job's correct position in the ranking
cannot be determined at the time the sub-job arrives at
a machine, because the number-of-steps-remaining for
one or more waiting sub-jobs may change before the
machine's current user finishes. This is why the
correct ranking must be determined just prior to
dispatching a next waiting sub-job to the machine.)

The foregoing points make up the main logical
considerations in modeling perfect sequencing flexibility
for the fewest-steps-remaining dispatching rule. The
logic required may be simpler for perfect sequencing
flexibility with other dispatching rules. (If SPT is the
dispatching rule, for example, sub-jobs can be ranked at
the time of their arrival at their machine, and neither the
messaging described in 3c nor the requirement described
in 5 arise.) The logic may be more demanding, however,
in cases of partial sequencing flexibility, irrespective of
the dispatching rule involved. For the extreme of no
sequencing flexibility, the logic is very straightforward.

4 A GPSS/H MODEL FOR THE PROBLEM

The logic outlined in section 3 and applied to the section
2 problem is implemented in the GPSS/H model
displayed in Figure 1, with the resulting output shown
in Figure 2. In addition to showing the model itself,
Figure 1 provides an appended column of block numbers
(labeled BLOCKH#) at the left, to support discussion, and
of column labels (LOCATION, OPERATION, etc.)
across the top of each part of the figure. Figure 1 shows
the logic for use of the first of the five machines; similar
logic applies to the other four machines, and has been
excluded from Figure 1 to save space.

Space restrictions permit no more than brief discussion
of the GPSS/H model, but the comments embedded
liberally in the model itself (the Figure 1 comments are
in lower case and begin with an asterisk) should make it
quite easy (for a person familiar with any discrete-event
modeling language, and certainly for anyone familiar
with GPSS) to understand the underlying details. Parts 1
and 2 of Figure 1 provide the setting of the model.
Handling of considerations 1 through 5 of section 3 is
commented on below under corresponding numbers.

1. The considerations under 1 are handled in Blocks 1
through 27, parts 3 and 4 of Figure 1. Blocks 8 and 9

333

(ADVANCE and SPLIT) structure the job arrival
process, Blocks 13 through 21 determine how many
and which machines a job needs, Blocks 22 through
26 handle step times, and Block 27 sets the due date.

2. Block 31 (SPLIT) in part 4 of Figure 1 provides for

sub-jobs (clones) that inherit the attributes of the
original job.

3. Block 33 (JOIN) in part 4 of Figure 1 puts a job's

sub-jobs into a unique set (a GPSS Group) to support
the messaging needs described earlier. Block 39
(ALTER) in part 5 handles the need to let sub-jobs in
the set know that a step is starting on a member of
their set. Block 44 (ALTER) accomplishes the reverse
effect. Block 43 (ALTER) is used to update the
number-of-remaining-steps attribute of set members.

4. A completed sub-job uses Block 45 (REMOVE) in

part 5 to remove itself from its sub-job set, then uses
Block 49 (TEST) to determine if it is survived by
other sub-jobs in the set. If so, it leaves the model
(Block 50, TERMINATE); otherwise, it transfers to
Block 111 (TABULATE) to record statistics on the
now-finished overall job, and then leaves the model.

5. In this model, a finished sub-job sends another

waiting sub-job (if any) to use the machine it just
made free. This is accomplished with Blocks 46, 47
and 48 (UNLINK; PRIORITY; UNLINK) in part 5 of
Figure 1. At Block 46, the finished sub-job unlinks
all sub-jobs waiting for that machine from their place
of waiting (a User Chain) and targets them to be
relinked in their place of waiting, ranked ascending on
the number of remaining steps for the associated
overall orders. At Block 47, the finished sub-job
pauses while the unlinked sub-jobs are relinked at
Block 37 (LINK). At Block 48, the finished sub-job
unlinks the most highly qualified waiting sub-job and
routes it to capture the machine.

If a machine is busy when a sub-job arrives, or if an
associated sub-job is already using a machine, then
the arriving sub-job should begin waiting for the
machine. Otherwise, it should capture the machine.
These logical requirements are handled by Blocks 36
(TEST) and 37 (LINK). Block 36 refers to a Boolean
expression (named DELAY) in which the compound
condition described above (is the machine busy or is
an associated sub-job currently using a machine?) is
evaluated. If the Boolean expression is true, the sub-
job begins waiting for the machine at Block 37
(LINK); otherwise, it captures the machine without
delay at Block 38 (SEIZE).

Part 7 of Figure 1 shows run control and the steps for
producing the simulation report given in Figure 2.

(The paper concludes with References and the Author's
Biography given four pages hence.)

334

Schriber

BLOCK#

LOCATION OPERATION OPERANDS

COMMENTS

ARkh AR K AKRKAARK KKK KRR KA AR KRR hA ARk kA kkk Ak khkkkkhhhkhhkhhdrkhhhhhkhhhkkhhkkik

Base Time Unit: 1 Minute

* % * F % * *

*

SIMULATE
Sequencing Flexibility Measure: 1.0

Service Order: Fewest Remaining Steps

Number of Machines in the System: 5

Number of Machines Used per Job: From 1 to 5 (Random)
Mean Machining Time:
Process: Poisson
Expected Machine Utilization: 90%

Ak Ak AR IR AR KK I AR R AAKR AR KRR KR AAA R kAR KRRk hkAAkhkhdhkhhhhkhhkrhkhkkhhhkhhkhkhkkhkhhkkhhkk

Arrival

30 Minutes, 2-Erlang Distributed

*

* % o % *

Kkkkhkhkdkhkhkhdhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkkkrhkhhkkhhhkhhhkhhhkhhkhkhkkhhkkhhhkhkhkhkhkhkkkkkhkkkk

Compiler Directives
dhkhkhk A kA hkk kA Ak hkhAAkhkhkhkhkAkkhAAAkhkhkAhkhhkAkkkhhkhkhkhhhhkhkhhkkhhkhkhkhkhkhkhkkhkhkkhkhkhkhkhx

*

*
*

*

* .selected correspondences between
* symbolic and numeric identifiers...

*

* ..Facilities (the machines)...

MAC1 EQU 1,F MAC1 is Facility 1
MAC2 EQU 2,F ...and so on...
MAC3 EQU 3,F

MAC4 EQU 4,F

MACS EQU 5,F

*

* ...Fullword Integer Parameters (variables local to Xacts)...
MACID1 EQU 1,PF MACID1 is Fullword Integer Parameter 1
MACID2 EQU 2,PF ...and so on...

MACID3 EQU 3,PF

MACID4 EQU 4,PF
MACIDS EQU 5,PF

*

* ...Real Parameters (variables local to Xacts)...

STEPTYM1 EQU 1,PL STEPTYMl1 is Real Parameter 1

STEPTYM2 EQU 2,PL ...and so on...

STEPTYM3 EQU 3,PL

STEPTYM4 EQU 4,PL

STEPTYMS5 EQU 5,PL

*

* .Integer Variables (global variables)...
INTEGER &1 DO-loop counter
INTEGER &INDEX1 integer value from U(1,5)
INTEGER &INDEX2 integer value from U(1,5)
INTEGER &INITJOBS number of initialization jobs
INTEGER &JOBCOUNT jobs-arrived counter
INTEGER &LUPCOUNT Xact-loop counter
INTEGER &MACHINES nunber of machines in system
INTEGER &STEP number of job's current step
INTEGER &STEPS number of job's total steps
INTEGER &TEMPSTOR temporary storage location

GRP, 4000

..reallocate default maximum quantities of entities...
REALLOCATE COM, 20000,

number of bytes in COMMON

*

number of Transaction (Xact) Groups

Figure 1: The GPSS/H Model (part 1 of 7)

Modeling of Perfect Sequencing Flexibility 335

BLOCK#] LOCATION OPERATION OPERANDS COMMENTS

* ...Real Variables (global variables)...
REAL &FLOFAKTR multiplier for due date
REAL &JOBIAT mean job interarrival time
REAL &MSTEPTYM mean step time (machining time)
REAL &ESYSUTIL expected system utilization

*

* ...Synonyms (identifiers for integer constants)...

BUSY SYN 1 code for a busy job

IDLE SYN 0 code for an idle job

*

* ...suppression of Control-Statement echoes...
UNLIST CSECHO

*

* ...assignment of values to selected global variables...
LET &ESYSUTIL=0.90 expected machine utilization
LET &FLOFAKTR=7.5 flow allowance factor
LET &INITJOBS=1000 number of initialization jobs
LET &MACHINES=5 5 machines
LET &MSTEPTYM=30.0 mean machining time, minutes

*
LET &JOBIAT= job interarrival time, minutes

(FLT (§MACHINES+1) /2) *&MSTEPTYM/ (§MACHINES* &ESYSUTIL)
*

Ak hkhkhAkAAAARA kAR A A Kk hkhhkhhkhkhk kA khkhkhkkhhkhkhkhkkhkkhkhkhhkkhkhkhkhkhkhkhkhkkkkhkhkhkhkhkhkhkhkhkkkkkhkkk

* Control Statements *
% % J 3k F I A K de kK Kk Ak Kok Kok ke kK ok ke ke kA %k ke %k ke ok % %k ok ok ok ok ke ke ke ke sk ok %k ok ke ok ok ok ok ok e ok ke ok ke ok ek ok ok ko ok
*

...Boolean expressions...

...the DELAY expression is true if this step-Xact
must wait to use this machine...
DELAY BVARIABLE (PF (STATUS)=BUSY)OR(FU (PF (MYMAC)))

* * * *

*

* ...the QUALIFY expression is true if this step-Xact's

* job-group is inactive (idle)...

QUALIFY BVARIABLE PF (STATUS)=IDLE

*

* ...Block labels as a function of machine being checked...
CHEKMACS FUNCTION PF (MYMAC) ,D5

MAC1, CHEKMAC1/MAC2, CHEKMAC2/MAC3, CHEKMAC3/MAC4, CHEKMAC4/MACS, CHEKMACS
*

* ...Initial Positions of U(0,1l) random-number generators...
RMULT 100000, RNl (interarrival times)
200000, RN2 (permutation index 1)
300000, RN3 (permutation index 2)
400000, RN4 (number of machines a job visits)
500000, RN5 (first piece of 2-Erlang)

600000 RN6 (second piece of 2-Erlang)
*
* ...Table Statements...
*
* ...system residence time,all jobs, minutes...
SYSTYMS TABLE (AC1-PL(TIMEIN))/60.0,0,1,2
* ...tardy time for tardy jobs, minutes...
TARDTYMS TABLE (AC1-PL (DUEDATE))/60.0,0,1,2

Figure 1 (continued): The GPSS/H Model (part 2 of 7)

336 Schriber

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS

*

KRR KRR AAKRKAKRAR KRR AR R AAR KA AR KRR KAk AR Kk ARk kA kA khhkhhkhhhhhhhhhhkhhkkhhkk
. » K} *

* Job Creation and Specification Segment

AR AkAKK KKK KK KKK KKK Kk kAR k ARk khkh Ak khkhkkkhkhkkhhkhkhhhkkkhkhhkhhhkhhkkhhkrkhkkk

*

* ...seed the segment with a master job-Xact (Transaction)...
1 GENERATE O0,,,1,25,10PF, 8PL
*
* ...put the 5 machine identifiers in 5 Fullword Parameters...
2 ASSIGN MACID1,MAC1, PF
3 ASSIGN MACID2,MAC2, PF
4 ASSIGN MACID3,MAC3, PF
5 ASSIGN MACID4,MAC4, PF
6 ASSIGN MACIDS,MACS, PF
*
* ...a job is idle at the time of its arrival...
7 ASSIGN STATUS, IDLE, PF
*
* ...interarrival time elapses...

8 NEXTJOB ADVANCE RVEXPO (1, &JOBIAT

* ...Create a successor job-Xact:
* route it to experience it's interarrival time...
9 SPLIT 1, NEXTJOB
*
* ...record the time of this job's arrival at the system...
10 ASSIGN TIMEIN,AC1,PL
*
* ...update the job count, then give this job a unique id number...
11 BLET &JOBCOUNT=&JOBCOUNT+1
12 ASSIGN JOBID, &JOBCOUNT, PF

*

***x*x*x* Permute the Sequence of Machine ID's Carried by This Job **xxx*
*

13 BLET &LUPCOUNT=10 set &LUPCOUNT = 10
*
* ...set &INDEX1 and &INDEX2 equal to samples drawn from
* uniform distributions of integers ranging from 1 to 5...
14 SHUFFLE BLET &INDEX1=RN2Q@5+1
15 BLET &INDEX2=RN3@5+1
*
* ...now swap the machine id's carried in the Xact Parameters
* corresponding to these random indices...
16 BLET &TEMPSTOR=PF (&INDEX1)
17 ASSIGN &INDEX1, PF (&INDEX2) , PF
18 ASSIGN &INDEX2, &TEMPSTOR, PF
*
* ...update the loop count and repeat until done 10 times...
19 BLET &LUPCOUNT=&LUPCOUNT-1
20 TEST E &LUPCOUNT, 0, SHUFFLE

*

hhhhkkhkkkkkkkkxxk k% End Of Permutation LoOGic Ak %k %k ks sk kkhk ko

Figure 1 (continued): The GPSS/H Model (part 3 of 7)

Modeling of Perfect Sequencing Flexibility

337

BLOCK#| LOCATION OPERATION OPERANDS

COMMENTS

21 BLET

*

x**x* this Job Requires;
*

*

*

*

31 GOSPLIT SPLIT

*

32 NEXTBLOK ASSIGN

* ...set the number of steps (machines) for this job...
&STEPS=RN4Q@5+1

*x*x**x** Loop to Determine the 2-Erlang Step Time for Each Step Fkkkkdon
also Accumulate Total Step Time *****k¥x*

22 BLET &STEP=1

23 GETSTIME ASSIGN &STEP,

23 RVEXPO (5, &MSTEPTYM/2) +RVEXPO (6, &MSTEPTYM/2) , PL
24 ASSIGN TOTSTIME+, PL (&STEP) , PL

25 BLET &STEP=&STEP+1

26 TEST G &STEP, &STEPS, GETSTIME

khkhkhkkkhkkkkkkkkhkkkkkkkxx End of Step—Time Loop kkhkhkkkhkkkhkkkhkhkhkkhkkkkhkkk

* ...assign this job's due date...
217 ASSIGN DUEDATE, AC1+&FLOFAKTR*PL (TOTSTIME) , PL
*
* ..create clones so there is one step-Xact for each step
* (create no clones for a one-step job),
* numbering the step-Xacts serially in a Fullword Parameter...
28 ASSIGN STEPS2GO, &STEPS, PF
*
29 TEST E PF (STEPS2GO), 1, GOSPLIT
30 ASSIGN SERIALNO, 1, PF

PF (STEPS2GO) -1, NEXTBLOK, (SERIALNO)PF

MYMAC, PF (PF (SERIALNO)), PF

* ...each step-Xact joins a Group unique to this job...
33 JOIN PF (JOBID)

*

* ...pause while each other step-Xact for this job

* joins this group...
34 PRIORITY PR, BUFFER

*

* ...route each step-Xact to machine corresponding to its step...
35 TRANSFER , FN (CHEKMACS)

Figure 1 (continued): The GPSS/H Model (part 4 of 7)

REFERENCES

Rachamadugu, R. and T J. Schriber. 1990a. Performance
of Dispatching Rules Under Perfect Sequencing
Flexibility. In: Proceedings of the 1990 Winter
Simulation Conference, eds. O. Balci, R.P. Sadowski,
and R.E. Nance. The Society for Computer
Simulation, San Diego, CA, 653-658.

Rachamadugu, R. and TJ. Schriber. 1990b. Performance
of Nondelay Schedules: Generalized Open Shops.
Working Paper No. 651, Division of Research,
University of Michigan, Ann Arbor MI.

Schriber, T.J. 1991. An Introduction to Simulation
Using GPSS/H (with Student DOS GPSS/H on an
included disk). John Wiley & Sons, Inc., New York.

AUTHOR BIOGRAPHY

THOMAS J. SCHRIBER is Professor and
Chairman of Computer and Information Systems in the
Graduate School of Business at The University of
Michigan. He teaches, does research, and consults in the
area of discrete-event simulation. He has authored or co-
authored several dozen articles, has authored or edited
eleven books, including An Introduction to Simulation
Using GPSSIH (Wiley, 1991), and regularly teaches in-
tensive courses on GPSS-based simulation. From 1977
1o 1986 he was the ACM member of the Board of
Directors of the Winter Simulation Conferences, serving
as Board Chairman two years. His professional affilia-
tions include ACM, DSI, ORSA, SCS, and TIMS.

338 Schriber
BLOCK#| LOCATION OPERATION OPERANDS COMMENTS
*
KRR AR KRR KR A A AR R AR A RAKR KA KRAKR A KRR KRR AR A AR A A Ak hkhkhhhkxkkkhkxkrhkhhkhhkhkhhkhxkhhkk
* Use of Machine 1 *
Kk ko d ko kkdkokdkkkkhkhkkhkhkhkhkkkhkhkkkdhhkhhhkhkhkkhkhhkhkkhkhkkhkkhkhkhkhxkhkhhhkhkhkhkk
*
* ...branch to use Machine 1 without delay if possible;
* else, go into waiting line (User Chain) ranked
* in order of increasing number of remaining steps...
36 CHEKMAC1 TEST E BV (DELAY), 1, GETMAC1
37 LINEFOR1 LINK MAC1LINE, (STEPS2GO) PF
*
* ...capture machine 1...
38 GETMAC1 SEIZE MAC1
*
* ...message other step-Xacts in this job-group
* that this job is now becoming active...
39 ALTER PF (JOBID),ALL, (STATUS)PF, BUSY
*
* ...use the machine, free it, and update the
* remaining number of steps this job requires...
40 ADVANCE PL (PF (SERIALNO))
41 RELEASE MAC1
42 ASSIGN STEPS2GO-, 1, PF
*
* ...message updated number of remaining steps to
* other step-Xacts in this job-group...
43 ALTER PF (JOBID) ,ALL, (STEPS2GO)PF, PF (STEPS2GO)
*
* ...message other step-Xacts in this job-group
* that this job has now become inactive...
44 ALTER PF (JOBID),ALL, (STATUS)PF, IDLE
*
* ...remove this step-Xact from this job-group...
45 REMOVE PF (JOBID)
*
x*kx This Step-Xact Now Sends (tries to send) a Successor ****xk*x
*kxxkxx*xx for Itself to Use Machine 1, then Leaves the Model ***x*xkxx
*
* ...unlink all step-Xacts (if any) from the User Chain
* of step-Xacts waiting for Machine 1...
46 UNLINK MAC1LINE, LINEFOR1,ALL
*
* ..pause to put these step-Xacts back on the User Chain,
* ranked ascending by the remaining number of steps
* in their job-group...
47 PRIORITY PR, BUFFER
*
* ..now unlink the first qualifying step-Xact from the front
* of the User Chain and send it to capture Machine 1...
48 UNLINK MAC1LINE, GETMAC1, 1, BV (QUALIFY)
*
* ...1f this was the last step for this job, branch to JOBDONE;
* else, destroy this step-Xact...
49 TEST NE G (PF (JOBID)), 0, JOBDONE
50 TERMINATE

Figure 1 (continued): The GPSS/H Model (part 5 of 7)

Modeling of Perfect Sequencing Flexibility 339

BLOCK# | LOCATION OPERATION OPERANDS COMMENTS
*
khkkhkhkhkhkhkhhkhkhAhkhkhk kA kA hkhkhhkhkhkhkhkhkkhkhkhhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkkkhkkkkkkhkhkkkk
* Block Sequences for the Use of Machines 2-5 Are Analogous to *
* Those for Machine 1 (Blocks 36-50) and so Are Not Shown Here *
AR K AR A A KA A AR AR A AR AN KR AR AR AR AR AN AR A AN KA AR AR AN A A A A kA Ak kkhkhhkhkkhkhkhk
*
ke de Kk & de ke ok gk ok ke ke ok ok ek ok ek ke ok ok ok ke ok sk ke ok ek ok ok ok ok ke ok ek ok ok ok ok e ke e ok Kk ke ke ok ok ok ke ok sk Ak ok ok ke ok
* Wrapup for Finished Jobs *
AEKAKAAKAKRAKAKAAAKA KRR AR AR A kAR Ak Ak khkhkhkk Ak kA hkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkkkhkkkhkkkhkkkik
*
* ...tabulate finished job's time in the system...
111 JOBDONE TABULATE SYSTYMS
*
* ...branch if not tardy;
* else, tabulate finished job's tardy time...
112 TEST G ACl,PL (DUEDATE) , NOTLATE
113 TABULATE TARDTYMS
*
* ...count down on finished jobs leaving the system...
114 NOTLATE TERMINATE 1
Figure 1 (continued): The GPSS/H Model (part 6 of 7)
Performance Report for FRS Dispatching Rule
Under Conditions of Perfect Sequencing Flexibility
(FRS: Fewest Remaining Steps)
Number of Initialization Jobs: 1000
All Report Entries Are Cumulative
(Subsequent to Eliminating Initialization Statistics)
TIME IN SYSTEM, HRS
No. of TARDY JOBS TARDY TIME, HRS (All Jobs)
Jobs Done Total Pct Avg. Std. Dev. Avg. Std. Dev.
100 30 30.0 3.7 2.6 8.9 6.3
300 84 28.0 4.2 3.1 8.5 6.9
500 91 18.2 3.9 3.2 6.5 6.1
700 97 13.9 3.7 3.2 5.7 5.5
900 102 11.3 3.6 3.2 5.2 5.0
1100 107 9.7 3.4 3.2 4.9 4.1
1300 116 8.9 3.2 3.1 4.8 4.5
1500 131 8.7 3.0 3.0 4.8 4.4
1700 143 8.4 2.8 2.9 4.1 4.2
1900 148 7.8 2.8 2.9 4.1 4.2
2100 155 7.4 2.8 2.9 4.6 4.1
2300 194 8.4 2.1 2.1 4.7 4.2
2500 236 9.4 2.6 2.1 4.9 4.3

Figure 2: The Report Produced when the GPSS/H Model of Figure 1 is Executed
(every other row has been delcted from this report because of space restrictions)

340 Schriber

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS

*
AAKRK A AKR AR A KRR KRR R KA KRR AR KA A KA AR AR A KAk Ak kA kA AkkhkAhhkAkkhhhhhhkhhhhhhkrkkhkk
* Run-Control and Customized Reporting Statements *
AR AR A RKR AR K KRR KRAAKR AR AR KRR AR AR Ak kR ARk hkAAKkhkhhkAhhhhkhhkhkkkhhkhhkhhkkhkhkhkkk
*
kkkkkkkhkkkhkkhkkkkkkkkx*x Start of Report Header hhkkkhkhkhkhhkkhkkhhkhkhkkkkkkkkkk
*
PUTPIC LINES=15, FILE=SYSPRINT, (4§INITJOBS)
Performance Report for FRS Dispatching Rule
Under Conditions of Perfect Sequencing Flexibility

(FRS: Fewest Remaining Steps)
Number of Initialization Jobs: ****

All Report Entries Are Cumulative
(Subsequent to Eliminating Initialization Statistics)

TIME IN SYSTEM, HRS
No. of TARDY JOBS TARDY TIME, HRS (All Jobs)
Jobs Done Total Pct Avg. Std. Dev. Avg. Std. Dev.

dkkhkkhkhkkkhkhkhkkhkhhkihkkhkihkhkkkhkk End Of Report Header % % K %k %k &k Kk Kk Kk ok k ko gk gk ok ko k ok ok ok k ok
*
...process initialization jobs,

then flush the initialization statistics...

* * *

START &INITJOBS, NP
RESET

* ¥

.loop through 25 sets of jobs, 100 jobs per set...
DO &I=1,25

START 100, NP

*

.for each job set, write out cumulative statistics...

PUTPIC LINES=1, FILE=SYSPRINT, _
(100*&I,TC(TARDTYMS),FLT(TC(TARDTYMS))/&I,_

TB (TARDTYMS) , TD (TARDTYMS) , TB (SYSTYMS) , TD (SYSTYMS))
*okokk * %k *k * *k ok *k * *k K *k k

ENDDO

* ...line out the end of the report...
PUTPIC LINES=1,FILE=SYSPRINT

* ...that's all, folks...
END

Figure 1 (concluded): The GPSS/H Model (part 7 of 7)

