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ABSTRACT

In this paper we present the results of an experi-
mental performance study of distributed simulation
of closed queuing networks using a minor variation
of the deadlock detection and recovery based algo-
rithm of Chandy and Misra. One major part of
this study is to determine the effect of overhead on
distributed simulation. Moreover, in these experi-
ments we measure the values of certain refined no-
tions of “ideal speedup ratio” which were defined in
our earlier works. These ratios are more refined than
just the number of processors in the sense that they
capture the potentially achievable speedups of dis-
tributed simulation more closely.

1 INTRODUCTION

Several schemes for distributed simulation have been
proposed in the literature, e.g., Chandy and Misra
(1979, 1981), Jefferson and Sowizral (1982), Peacock,
Wong, and Manning (1979). The schemes utilize
overhead messages to handle the potential deadlock
situations that may arise during the simulation.
Unfortunately, only a few performance studies of
these schemes are available, e.g., Fujimoto (1988a,
1988b, 1989), Reed (1983), Reed, Malony, and Mc-
Credie (1988), Seethalakshmi (1979). These studies
have provided useful data, and have shown some pos-
itive and some negative performance results for a few
combinations of the distributed simulation scheme,
the system to be simulated, and the available dis-
tributed system on which the simulation is to be car-
ried out. Unfortunately, several obvious questions
have remained unanswered. For example, what is the
relationship between the amount of overhead and the
performance of a distributed simulation scheme. Un-
derstanding this relationship is important since this
can provide useful information as to whether there
is much hope in trying to improve the performance
by trying to find variations of a scheme that aim at
reducing the amount of overhead. For example, sup-
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pose the distributed simulation of a particular sys-
tem using the scheme Chandy and Misra (1979) has
low performance. Would it be useful to define and
study variations of the scheme that would tend to
reduce the number of NULL messages? A related
question is how much speedup one can expect in an
ideal variation of a distributed simulation scheme that
would somehow totally eliminate the negative effect
of overhead messages. Can we expect a reasonable
performance in such a simulation? Also, what kind
of ideal speedup can be expected if one is consid-
ering possibilities across all the well known schemes
Chandy and Misra (1979, 1981), Jefferson and Sowiz-
ral (1982), Peacock, Wong, and Manning (1979) and
their simple variations.

The known performance studies have not addressed
these issues adequately. The usual studies have pro-
vided data on the performance of distributed simu-
lation for individual cases, but the above issues have
been largely ignored. In some cases where perfor-
mance of the distributed simulation turns out to be
poor, some researchers have suggested that the poor
performance is due to large overhead Chandy and
Misra (1981), Reed, Malony, and McCredie (1988),
Seethalakshmi (1979). Such a suggestion would nor-
mally mean that (i) indeed there is a large amount
of overhead, and (ii) if somehow the overhead could
be reduced significantly then the performance would
be improved significantly. Claiming part (ii) of this
statement for a specific case requires further study
and such a study is reported here.

Note that it is not quite obvious as to how to
study the relationship between performance and over-
head. One simple-minded approach would be to de-
fine and study different variations of a given scheme
which lead to different number of overhead messages,
thereby providing some data regarding relationship
between overhead and performance. Unfortunately
such an approach would have several problems:

1. In coming up with the different variations, one
has to ensure that deadlocks are handled ade-
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quately, otherwise the scheme would simply be
incorrect. This restricts the number of different
variations one can come up with.

2. It is usually not feasible to vary the number of
overhead messages in a reasonable range so as
to enable one to determine the relationship be-
tween this number and the performance. In par-
ticular, the number of overhead messages may
remain large, in which case it is difficult to judge
what the performance would be like if this num-
ber were somehow reduced to a small value. Note
that varying the number of overhead messages in
a controlled way, i.e., as an independent variable
is nearly impossible.

3. As the different variations are being considered
it is quite possible that other activities in the
simulator that are not related to overhead are
also changing, e.g., the algorithmic rules that de-
termine when an event message should be com-
puted. This makes it harder to judge whether a
change in performance is simply due to a change
in the number of overhead messages or whether
the other factors are also influencing the result.

We discuss here a simple and new approach to-
wards determining the relationship between amount
of overhead and performance. In this approach: (i)
we simulate the distributed simulator instead of di-
rectly implementing it on a distributed system and
directly measuring its performance, and (ii) in this
approach we vary the amount of communication de-
lay and the computation time for each overhead mes-
sage including the case when these values are zero.
Note that this approach is quite different from trying
to vary the number of overhead messages.

Regarding the issue of “ideal speedup” in dis-
tributed simulation, the usual measure for ideal
speedup used in the literature is N, which is the num-
ber of processors in the simulator. This measure is
too conservative in many cases, and as such does not
provide much information as to how much speedup
one can hope to achieve by variations in the simu-
lation scheme or faster communication of overhead
messages, etc. (for any given processing speeds for
computing the event messages). In the experiments
reported here we determine the values of two new
measures of ideal speedup that would provide more
realistic bounds on what can be expected under an
ideal distributed simulation. These measures were
defined earlier in Kumar and Harous (1990, 1991),
and the definitions are repeated here to keep this pa-
per self-contained.

The overall ideas of this paper have been pointed
out earlier in Kumar and Harous (1990, 1991) where
we studied distributed simulation of open cyclic queu-
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ing networks using the NULL messages based scheme
Chandy and Misra (1979). In this paper we extend
that work by further studies of closed queuing net-
works using a variation of the distributed simulation
scheme given in Chandy and Misra (1981).

In section 2, we define the systems under study.
In section 3, we give a brief description of the dis-
tributed simulation scheme under study. Definition
of the different speedup ratios and description of our
implementation are given in sections 4 and 5. The ex-
perimental results are discussed in section 6. Finally,
concluding remarks are given in section 7.

2 SYSTEMS UNDER STUDY

Borrowing terminology from Chandy and Misra
(1979), in the following a system to be simulated is
called the physical system. The physical system con-
sists of a network of physical processes (or pps for
short). Each physical system is simulated by a dis-
tributed simulator called the logical system. The log-
ical system is a collection of logical processes (or Ips
for short), each one simulating a corresponding pp.

In this paper, we use the term queuing networks to
refer to networks of pps from the five classes - delay,
fork, merge, sink, and source. Examples of the first
three classes of pps are ppl (delay), pp2 (fork), and
pp4 (merge) in Figure 2. The other two classes of pps
are not used in the queuing networks discussed in this
paper. A detailed definition of these five classes of pps
is given in Kumar and Harous (1991). Since these
pps are fairly common in the literature, we skip their
definitions here. Queuing networks are useful in per-
formance modeling of various kinds of service systems
such as computer systems, computer-communication
networks, telecommunication systems, and manufac-
turing systems. Here we study the queuing networks
shown in Figures 1, 2 and 3.
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Figure 1: Queuing Network 1.
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Figure 2: Queuing Network 2.
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Figure 3: Queuing Network 3.

3 THE DISTRIBUTED SIMULATION
SCHEME UNDER STUDY

In this paper we study the scheme based on deadlock
detection and recovery Chandy and Misra (1981). We
made some minor modifications to this scheme in or-
der to improve the degree of concurrency.

3.1 The Original Scheme Of Chandy and
Misra (1981)

The distributed simulation algorithm described in
Chandy and Misra (1981) mainly repeats the follow-
ing two phases: (i) simulate the physical system until
a deadlock occurs, (ii) detect the deadlock and re-
cover from it.

The scheme Chandy and Misra (1981) is based on
the synchronous communication of Hoare’s CSP. This
can cause a minor performance degradation when im-
plemented on an asynchronous system. It detects
deadlocks by using a variation of the termination
detection algorithm of Dijkstra and Scholten (1980).

3.2 Modifications

In order to achieve higher level of concurrency we
made the following modifications: (i) we use a sim-
ple termination detection algorithm using a central
process (CP), (ii) message communication in the log-
ical system is assumed to be asynchronous, (iii) we
assume infinite input buffers at the input port of any
Ip, and (iv) an Ip can receive inputs any time, except
when it is able to send out more outputs.

3.3 Our Termination Detection And Recov-
ery Algorithm

We give here an overview of our termination detection
and recovery algorithm. In order to keep the discus-
sion simple, we assume that the physical system to
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be simulated is a queuing network consisting of the
five classes of pps mentioned in section 2.

Let Z be the time up to (including) which the phys-
ical system is to be simulated. Unlike Chandy and
Misra (1979), we allow for the possibility that several
event messages may be sent at the same time on a
given line in the physical system. When an Ip has de-
termined that it has sent out all the event messages
up to time Z on an output line, it sends out exactly
one special message (Z+1,NULL) on the line in or-
der to provide this information to the receiver Ip. No
other NULL messages are sent here such as the ones
in Chandy and Misra (1979). The Ips receive inputs
whenever they have none of the above event or NULL
messages to send.

The set of Ips in the logical system is statically
divided into two groups: system X and system Y.
System Y is any arbitrary subset of lps that are guar-
anteed not to be on a deadlock cycle. For exam-
ple, source and sink Ips, or other Ips that are sim-
ply not on any cycle in the given network topology,
may be placed in system Y. The lps in system Y only
send event messages and the above NULL message
(Z+1,NULL) on any given output line. These Ips
do not take part in termination detection. From the
point of view of performance, the set Y should be
chosen to be as large as possible; though from cor-
rectness point of view this set may be chosen to be
any smaller subset, even the empty set. An Ip in sys-
tem Y terminates itself once it has sent or received a
NULL message on each adjacent line.

The Ips in system X do take part in the termina-
tion detection, in addition to the above (Z+1,NULL)
messages on their output lines.

We say that a line (4,j) is in system X if both Ips
¢ and j are in system X. Otherwise it is said to be in
system Y.

How is termination detected for Ips in system X?
When an Ilp i in system X has no further output tu-
ples to send (event or NULL messages), and has no
input message available for reception, it computes its
conditional-next-time, defined to be the t-value of the
next output message with minimum t-value from this
Ip (event or NULL message), assuming that no fur-
ther inputs are received by the corresponding pp. If
already the NULL messages have been sent on each
output line, then conditional-next-time is (Z+2) indi-
cating that no messages would be sent.

Then the Ip compares its conditional-nezt-time
with the lineclocks of all its input lines which are
in system Y. (The lineclock of a line is the largest
known lower bound on the time stamp of the next
tuple to arrive along the line. Normally it is the
time stamp of the last tuple received on the line,
but sometimes the termination detection and re-
covery algorithm may advance it further, as dis-
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cussed later.) If there is such a line satisfying
lineclock < conditional-nezt-time <Z+1 then the Ip
considers itself to be active and it is assumed that
the deadlock has not occurred yet. Note that if this
boolean condition is true then a future message may
arrive along this particular input line that may cancel
the output message corresponding to the conditional-
nert-time computed above. On the other hand if
there is no line satisfying the above condition, then
the Ip considers itself to be idle. In other words,
a deadlock may have occurred and the Ip needs to
send relevant information to the process CP (central
process) to determine if indeed this is so. To this
end, it sends a message idle(t,A) to the process CP
(central process) where t is the conditional-nezt-time,
and A is an array that tells the number of event plus
NULL messages received or sent on its each adjacent
line in system X. These message counts only include
the messages sent or received after sending the previ-
ous idle message (or after system initialization). As
a simple performance improvement, we require that
this message is sent out only if the parameter t has
changed from the previous such message sent by this
Ip, or the array A contains at least one non-zero ele-
ment (or this message is being sent the first time by
the Ip).

The CP, on receiving an idle(...) message, deter-
mines whether all the computation in system X has
come to a point of termination, i.e., none of these
Ips can send out any (event or NULL) messages and
there are no such messages in transit on the lines in
system X. To detect this, the CP keeps information
as to which are the active Ips in system X. Initially
all Ips in system X are marked active. Also, the CP
maintains an array B that contains a message count
for each line in system X — the message count is the
number of messages sent minus the number of mes-
sages received on the line, as known to the CP.

When an idle(...) message is received, the CP
marks the sender Ip as idle and updates the array B.
At this point if all Ips are marked idle and all entries
of B are zero, then the CP concludes that termina-
tion has occurred. This idea of termination detection
is based on the termination detection algorithm given
in Kumar (1987).

Once the CP has determined the termination of
computation in system X, it computes the minimum
of the last conditional-next-time values received from
each Ip in system X (say T) and sends a fire(T) mes-
sage to all those Ips in system X whose conditional-
nezt-time value equals T. These Ips which are sent
fire(T) messages are now marked active. If T=2+2
then CP terminates.

On receiving a fire(T) message, if T<Z+1 then Ilp
i updates its input lineclocks of lines in system X to
the maximum of T and the current lineclock value of
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the line. This would start phase 2 of the algorithm,
i.e., the Ip will again try to send output messages and
receive input messages. If the value of T received is
Z+2 then line clocks are not updated.

After receiving a fire(Z+2) message, an Ip will con-
tinue to wait and receive messages on its input lines
in system Y; and it will terminate itself once it has
received a NULL message on each of these lines. (It is
guaranteed that under these conditions, indeed it has
sent or received a NULL message on every adjacent
line).

4 OVERALL DESIGN OF OUR EXPERI-
MENTS

In our experiments we have a two level simulation.
A sequential simulator simulates the behavior of the
distributed simulator defined above while the dis-
tributed simulator is simulating the physical system
(i-e., the queuing network being simulated).

4.1 Simulation Parameters

We first list below the various simulation parameters
that were used in our experiments. Any items not
listed here should be assumed to have their obvious
default values (e.g., the time that an Ip takes to re-
ceive an input message should be assumed to be zero).
[1] Time up to which the physical system is to be sim-
ulated (Z), [2] mean and minimum service times at a
delay pp, [3] branching probabilities at a fork pp, [4]
number of initial jobs in the physical system (#17J), [5]
communication delay for event messages, also called
NONNULL messages (NNCOMDEL), [6] communi-
cation delay for NULL messages (NCOMDEL), (7]
communication delays for IDLE and FIRE messages
(OVCOMDEL), [8] time to compute a NONNULL
message by an lp, [9] time to compute a NULL mes-
sage by an Ip (NULLTM), [10] time to compute an
IDLE message by an Ip (IDLETM), and [11] time
taken by the central processor to check if this is a
point of termination (and break it) when it receives
an IDLE message (CPTM).

4.2 Measures of Importance

The most important measure of performance is the
actual speedup obtained by distributed simulation
over sequential simulation, i.e., the ratio ASR =
SST/DST of total elapsed times in the two methods
of simulation:

SST = Sequential simulation time, i.e., the time taken
by a sequential simulator to simulate some physical
systems up to time Z.

DST = Distributed simulation time, i.e., the time
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taken by a logical system to simulate the same phys-
ical system up to time Z.

Next we define some terms to capture various no-

tions of “ideal speedup ratio”. The first ideal speedup
ratio, called ISR, is defined to be simply N where N
is the number of processors in the distributed simu-
lator. This is the usual notion of ideal speedup ratio
commonly used in the literature. Next we define more
refined notions of ideal speedup ratio.
IDST2 (ideal distributed simulation time) = the time
taken by a logical system to simulate the same phys-
ical system up to time Z, assuming that: (1) any Ip
has all input NONNULL messages available whenever
1t needs them in its computations; equivalently, any
Ip has all its input NONNULL messages available to
it when simulation starts, (2) Communication delay
is zero for both overhead and NONNULL messages
(NCOMDEL=OVCOMDEL=NNCOMDEL=0), and
time spent in any activity other than computing
NONNULL message is zero. Then we define the ideal
speedup ratio, ISR2, to be SST/IDST2.

Define a distributed simulation scheme to be a
BASIC-related scheme if it involves simulating each
pp by an Ip. The well-known schemes of Chandy and
Misra (1979, 1981), Jefferson and Sowizral (1982),
Peacock, Wong, and Manning (1979) are BASIC-
related schemes. Note that the ideal speedup ratio
ISR2 indicates how much speedup can be achieved
in simulating a given physical system by any Basic-
related scheme. Also note that in the ideal concur-
rent simulation corresponding to the ISR2, if each
Ip spends the same amount of total time in process-
ing NONNULL messages, then the ISR2 becomes the
same as ISR1. However usually ISR2 is less than
ISR1, making it a more refined “ideal speedup ratio”.

Next we define ISR3 to capture an even more re-
fined notion of “ideal speedup ratio”:

IDST3 (ideal distributed simulation time) = the time
taken by a logical system to simulate the physi-
cal system up to time Z with the assumption that
NCOMDEL=OVCOMDEL=NULLTM=IDLETM

=CPTM=0. In other words, the only time consum-
ing activities in the distributed simulator are compu-
tation and communication of NONNULL messages.
Then we define the ideal speedup ration ISR3 by ISR3
= SST/IDST3. Thus, ISR3 is the same as ASR when
communication delay for all overhead messages is set
to zero, and all overhead computation times are zero.

Note that ISR3 is an upper bound on the speedup
ratio only for the given distributed simulation scheme
under consideration. It may be possible to achieve
higher speedup ratio than ISR3 via some other
scheme. The reason is that a different scheme might
produce input NONNULL messages earlier than the
given scheme under consideration.

Obviously, in different simulation runs to determine
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ASR, ISR3, and ISR2, if we have the same events in
the physical system (e.g., random numbers generated
do not change the events of the physical system), then
we would have ASR < ISR3 < ISR2 < ISR1.

Our simulation program also records total number
of overhead and NONNULL messages. This would
be useful in considering whether it is reasonable in a
particular case to say that “the poor performance is
due 1o large overhead”.

4.3 How To Compute The Performance Mea-
sures

In any experiment, with appropriate values for sim-
ulation parameters, the value of DST is measured
directly by our sequential simulator that simulates
the distributed simulator. In any such experiment we
measure the total number of NONNULL messages
sent on each line in the logical system during the dis-
tributed simulation. Using these values, we directly
compute the sequential simulation time SST. In this
computation we ignore the processing time for event
list manipulations, and simply add the times taken
by Ips to compute each of their output NONNULL
messages. In this way we can compute ASR.

The values of IDST2 are computed by simply mea-
suring, in each of the ASR experiments, the num-
ber of NONNULL messages sent out by each Ip.
From these measurements, IDST2 can be directly
computed. ISR2 can be computed from IDST2 and
SST. Note that as the value of NNCOMDEL is var-
ied, the values of IDST2 and ISR2 remain the same.
Similarly, note that the values of NCOMDEL, OV-
COMDEL, NULLTM, IDLETM and CPTM will not
affect IDST2 or ISR2 since there are no overhead mes-
sages sent out in this case (except for possibly one
NULL message on any line at the end of simulation,
which we ignore in computing IDST?2).

The value of IDST3 and ISR3 can be measured in
the same way as DST and ASR by choosing appro-
priate simulation parameters as input.

4.4 Ordering Of The Experiments

An “experiment” here refers to a single execution
of our simulation program. We ordered our exper-
iments in the following manner. For a given value
of the physical and logical system parameters (ex-
cept for NNCOMDEL), we varied NNCOMDEL from
0 to a reasonably high value. For each such value
of NNCOMDEL we conducted two experiments: (i)
one to determine ASR and ISR2, and (ii) one to
determine ISR3 and ISR2 (i.e., NCOMDEL, OV-
COMDEL, NULLTM, IDLETM and CPTM are set
to zero). Note that the values of ISR2 in these two
experiments would be the same.
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Then we repeated the above experiments for differ-
ent values of physical system parameters.

5 FURTHER DETAILS ON OUR EXPERI-
MENTS

Our sequential simulator simulating the distributed
simulator is implemented on SUN workstations. The
sequential simulator mentioned above is written in
the language MAY Bagrodia (1983). MAY is a sim-
ulation language for simulating distributed systems.
It provides facilities for defining parameterized pro-
cess types, instantiating processes at run time, mes-
sage communications among processes, a global clock
keeping the simulation time, conditional waiting for
events, and process termination.

We simulated the three closed queuing networks
shown in Figures 1, 2 and 3. These Networks are
borrowed from Reed, Malony, and McCredie (1988).

5.1 Physical System Parameters

The service times at every delay pp in these exper-
iments were chosen to be exponentially distributed,
with the mean value equal to 3000.0 (this value is as-
sumed in all our experiments) and minimum service
time equal to 1.

The branching probabilities for the output
branches of fork pps are specified in the later dis-
cussions for the individual networks.

Each physical system was simulated for the physi-
cal system time interval [0, Z] where Z is chosen such
that a sufficiently large number of messages is sent
through each line in the physical system.

5.2 Logical System Parameters

In all experiments, the time to compute one output
NONNULL message for any given class of Ips is: (i)
delay : 300, (ii) fork : 90, (iii) merge : 120 and (iv)
source : 60.

Experiments to Determine ASR and ISR2:
The value of NNCOMDEL is varied from 0 to 6400.
The values of NCOMDEL and OVCOMDEL are
same as NNCOMDEL. The values of NULLTM are:
(i) delay : 150, (ii) fork : 45, (iii) merge : 60 and (iv)
source : 60. The values of IDLETM are: (i) delay:
15, (ii) fork : 15, and (iii) merge : 60. The value of
CPTM is 150.

Experiments to Determine ISR3 and ISR2:
NNCOMDEL here is varied as in case of determin-
ing ASR. By definition, NCOMDEL, OVCOMDEL,
NULLTM, IDLETM and CPTM are zero.

For simplicity no times are associated with other
activities in the logical system. In particular, no time
is associated with receiving a NONNULL message.
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6 SIMULATION RESULTS

Queuing Network 1:

Network 1 is a simple cyclic queuing network (see
Figure 1) which is composed only of delays processes.
Table 1 shows the main experimental results.

Table 1: Simulation Results Of Queuing Network 1
(C=NNCOMDEL)

#1J | C— 0 200 400 800 1600 3200 6400 ISR2

ASR | 1.9956 | 1.1978 | 0.8556 | 0.5444 | 0.3152 [ 0.1711 | 0.0894 [ 3.9948
ISR3 | 1.9991 | 1.1995 | 0.8568 | 0.5452 | 0.3157 | 0.1714 | 0.0895

)

ASR | 3.9768 | 2.3873 | 1.7052 | 1.0850 | 0.6280 | 0.3409 | 0.1781 {| 3.9963
4| ISR3 | 3.9866 | 2.3920 | 1.7085 | 1.0873 | 0.6295 | 0.3417 | 0.1785

ASR | 3.9800 | 3.9664 | 3.3973 | 2.1671 | 1.2557 | 0.6817 | 0.3561 || 3.9877
8 | ISR3 | 3.9877 | 3.9852 | 3.4149 | 2.1761 | 1.2601 | 0.6841 | 0.3574

ASR | 3.9693 | 3.9611 | 3.9543 | 3.9401 | 2.4917 | 1.3549 | 0.7085 || 3.9761
16 | ISR3 | 3.9761 | 3.9739 | 3.9706 [ 3.9619 | 2.5069 | 1.3635 | 0.7131

ASR | 3.9686 | 3.9619 | 3.9552 | 3.9373 [ 3.7052 | 2.0134 | 1.0524 ff 3.9750
24 | ISR3 | 3.9750 | 3.9708 | 3.9667 | 3.9584 | 3.7371 | 2.0315 | 1.0620

ASR | 3.9666 | 3.9586 | 3.9497 | 3.9334 | 3.9018 | 2.6610 | 1.3908 | 3.9728
32 | ISR3 | 3.9728 | 3.9708 | 3.9678 | 3.9598 | 3.9370 | 2.6915 | 1.4070

ASR | 3.9628 | 3.9574 | 3.9496 | 3.9341 | 3.9015 | 3.3061 | 1.7363 [| 3.9673
40 | ISR3 | 3.9673 | 3.9654 | 3.9634 | 3.9585 | 3.9352 | 3.3526 | 1.7614

The following points may be noted regarding this
data.

1. At NNCOMDEL= 0 the value of ASR is close to
the minimum of #IJ and the number of Ips in the
system - which is obviously fairly high usually.

As NNCOMDEL is increased, the value of ASR
goes down - and becomes less than or roughly equal
to 1 for sufficiently large value of NNCOMDEL.

Thus, for any given value of #IJ, there is a range
of NNCOMDEL values between 0 and a small value
(which depends on #1J), such that in this range the
value of ASR is high.

2. As #IJ is increased, the range of values of
NNCOMDEL which gives high ASR values is also
increased.

3. The value of NNCOMDEL has a significant im-
pact on ASR. Therefore a good way to improve per-
formance would be to cut down on NNCOMDEL.

4. Interestingly, for each entry of the Table the dif-
ference between ASR and ISR3 values is negligible.
[This is true irrespective of whether ASR values are
low or high]. This shows that:

4.1. Reducing OVCOMDEL, IDLETM or CPTM
would not have any significant effect on ASR.

4.2. Consider variations of this distributed simu-

lation scheme where one tries to reduce the number
of overhead messages. Such variations are unlikely to
significantly improve the performance.
5. Consider the cases where performance is poor, i.e.,
ASR values are less than or close to 1. (As indicated
above, this happens when NNCOMDEL value is suf-
ficiently high for any given #IJ value). It would be
wrong in these cases to claim that the poor perfor-
mance is “due to a large number of overhead mes-
sages”:

5.1. since in these cases ISR3 is less than or close to
1, this indicates that even if, somehow, one could re-
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duce these overhead messages to zero, the ASR value
is unlikely to be significantly higher than 1.

5.2. Moreover the number of overhead messages
was not large in these cases (as well as other cases in
this table). For experiments reported in this Table,
the number of overhead messages is much less than
the number of NONNULL messages.

6. In many cases ISR3 is significantly less than ISR2
or ISR1. This shows that in studying variations of
this scheme which try to reduce overhead, ISR3 cap-
tures the ideal speedup ratio in a more realistic man-
ner than ISR1 or ISR2.

7. For a large number of cases (with low values of
NNCOMDEL and high values of #1J), the values of
ASR are close to ISR2. Thus, for these cases, the dis-
tributed simulation scheme considered is nearly opti-
mal with respect to all BASIC-related schemes.

8. The values of ASR shown here in Table 1 are
slightly smaller than the corresponding values of ASR
we obtained in an earlier study Harous (1991) of the
same physical system using the distributed simulation
scheme based on NULL messages. However the dif-
ference is negligible. The values of ISR3 are the same
in both studies because in the simulation of this par-
ticular system the overhead messages have no effect
in either scheme — in this scheme deadlock does not
occur and in the scheme of Chandy and Misra (1979)
the NULL messages do not help produce any event
messages.

9. In the two studies of this network with the dif-
ferent simulation schemes, the values of ISR2 are the
same, which immediately follows from the definition
of ISR2.

Queuing Network 2:

This network is shown in Figure 2. As pointed out
in Reed, Malony, and McCredie (1988) this queuing
network is a good test for distributed simulation be-
cause of its topology (presence of a fork and a merge
processes). In all experiments, the initial jobs are
assumed to be at pp 1. Table 2 shows the main ex-
perimental results.

Table 2: Simulation Results Of Queuing Network 2
(With branching probabilities = 0.33, 0.34, 0.33
respectively for pps 3, 4 and 5) (C=NNCOMDEL)

#1J | C— 0 200 400 800 1600 3200 6400 ISR2

ASR | 0.6764 [ 0.3448 | 0.2222 | 0.1298 | 0.0709 | 0.0372 | 0.0180 || 2.3553
2 | ISR3 | 0.9975 | 0.4911 | 0.3225 | 0.1946 | 0.1078 | 0.0570 | 0.0293

ASR | 0.8231 | 0.4276 | 0.2789 | 0.1643 | 0.0902 | 0.0474 | 0.0244 || 2.3557
4 | ISR3 [ 1.1028 [ 0.5545 | 0.3700 | 0.2221 | 0.1234 | 0.0653 | 0.0337

ASR | 1.5268 | 1.0190 | 0.7215 | 0.4433 | 0.2495 | 0.1330 | 0.0687 || 2.3586
8 | ISR3 | 1.8171 | 1.1937 | 0.8451 | 0.5275 | 0.3003 | 0.1611 | 0.0836

ASR | 2.2521 | 2.1017 | 2.0050 | 1.6007 | 0.9740 | 0.5370 | 0.2819 |[ 2.3586
16 | ISR3 | 2.3215 | 2.2423 | 2.1258 | 1.6529 [ 1.0091 | 0.5577 | 0.2930

ASR | 2.3198 | 2.2377 | 2.2333 | 2.2073 | 1.7041 | 0.9606 | 0.5084 [| 2.3586
24 | ISR3 | 2.3558 | 2.3520 | 2.3417 | 2.2832 | 1.7118 | 0.9652 | 0.5110

ASR | 2.3198 | 2.2394 | 2.2390 | 2.2354 | 2.1348 | 1.3270 | 0.7089 |[ 2.3586
32 | ISR3 | 2.3558 | 2.3525 | 2.3492 | 2.3422 | 2.2121 | 1.3362 | 0.7140

ASR | 2.3198 | 2.2394 | 2.2390 | 2.2364 | 2.1983 | 1.6949 | 0.9163 || 2.3586
40 | ISR3 | 2.3558 | 2.3525 | 2.3492 | 2.3427 | 2.3223 | 1.7099 | 0.9247

The following points may be noted regarding this
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data.
1. For any given value of #1J>8, at NNCOMDEL= 0
the value of ASR is high.

As NNCOMDEL is increased, the value of ASR
goes down - and becomes <1 for sufficiently large
value of NNCOMDEL.

Thus, for any given value of #IJ> 8, there is a
range of NNCOMDEL values between 0 and a small
value (which depends on #IJ), such that in this range
the value of ASR is high.

2. As #IJ is increased, the value of ASR increases
or remains the same. Also, the range of values of
NNCOMDEL which gives high ASR values is in-
creased.

3. The value of NNCOMDEL has a significant impact
on ASR (the impact is higher when NNCOMDEL is
large or when #IJ is small). Therefore a good way
to improve performance would be to cut down on
NNCOMDEL.

4. Notice that in a large number of cases the dif-
ference between ASR and ISR3 values is negligible.
[This happens in the cases where we have large val-
ues of #IJ (say #IJ > 16). This shows that in such
cases points 4.1 and 4.2 in the previous discussion of
network 1 remain true.

5. Consider the cases where performance is poor, i.e.,
ASR values are < 1. (As indicated above, this hap-
pens when NNCOMDEL value is sufficiently high or
when #I1J value is small). It would be wrong in these
cases to claim that the poor performance is “due to
a large number of overhead messages”:

Point 5.1 in case of network 1 remains true here.

[It is true that the number of overhead messages
is somewhat large in some of these cases. For exper-
iments reported in this Table, the ratio of number
of overhead messages to NONNULL messages was
about 2.2 for #I1J=2, and reduced to about 0.66 as
#1J was increased to 40.]

6,7. these points are the same as points 6 and 7 in
the case of network 1.

8. The values of ISR2 are significantly less than
ISR1 in these experiments. This clearly shows that in
studying variations of BASIC-related schemes, ISR2
captures the ideal speedup ratio in a more realistic
manner than ISR1.

9. The values of ASR and ISR3 in these experiments
are slightly smaller than the corresponding values of
ASR and ISR3 reported in an earlier simulation of
this system using the distributed simulation scheme
based on NULL messages Harous (1991). This can
be understood in the following way. Suppose some
NONNULL messages are available at the input of a
merge Ip but the lp is waiting for further information
on its other input lines. In such cases it is possible
that NULL messages may arrive on these other in-
put lines even though there is no deadlock. In such
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a case, the merge Ip may be able to send out some
of its input NONNULL messages. In contrast, in the
deadlock detection based schemes, the merge Ip may
have to wait until a deadlock occurs, which may hap-
pen much later.

10. This point is the same as point 9 in the case of
network 1.

In addition to the experiments shown in Table 2,
we also did experimentations with varying branching
probabilities at pp 2. This factor does affect ASR,
ISR3 and ISR2 values, but mildly only. Also, the ob-
servations made above regarding data in Table 2 re-
main true. Tables corresponding to different branch-
ing probabilities are given in Harous (1991).
Queuing Network 3:

This network is shown in Figure 3, and was studied
in Reed, Malony, and McCredie (1988). In all experi-
ments with this network, the initial jobs are assumed
to be at pp 1. We considered a few variations of the
probability assignments at the fork pps in the system.
Below we consider three such probability assignments
in turn.

Probability Assignment 1: Table 3 shows the main
experimental results for the indicated values of the
branching probabilities. The results here are quite
different from what we have seen previously in the
cases of networks 1 and 2. Specifically, the following
points may be noted regarding this data.

Table 3: Simulation Results Of Queuing Network 3
(With branching probabilities: 0.25 for each output
line at pp 1, 0.05 for each input line of pp 10)
(C=NNCOMDEL)

#1J | C— 0 200 400 800 1600 3200 6400 ISR2

ASR | 0.6746 | 0.3608 | 0.2342 | 0.1376 | 0.0753 | 0.0396 | 0.0203 {[ 6.2335
2 | ISR3 | 1.0014 | 0.5007 | 0.3338 | 0.2003 | 0.1113 | 0.0589 | 0.0304

ASR | 0.6777 | 0.3620 | 0.2349 | 0.1380 | 0.0756 | 0.0397 | 0.0204 [f 6.6379
4 [ ISR3 | 1.0028 | 0.5015 | 0.3343 | 0.2006 | 0.1114 | 0.0590 | 0.0304

ASR | 0.6813 [ 0.3633 | 0.2357 | 0.1384 | 0.0758 | 0.0398 | 0.0204 [[ 7.0777
ISR3 | 1.0051 [ 0.5022 | 0.3347 | 0.2008 | 0.1115 | 0.0590 | 0.0304

®

ASR | 0.6848 | 0.3650 | 0.2369 |{ 0.1392 [ 0.0761 | 0.0400 | 0.0205 [ 7.5345
16 | ISR3 | 1.0090 [ 0.5041 | 0.3360 | 0.2016 | 0.1120 | 0.0593 | 0.0305

ASR | 0.6870 [ 0.3661 | 0.2376 | 0.1396 | 0.0765 | 0.0402 | 0.0206 |[ 7.7963
24 | ISR3 [ 1.0109 | 0.5051 | 0.3366 | 0.2019 | 0.1122 | 0.0594 | 0.0306

ASR | 0.6869 | 0.3661 | 0.2376 | 0.1396 | 0.0765 | 0.0402 | 0.0206 | 7.8384
32 | ISR3 | 1.0130 [ 0.5061 | 0.3373 | 0.2023 | 0.1124 | 0.0595 | 0.0307

ASR | 0.6887 | 0.3773 [ 0.2383 | 0.1400 | 0.0767 | 0.0403 { 0.0207 || 7.9385
40 | ISR3 | 1.0172 | 0.5081 | 0.3386 | 0.2031 | 0.1128 [ 0.0597 | 0.0308

ASR | 0.6947 | 0.3713 [ 0.2411 | 0.1417 | 0.0777 | 0.0408 | 0.0209 || 8.0378
64 | ISR3 | 1.0301 | 0.5148 | 0.3431 | 0.2059 | 0.1144 | 0.0605 | 0.0312

1. The value of ASR is very low (< 0.7) in all cases.
As NNCOMDEL is increased, the value of ASR goes
down very quickly.

2. As #1J is increased, the value of ASR remains al-
most the same.

3. Even though NNCOMDEL has a significant im-
pact on ASR, simply trying to reduce NNCOMDEL
1s not going to help much, since ASR is always very
small.
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4. Notice that in a large number of cases there is a
significant difference between ASR and ISR3 values.
(This is quite different from what we have generally
seen in networks 1 and 2). This shows that in such
cases:

4.1. Reducing OVCOMDEL, IDLETM and CPTM
would improve ASR somewhat but this improvement
is insignificant as discussed in point 5 below.

4.2. There is a very small potential for improving

the speedup by devising variations of this distributed
simulation scheme where one tries to reduce the num-
ber of overhead messages since ISR3 is less than or
close to one.
5. Note that in all cases the performance is poor (i.e.,
ASR values are less than or close to 1). It would be
wrong in these cases to claim that the poor perfor-
mance is “due to a large number of overhead mes-
sages”:

Point 5.1 in case of network 1 remains true here.

[Incidentally, it is true that the number of overhead
messages 1s a bit large. For experiments reported in
this Table, the ratio of number of overhead messages
to NONNULL messages was about 3.5 for #I1J=2,
and decreased to about 3.3 as #1J was varied to 64.]
6. In all cases shown in the Table, ISR3 is very small
compare to ISR2 or ISR1. Therefore point 6 regard-
ing Network 1 still holds here.

7. In all the cases shown in the Table, the values of
ASR are significantly less than ISR2. This shows the
possibility that ASR values may be increased signifi-
cantly by considering other BASIC-related schemes.
8. This point is the same as point 8 in the case of
network 2.

9. The values of ASR and ISR3 shown here are much
smaller than the corresponding values of ASR and
ISR3 reported in the earlier study of this system us-
ing the distributed simulation scheme based on NULL
messages Harous (1991). This difference can be ex-
plained in the same way as point 9 in the case of
network 2.

10. This point is the same as point 9 in the case of
network 1.

Probability Assignment 2: This is the case when
the branching probabilities were 0.25 for each output
line at pp 1, and 0.5 for each input line of pp 10.

In this case the values of ASR and ISR3 are slightly
better, and a few cases where the ASR values are
slightly higher than 1. But in general the results in
this case are also poor. The nature of our conclu-
sions in this case is similar to our previous conclu-
sions regarding Table 3, with the exception that #IJ
has some affect on both ASR and ISR3. A detailed
discussion is skipped here. The results are given in
Harous (1991).

Probability Assignment 3: In this case we chose the
probabilities to be 0.45, 0.45, 0.05, and 0.05 for the
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output lines of pp 1 going to pps 2, 6, 11, and 15
respectively. Also, the probabilities are 0.5 for each
input line of pp 10.

The results in this case are similar in nature to
those in Table 3. Therefore we skip further details
here. These results are given in Harous (1991).

7 DISCUSSION

In this paper, we have presented a framework to
address three important issues (discussed below)
in studying performance of distributed simulation
schemes. (Here we are considering only BASIC-
related schemes, i.e., there is a one to one correspon-
dence between the pps and the Ips simulating them.)
1. How to study the relationship between overhead
and performance in a controlled manner. This is a
difficult problem if one tries to see the relationship
between the number of overhead messages and the
performance. In our approach, one would vary the
time parameters related to computation and commu-
nication of overhead messages (e.g., IDLETM, CPTM
and OVCOMDEL). This approach leads to some in-
teresting results:

(a) Typically, researchers have either implemented
a logical system on an actual hardware or have simu-
lated the logical system with a fixed set of values for
computation and communication times of overhead
messages. If performance is poor (along with an ob-
servation that the number of overhead messages is
large) then some researchers have suggested that (A)
performance is poor due to large number of overhead
messages. Such a claim (i.e., in cases where perfor-
mance of distributed simulation is poor, it is due to a
large amount of overhead) is also generally believed
by other researchers. Our approach, and the experi-
mental results reported here, shed some new light on
these claims.

The claim A would normally be taken to mean that
(1) the number of overhead messages is large, (ii) if
somehow one could reduce the amount of overhead
(without getting into deadlocks in the simulator),
then the performance would be good (i.e., speedups
fairly above 1), and (iii) perhaps, if overhead is high
then speedup would always be bad. Note that there
is no clear way to reduce the number of overhead mes-
sages significantly in a controlled manner and study
the effect on speedup, and thereby validate the above
statement (A). But our results show that indeed the
statement (A) is not true in many cases. We have
pointed this out in our remarks on Tables 1, 2, and 3
(observations 5 in section 6).

(b) Also, by varying computation and communica-
tion times of overhead messages, our approach indi-
cates how effective it would be to try to reduce over-
head messages. In our experiments we did not specifi-
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cally vary these parameters much; by considering the
cases where OVCOMDEL=IDLETM=CPTM=0 we
were able to arrive at some useful conclusions, as dis-
cussed in more detail in 2(a) below.

2. What kind of ideal speedup one could expect
via algorithmic variations for the simulation scheme.
Here we are given a physical system and character-
istics of the hardware on which simulations are exe-
cuted in terms of processing times of the event mes-
sages and their communication delays. More specifi-
cally:

(a) if one varies details of a given distributed sim-
ulation scheme so as to try to reduce the number
of overhead messages, how much speedup can be ex-
pected from most ideal such variation? We defined
ISR3 to capture this. Our experimental results indi-
cate that ISR3 is a useful measure of ideal speedup.

(i) In several cases (e.g., points 4 for networks
1 and 2 in section 6) we noticed that the difference
between ASR and ISR3 is small — and hence this tells
us that trying to reduce the amount of overhead itself
is not going to substantially increase the speedup. In
some cases the value of ISR3 is less than or close to
1 which shows that overhead related variations of the
particular scheme studied here is unlikely to produce
significant speedup.

(ii) In the case of network 3 we observed that
there is no hope for the scheme studied here since in
all cases both ASR and ISR3 are less than or close to
1.

(b) If one considers other BASIC-related schemes,
how much speedup can be expected from the best
such simulation? We defined ISR2 to capture this.

Typically, researchers have used N, the number of
Ips in the system, as the ideal speedup. The values
of ISR2 and ISR3 are usually much less than N (as
shown by our experiments); which shows that our
definition of ideal speedups provides a much tighter
bound on what kind of ideal speedup can be expected.

Note that in order to evaluate ISR3, one needs

to simulate the logical system, as opposed to di-
rectly implementing it on an actual hardware. Using
the approach of simulating the distributed simulator
first and measuring the ASR, ISR3, and ISR2 values
one could make some determination of whether it is
worthwhile to directly implement it on a parallel or
distributed architecture.
3. How does performance of distributed simulation
depend on hardware characteristics of the implemen-
tation. Again, our approach of simulating the logi-
cal system is very helpful in this regard. In partic-
ular, we illustrated how to see the effect of varying
NNCOMDEL. Obviously using our approach of sim-
ulating the logical system, one can vary other param-
eters of logical system as well in a straightforward
manner.
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