Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

PARALLEL INSTANCE DISCRETE-EVENT SIMULATION
USING A VECTOR UNIPROCESSOR *

James F. Ohi
Bruno R. Preiss

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario N2L 3G1

ABSTRACT

This paper examines the possibility of running N sim-
ulations in parallel on a vector processor. In such a
system each instance of execution runs identical code
but with a different input data set. The main prob-
lem which is addressed is the choice of block selection
policy, that is, the choice of which indivisible block
of code to execute next. This paper investigates four
block selection policies by simulating the execution
of such a system. A stochastic flow-graph representa-
tion was chosen to model the execution of a simula-
tion. A two-level block selection policy was found to
have the best potential speedup of the four block se-
lection policies. The speedup levels achieved were not
large, and decreased when there were a large number
of unique event types (and therefore handlers) in the
simulated system.

keywords - parallel simulation, vector processors,
SIMD processors, stochastic modelling.

1 INTRODUCTION

This paper examines the feasibility of using a vector
processor to provide speedup for the discrete event
simulation (DES) problem. Although the discussion
herein is presented in terms of vector processors such
as the Cray (Russell 1978), the analysis applies also to
single instruction multiple data (SIMD) parallel ma-
chines such as the Connection Machine (Hillis 1985).
The approach taken is to run multiple instances of
the same program simultaneously on a vector proces-
sor to achieve speedup. Each instance of the program
executes with a different input dataset. The goal is
to exploit a vector processor by running N datasets
simultaneously in less time than it takes to run N
sequential simulations one after another.

*This work was supported by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada.

593

During parallel execution of program P, one indi-
visible block of code is selected to run at a time and
all instances scheduled to run that block execute un-
til the block execution is complete, at which point
another block is selected. This process is repeated
until all instances have reached a termination state.
To use such a method, an automated transformation
that converts an existing sequential algorithm to a
parallel algorithm could be applied.

This method of parallelizing a sequential applica-
tion was investigated by Rego and Mathur (Rego
and Mathur 1990) for general, non-regressive program
graphs. In this paper the method of Rego and Mathur
is applied to program graphs which model discrete
event simulation problems. These graphs tend to be
highly regressive and thus direct application of the
Rego and Mathur results is not practical.

The primary advantage of the vector approach over
autonomous MIMD implementations is simplicity of
implementation. An automated transformation tech-
nique can directly convert a sequential algorithm into
a parallel algorithm in a vector parallel system (Rego
and Mathur 1990). Currently this is not practical
with MIMD approaches. Additionally, synchroniza-
tion problems associated with MIMD implementa-
tions do not exist since each simulation operates as
if on a sequential machine, the only difference being
that many simulations are being executed simultane-
ously.

A disadvantage of the vector parallel approach is
that there is only one processor controller for all in-
stances of execution. Although all instances use the
same program code, input data differs. It is evi-
dent that although the code is identical, each parallel
program instance may traverse the code via a differ-
ent path, depending on the input data. When data
dependent computation occurs, the controller must
make a decision as to which code segment to execute
next, since the instances are no longer executing the
same code. This problem is called the code block



594

selection problem. The code block selection policy is
critical for efficient utilization of the processor. In this
study, three block selection policies from the Rego
and Mathur study are compared on a DES program
graph along with a new, two-level selection policy.

Another possible limitation of the vector imple-
mentation is that one must have a good reason to exe-
cute N runs of the same program at once. In the case
of simulation problems this is not unlikely, since it is
often the case that the same experiment is repeated
several times using different random seeds. Alter-
natively, one may simulate a given system in many
different scenarios to fully characterize its behaviour.
The availability of efficient vector parallel algorithms
for simulation execution coupled with automated se-
quential program transformation makes these possi-
bilities more practical.

1.1 Performance Evaluation

In this section we address the question of determin-
ing the potential performance gains associated with
the parallel instance technique. Does the level of
speedup achieved justify the effort of developing a
system which automates this parallel to serial con-
version?

One method of approaching this problem is to se-
lect a benchmark simulation that is representative of
the types of simulations that are to be run. One could
then implement a vectorized version of the simulation
by hand and observe the resulting speedups on the
actual machine. The difficulty comes in selecting a
program which is general enough to give useful re-
sults which can be applied to a variety of simulation
programs.

The approach taken in this paper is to formulate a
stochastic model of a representative simulation using
a flow graph representation. In this case the diffi-
culty is finding a stochastic model which is truly rep-
resentative of the problems to be solved. An advan-
tage of this approach is that it easily allows studying
the effects of varying simulation structure character-
istics. Through these studies it can be determined
what types of simulations are expected to run well
using this parallel technique.

This paper builds upon Rego and Mathur’s re-
search which investigated general, non-regressive
stochastic program graphs and dealt with a specific
program structure. This paper focuses on the poten-
tial parallelism amongst indivisible blocks of code and
also models the sequential overhead of the parallel al-
gorithm with specific cases.

This paper is divided into 5 sections. In section 2,
the Rego/Mathur model is discussed and their find-

Ohi and Preiss

ings are briefly presented. In section 3, a stochas-
tic model of the discrete event simulation problem is
presented and specific block selection policies are dis-
cussed. In section 4, the test procedure is discussed
and results are presented. Following these are con-
clusions in Section 5.

2 THE REGO/MATHUR MODEL

This section describes a model for representing vector
execution of a program graph and outlines Rego and
Mathur’s basic approach to the block selection prob-
lem. The results of their research are then summa-
rized since they have relevance to the discrete event
simulation problem.

During the parallel-instance execution of a program
P, one indivisible program code block at a time is
selected to run and all instances which are scheduled
to run that block are allowed to execute in parallel
until the block’s completion. At this point another
block is selected to run and the process is repeated
until all program instances terminated.

Rego and Mathur define four block selection tech-
niques:

1. Complete First Policy - select the block with the
lowest “index” or sequence number,

2. Move Forward Policy - select the block with high-

est index,

3. Majority Rules Policy - select the block that the
majority of instances wish to execute, and

4. Random - choose a block at random from the list
of blocks which need to be executed.

2.1 Definition of Speedup

Rego and Mathur define parallel speedup, 7, as the
time required to perform N runs of a simulation over
the time required to run N parallel instances of the
simulation at the same time on a vector machine.
This is shown in Equation (1):

K
N * Z,‘:x mjt;
V= (1)
2 io1 nitiag N

where N is the machine vector length, m; is the num-
ber of times serial block j is executed using a stan-
dard sequential computer, n; is the number of times
parallel block j is executed (although all instances do
not necessarily execute it at once), t; is the time to
execute serial block j and K is the number of blocks
in the program. aj n, defined in Equation (2), is the



Parallel Instance Discrete-Event Simulation

block speedup coefficient for block j when executing
with a vector length of N.

134
N xt} )

UGN =

In this equation, ¥ represents the time it takes to
execute the parallel block ¢ using vector parallelism
and associated overhead, and ¢! represents the time
to execute block 7 serially.

To simplify the model, assume block execution time
is constant, i.e. t; = ¢, and a; y = ay. Then Equa-
tion (1) becomes Equation (3):

o 3)

Values for ay were obtained through simulation
by Rego and Mathur on an Alliant FX/80 over vari-
ous block types. The values in this study are obtained
from the data given in (Rego and Mathur 1990). Note
that ay = % for the case of no parallel block over-
head.

2.2 Stochastic Program Execution Represen-
tation

Rego and Mathur model a program graph using a
stochastic, flow-graph representation. Each node in
the graph represents a program block which takes a
constant time to execute. Weighted, directed arcs
connect nodes in the program graph. The weights of
the arcs represent the branching probability of mov-
ing from one block to another. The arc weights are
dependent on the application and can be obtained
from user-supplied branching frequencies or from the
results of testing using a large number of input data
sets.

This type of model gives an idea of P’s average
transition behaviour. With this model, repeated tests
can be performed on the program to acquire statis-
tically valid results without the need to generate a
large number of random input data sets for each test
case.

Rego and Mathur proved analytically that the com-
plete first block selection policy is optimal for non-
regressive graphs, that is, graphs without backward
jumps. The program flow graph used for analysis
and simulation is shown in Figure 1. They also ver-
ified their results through simulation using a con-
stant branch factor By = 8, Vk = 1,2,...., K with
K being the total number of program blocks. Sim-
ulation studies also showed that random choice pol-
icy performed next best, followed by majority rule
and move forward. The fact that majority rule and

595

1$1 1-B2 1-p k

ANEA A

Figure 1: Non-Regressive Graph

move forward performed worse than random would
indicate that these policies actually discourage par-
allelism compared to complete randomness in a non-
regressive graph.

Rego and Mathur also repeated these experiments
on a regressive graph. In this case majority rules
had the best performance followed by random choice,
then move forward and finally complete first. Note
that the complete first policy which had performed
well in the first example had the worst performance
in the second example.

Rego and Mathur also demonstrated through sim-
ulation that block selection overhead caused signifi-
cant speedup reduction when the selection policy ex-
ecution time is significant compared to the execution
time of individual blocks. They measured this by
setting the overhead to be various percentages of the
block execution time and evaluating speedup degra-
dation effects.

3 A STOCHASTIC DES MODEL

This section presents a flow-graph for the discrete
event simulation problem and discusses modelling as-
sumptions. The block selection policies used for test-
ing are also introduced.

One of the attractive features of this vectorization
technique is in the simple manner by which much of
the sequential algorithm can be systematically con-
verted into parallel vectorized code. In light of this
fact the most common discrete event simulation se-
quential algorithm was chosen for these experiments.
Figure 2 shows the general structure. All instances
start in an event dispatcher which fetches the next
event from an event queue and calls the appropri-
ate event handler to process it. The processing of an
event leads to the creation of new events until the sim-
ulation terminates. This basic approach is discussed
in (Misra 1986).

A non-deterministic representation of this algo-
rithm involves modelling the dispatcher as a node
with outdegree E. E is the total number of unique
event types in the system. As a simplifying assump-
tion, each event type has a uniform probability of
occurring. Therefore the weight on each outgoing arc



596

eventHandler
1

y1 y
event 2 eventHandler
Dispatcher 2

32

[ d
[ ]
L J
eventHandler
n
Bn

Figure 2: DES-like Flow Graph

is %

As can be seen in Figure 2, the stochastic DES
flow graph is simple but highly regressive. The sim-
ple structure of the DES graph allows for the collec-
tion of statistical results which can be used to predict
the performance of most DES programs. The results
could also apply to a hierarchal simulation structure,
where each event branch breaks up into sub-branches
representing sub-event types within the event.

In addition to the vector length N, the parameters
of the model include the move forward or branch fac-
tor, B, which specifies the tendency of event graphs to
move forward. Other parameters include the average
number of blocks per event, as well as the number
of unique events in the system. The length of the
simulation run is also a control input affecting the
influence of transients in the experiments.

In this study, the subprogram graph within each
event is non-regressive. Thus, the simple graph rep-
resentation shown in Figure 1 is used for perfor-
mance modelling. More complex graphs could be
used to express arbitrary forward conditional branch-
ing, but such forms would be difficult to implement
in a “general” way and would require more control
parameters, complicating the test procedure. Ad-
ditionally, simulation-specific structures could be in-
troduced into the graph specification. One example
of this would be an event queueing routine which is
a typical function in simulations. Including these
application-specific structures is difficult to do in a
general and easily controlled way in stochastic graphs.
The graph shown in Figure 1 has only one control pa-
rameter to allow adjusting the event graph’s tendency
to move forward. This model can account for variable
length loop structures, and also accounts somewhat

Ohi and Preiss

for conditional branches, modelling their tendency to
jump ahead or stay behind during execution. The em-
phasis of this paper is on modelling the global struc-
ture of simulation programs and studying the effects
of various characteristics.

The results from Rego and Mathur’s research are
not directly applicable to the DES problem since their
intention was to model “general” program graphs
rather than “general simulation” program graphs.
They therefore selected non-regressive graphs for test-
ing to make the problem analytically solvable within
a reasonable time.

3.1 Selection Policies

Since we have chosen to model the event sub-graphs
in Figure 2 as being non-regressive, we can apply the
results from the Rego/Mathur experiments for block
selection within each event. Therefore we use the op-
timal complete first block selection policy while exe-
cution is within an event handler. However the overall
DES graph is also highly regressive and therefore may
not perform well under a global complete first policy.

In order to exploit the optimal use of complete first
policy within an event graph, a two-level hierarchical
block selection policy is proposed. Event type selec-
tion constitutes the first level in the selection hier-
archy, while block selection within event subgraphs
constitutes the second level. Once a suitable event
handler has been selected for execution, the complete
first policy is used within the event handler to make
block selections until termination of the event. The
choice of the best event selection policy is not intu-
itively nor analytically obvious. Rego and Mathur
showed through simulation that the majority rule se-
lection policy appeared to perform comparatively well
for regressive graphs and thus it will be used in the
two-level scheme.

The disadvantage of two-level block selection poli-
cies compared to single-level ones is that synchroniza-
tion of all instances at the event level must occur be-
fore the next event type can be chosen. This means
all instances must wait for each other to complete
the event subgraph before they can go on. This in-
curs a loss of processor utilization since some proces-
sors, due to their input streams, may finish event pro-
cessing long before others do. However this can also
be considered an advantage over the other selection
policies, since it can be postulated that single level se-
lection policies being applied on regressive graphs do
not encourage occasional “synchronization” of the in-
stances. Therefore instances can potentially become
“spread out” over the entire program graph and have
little temporal block synchronization resulting in a



Parallel Instance Discrete-Event Simulation

loss of parallelism.

A comparison of the two-level block selection tech-
nique’s average performance compared to single level
approaches will be shown, as well as the speedup ob-
tained against an equivalent sequential implementa-
tion. One point to note is that the complete first
algorithm is not easily applied to DES graphs since it
relies on selecting the lowest block index numbers to
make a selection for the next block to execute. Num-
bering of the blocks in a regressive graph is some-
what arbitrary since the set of indexes of one event
branch is arbitrarily chosen to have lower index num-
bers than that of another branch. In this study event
0 has block numbers 0 to K[0] — 1, while event 1 has
block numbers K[0] to K[1] — 1 and so forth, where
K[1] represents the number of blocks in event i.

A simplifying assumption in this model is that all
blocks have the same execution time. This is not true
in reality, but it is assumed it will not affect results
to a large degree.

The accuracy of this stochastic model of discrete
event simulations is questionable at best due to the
simplifying assumptions in the program graph. Nev-
ertheless it provides an upper bound on the speedups
that could be achieved in a real system, as well as giv-
ing insight into the effects varying graph parameters.
The one advantage of using this abstract modelling
technique is that it can be easily modified to cover a
larger spectrum of cases.

4 TEST PROCEDURE AND RESULTS

An investigation was performed into the effects of
four different parameters on speedup. The param-
eters of interest were the vector length N, the num-
ber of unique event classes E, the average number
of blocks per event B and the branch factor 8. In
addition, tests were performed to determine the im-
pact of simulation startup and termination transients.
These effects are present because the termination cri-
terion for the simulation was to terminate when all of
the simulation instances had executed a given num-
ber of blocks. Using this technique, some instances
which were lucky enough to have their blocks selected
more often than others terminated much earlier, re-
sulting in a decrease in utilization since a vector com-
ponent was left idle. Tests were performed to de-
termine the minimum simulation length in order to
minimize startup and termination effects since this
project seeks steady state results.

Graphs which are plotted with respect to N ac-
count for sequential overhead (using ay) while the
other graphs only show block-level speedup, which is
valid for comparing the relative performance of the

597

block selection policies.

Instead of specifying exact values for graph charac-
teristics during test runs, average or range values were
specified and a random DES graph was generated
based on these values. It was then executed using
each of the block selection policies and the speedup
was calculated using Equation (3).

During the flow graph generation phase, a graph
was randomly created according to command-line
supplied specifications. The number of blocks in each
event was generated using a normal distribution with
a specified variance.

During simulation, event-types are generated using
a uniform distribution. For purposes of generality, it
is assumed that the choice of the next event gener-
ated is independent of the previous events processed.
Block transition probabilities within events also use
a uniform variate. Once again this assumes that the
probability of successful block transitions is indepen-
dent of previous block transitions and also indepen-
dent of event type.

4.1 The Effect of F

Intuitively, increasing the number of unique event
types will reduce parallelism for all policies since it
serves to spread out all of the instances over more
event subgraphs. Consequently, they have less chance
of occupying the same event as another instance.
Figure 3 shows results with 8 = 0.5, B = 40 and
N = 100.

As can be seen in Figure 3, all four policies exhibit
the same behaviour. For low E (< 20), the two-level
scheme exhibits a significant speedup advantage over
the single level schemes. However for large E, the dif-
ferences between all of policies is very small although
the two-level scheme does show a negligible advan-
tage. Clearly for large E the speedup for all of the
policies is not large (around 2).

4.2 The Effect of B

B r1epresents the average number of blocks in an
event subgraph. Recalling that the complete first
policy was optimal for non-regressive graphs (Rego
and Mathur 1990), it is expected that as the number
of blocks per event increases relative to the number
of events, the speedup associated with the complete
first policy would improve. This is because the graph
begins to look less regressive due to the presence of
lengthy, non-regressive chains. Accordingly, the per-
formance of the random and majority-rules policies
should deteriorate with increasing number of blocks
per event since the graph looks more and more like a
non-regressive graph. For very low numbers of blocks



598

Speedup vs. Number of Events

16 T T Ty T T T
14 two-level —
MAjOrity efmmm
12 —
complete firet efmjemm
10 - random - X' ' —

Speedup 8

1 10 100

Number of Events
Figure 3: Log Graph 8 = 0.5, B = 40, N = 100

Speedup vs. Number of Blocks per Event

complete first

18 T T T T T 1T

16 I two-level -O— ]

14 F majority =fm— _|
i
.x. .

12
random

Speedup

0 50 100 150 200 250 300 350 400
Number of Blocks per Event

Figure 4: 8 =0.5,E =5,N = 100

per event, the graph appears highly regressive with
very little non-regressive content. Thus, it is expected
that the majority-rules and random choice policies
should perform better than complete-first.

The two-level selection policy is expected to work
well in both situations since it combines the complete-
first and majority-rules policies in one. Figures 4
and 5 show the expected behaviour. Figure 4 shows
results with moderate 8 (8 = 0.5), a small number of
event types (E = 5) and N = 100. Figure 5 shows a
similar case but with a large number of event types
(E = 40).

The crossover point where complete first overtakes
majority rules and random selection lies between 30
and 50 blocks per event. This crossover position is af-
fected by the number of unique event types in the sys-
tem. The two-level selection policy always performs
well. When B is high (> 100 blocks), complete first

Ohi and Preiss

Speedup vs. Number of Blocks per Event

3 T T 1 1

1
3. two-level ©— |
2.6 majority ej——
2.4 complete first sfmms _|

random -

Speedup

o 80 100 150 200 250 300 350 400
Number of Blocks per Event

Figure 5: 8 = 0.5, E = 40, N = 100

and the two level policy had almost equal speedup,
depending on the number of event types in the sys-
tem. In summary, these effects are observed because
it appears that the ratio of B to F affects the degree
to which a graph appears non-regressive or regressive.

4.3 The Effect of 8

B represents the tendency for the program to move
forward in the program flow graph. The parameter
B was varied between 0.1 and 0.9 to characterize its
effect on overall speedup and the results are shown in
Figures 6 and 7. Figure 6 shows results with B = 40,
E =5 and N = 100. Figure 7 shows results with
larger numbers of event types and blocks per event
(B = 100 and E = 10) to see the difference. As can
be seen in the graphs, the two-level block selection
policy had the best speedup and increases monotoni-
cally with increasing 3. It is believed that this perfor-
mance is due to the fact that two-level policy enforces
synchronization of the instances between events, im-
proving parallelism.

The single level policies do not perform the peri-
odic synchronization that the two level approach per-
forms and therefore do not encourage parallelism. As
a result, the speedup achieved is lower. Only the
complete first policy forces synchronization because
instances with high index blocks wait for instances
with low index blocks. However, complete first does
not consider which of the events has the most in-
stances and therefore does not maximize parallelism.

Speedup generally decreases with decreasing 3 for
all policies except for complete first. A small 3 yields
programs that take a longer time to execute since
they have a smaller tendency to move forward. This
causes increased conflict rather than synchronization



Parallel Instance Discrete-Event Simulation

Speedup vs. Branch Factor ﬁ

14 T T T T T T T

12 + two-level $—

majority

10 complete first

Speedup

0.1 0.2 03 04 05 06 0.7 0.8 0.9
Branch Pactor ﬂ

Figure 6: B = 40,E = 5, N = 100

Speedup vs. Branch Pactor ﬁ

7 T T T T T 1
two-level -O—
¢ majority
complete fi e
£ dom X *
Speedup 4 —
]
s -
2 _1,_+__—|——'+—0~+_+—+__L
R RIS G Y Lo X X
. L e X X

0.1 0.2 0.3 0.4 05 0.6 07 08 0.9
Branch Pactor ﬁ

Figure 7: B =100, E = 10, N = 100

599

and therefore reduces parallelism.

As 3 increases, the probability for instances to
move through blocks in events together increases caus-
ing the slight increase parallelism and speedup. The
two-level approach is preferable to the others when 8
is high.

An interesting property emerges in Figure 7. When
B is high (= 100), the complete first policy speedup
improves. It appears that the two level policy seems
to serve as an upper bound for the complete first pol-
icy speedup for very large B. The complete first plot
therefore will look more and more like the two level
plot as B increases.

4.4 The Effect of N

N represents the vector length of the vector proces-
sor being used. Estimates of the overhead associated
with the parallel implementation have been obtained
from the results in Rego and Mathur (1990). In all
cases, the two-level block selection policies have the
highest relative speedup compared to the single-level
schemes. However, the absolute speedup is not al-
ways significant.

Figure 8 shows an optimistic speedup graph with
parameter values selected so that the two-level block
selection policy performs well. The parameters are
B = 0.5, B = 40 and E = 2. Referring to Fig-
ure 3, it can be seen that speedup decreases rapidly
until about 20 unique events, after which it levels off
with speedups in the range of 3 — 4. Figure 9 shows
speedup in the lower part of that graph with E = 40.

Figure 10 shows the case where B is high. As in
the case of Figure 7, the complete first policy plot
looks more and more like the two-level plot for very
large B.

Figure 11 shows a scenario in which the two level
policy performs poorly, specifically, 8 = 0.3 (low),
B = 100 (high) and E = 30 (relatively high). As
can be seen speedups are lower and the complete first
policy almost has the same speedup as the two level
approach.

5 CONCLUSIONS

Clearly the accuracy of the model limits the scope
over which any conclusions can be made. In order to
generalize the conclusions to real simulation programs
in general, a validity test would be necessary to prove
the model.

Assumptions were made to simplify the model and
make it controllable through parameters for study.
As discussed in previous sections, the speedups cal-
culated can be thought of as theoretical upper bounds



600

Speedup

Speedup

Speedup

Speedup vs. N

12 T 1 T T
two-level O—
10 — -
ma)
complete first upmmm
‘ — —
random - X- -
6 - -
4 - —
2
IS —
0 1 | 1 | 1

[} 200 400 600 800 1000 1200

Figure 8: 3 =0.5,N =40,E =2

Speedup vs. N

0-9 T T T T T T 1
0.8 |- vel &—
majorily ==

0.7

complete first wfmmm
0.6 random -X- -
0.5
0.4
0.3
0.2
0.1 ] 11 1 1 | 1

0 50 100 150 200 250 300 350 400
N

Figure 9: 8 =0.5,N =40, E = 40

Speedup vs. N

3 T T />
two-level ©—
3.8
majority "+— B
complete first o
, L —
random - X' °
1.5
1
0.5 X
0 ] ] ] 1 1 ! L

[} 50 100 150 200 250 300 350 400
N

Figure 10: High B

Ohi and Preiss

Speedup vs. N

Speedup

1

Jevel O— _|

majority
complete first ofmmm —

random - X- -

| | | i I

[} 50

100 150 200 260 300 360 400
N

Figure 11: 8 = 0.3 (low), B = 100 (high), E = 30

(relatively high)

Speedup vs. N

1.8
1.6 |-
14
1.2
Speedup 1
0.8
0.6

0.4

0.2

majority
complete first afmm

random - X' -

Figure 12:

1000 1200

B =30,B=40,E = 10



Parallel Instance Discrete-Event Simulation

since they omit certain details of an actual implemen-
tation but rather concentrate on the global structure.
It is also clear that for graph structures different from
the simulation graph structure presented here, the re-
sults will change in a manner that is not easily pre-
dictable.

o The single-level approaches described in Rego
and Mathur’s research are not in general suitable
for the DES flow graph model presented here.
This is because DES flow graphs tend to have
highly-regressive parts as well as non-regressive
parts.

o The two-level block selection policy proved to
perform relatively better than the single-level
strategies under the conditions in this project.
Therefore given a program with a comparable
structure to that in Figure 2, the two-level strat-
egy is the method of choice.

o When B is high, the complete first policy per-
forms comparably to the two-level policy.

o Speedup using the two-level selection policy in-
creases with 3.

e Speedup with all policies monotonically de-
creases with increasing F.

o Speedup with all policies except complete first
decreases with increasing B. The two-level strat-
egy always has the highest speedup, but with
large B, complete first is comparable. This is
because with large B, the graph appears less re-
gressive.

¢ Improved speedup occurred with increasing N
until around N = 150, at which point the
speedup improvements became very small.

o Overall, the speedup is not large. This is par-
tially attributed to the limitations of a single
controller vector processor. As seen in the graphs
which included overhead, speedup levels do not
exceed 4 on a 100 processor system for the cases
presented. The usefulness of this technique is de-
pendent on the “need for speed” versus the ex-
pense. However, Rego and Mathur demonstrate
that conversion from serial to parallel vector al-
gorithms using this technique can be automated
and thus is seductively simple.

REFERENCES

Hillis, W. Daniel, The Connection Machine, The MIT
Press, 1985.

601

Misra, J., Distributed Discrete-Event Simulation.
Computing Surveys, Vol. 18., No.1, March 1986
Rego, Vernon and A.P. Mathur, Concurrency En-
hancement through Program Unification: A Per-
formance Analysis, Journal of Parallel and Dis-

tributed Comp., Vol. 8.,1990, pp.201-207.

Rego, Vernon and A.P. Mathur, Exploiting Paral-
lelism Across Program Execution: A Unification
Technique and Its Analysis, IEEE Trans. on Par-
allel and Distributed Systems, Vol. 1, No. 4., Oc-
tober 1990, pp.399-414.

Russell, R.M., The CRAY-1 Computer System, Com-
munications of the ACM, Volume 21, Number 1,
January 1978, pp. 63-72.

AUTHOR BIOGRAPHIES

JAMES F. OHI is a graduate student at the
University of Waterloo, Waterloo, Ontario, Canada,
where he completed a B.A.Sc degree in Computer En-
gineering in 1990. His research interests include par-
allel discrete-event simulation, system modelling and
parallel architectures. He is a member of the Institute
of Electrical and Electronics Engineers.

BRUNO R. PREISS received the B.A.Sc degree in
Engineering Science (Electrical Engineering Option)
in 1982, the M.A.Sc degree in Electrical Engineering
in 1984, and the Ph.D. degree in Electrical Engineer-
ing from the University of Toronto, Toronto, Ontario,
Canada. He is an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering at the
University of Waterloo, Waterloo, Ontario, Canada.
He is a member of the Computer Communications
Networks Group and the VLSI Research Group. His
current research interests include parallel discrete-
event simulation and multiprocessor and parallel pro-
cessor computer architectures.

Bruno R. Preiss is licenced as a Professional En-
gineer in the Province of Ontario, Canada. He is a
member of the Canadian Society for Electrical and
Computer Engineering, the Institute of Electrical and
Electronics Engineers, and the Association for Com-
puting Machinery.



