Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

FAULT-TOLERANT DISTRIBUTED SIMULATION

Bojan Groselj

Department of Computer Science
University of Maryland
College Park, Maryland 20742

ABSTRACT

We consider two kinds of problems that may appear
in a distributed discrete-event simulation: (1) the ap-
pearance of deadlocks due to unknown lookaheads
and (2) processor crashes. Both of the problems are
solved by taking global snapshots of the distributed
simulation efficiently. We prove that the recorded
global states of the distributed simulation are consis-
tent and can thus be used by the deadlock breaking
algorithm and for checkpointing.

1 INTRODUCTION

The model of the distributed simulation is Cocktail
Party Simulation (COPS), where each processor ac-
commodates a cluster of logical processes or sim-
ulated objects (Groselj 1990, Groselj and Tropper
1990). COPS is a conservative distributed simula-
tion. We assume that the logical processes commu-
nicate with each other utilizing the edges of a known
process graph. Therefore, if logical processes p; and
p; are mapped to two different processors, II; and
IT;, then the two processors exchange event (i.e. sim-
ulation) messages with one another on behalf of pro-
cesses p; and p;. There may or may not be a physical
connection between the two processors. However, we
assume that there is a communication channel be-
tween II; and II; and a communication channel be-
tween II; and II;. If the communication is only from
pi to p;, then there exists only channel (II;, II;). We
will use the notion of processor graph G(V, E), where
V is the set of processors and E is the set of directed
communication channels among the processors.

Let there be N processors, numbered with distinct
integers from 1 to N. Channels are assumed to be
FIFO queues that can hold up to N messages. The
messages are delivered in the order they were sent.
Channels are assumed to be error-free. A message
takes finite time to get to the head of the channel.

637

It will be assumed that the processor graph is
strongly connected, i.e., there is a directed path from
every processor to every other processor in G. If the
original processor graph is not strongly connected, it
is easy to make it strongly connected. For example,
a ring of N dummy logical processes (dy,ds,...,dN)
can be added to the system, such that logical process
d; is mapped to processor II;, for 1 < ¢ < N. The im-
portance of the last assumption will be demonstrated
later in this work.

Several authors have considered the problem of
deadlocks in distributed simulation (Chandy and
Misra 1981, Groselj and Tropper 1990). Deadlocks
appear because of the cycles of logical processes for
which the lookahead is unknown and has to be con-
sidered zero. By lookahead we mean the sum of
the smallest service time and propagation delay as-
sociated with an event and a pair of logical pro-
cesses. Most of the conservative algorithms for dis-
tributed simulation work only with a positive looka-
head (Chandy and Misra 1979, Lubachevsky 1988).
It has been demonstrated that the more accurate
the lookahead, the faster the distributed simulation
(Groselj 1990). Especially good results can be ob-
tained if service times and propagation delays are
known beforehand (Nicol 1988). Unfortunately, in
many simulations this is not the case. In this work
we are concerned with a simulation that might have
isolated cycles of logical processes with small, possi-
bly zero lookahead. Therefore, the simulation might
deadlock.

It has been shown (Groselj and Tropper 1990), that
there exists an efficient algorithm, the Time-of-Next-
Event (TNE) algorithm, for breaking deadlocks that
are associated with logical processes mapped onto
the same processor. In the same work, an algorithm
that breaks global deadlocks was presented as well.
Both algorithms were implemented in COPS. The ex-
periments show that the performance of the global
deadlock-breaking algorithm deteriorates if there are

638

many logical processes for which the lookahead is un-
known.

We will show that it is possible to take global snap-
shots efficiently and run the TNE algorithm using
the global state of the simulation as the input. The
method also enables each processor to store local
snapshots in stable storage (e.g., disk). Since a lo-
cal snapshot is a part of a consistent global state, all
processors can restart the computation after a crash
from the global state using the stored local state. By
performing the simulation in phases, it is possible to
find the last consistent global state. We show that
each processor has to maintain not more than N + 1
local snapshots if the processor graph is strongly con-
nected.

In Section 2 we present the global state recording
algorithm. Section 3 deals with its correctness proof.
The use of the global state for deadlock breaking and
checkpointing is presented in Section 4. Discussion
follows in Section 5.

2 GLOBAL STATE RECORDING IN COPS

The main problem in recording a global state of a
distributed system is efficiency. Additional messages
(i.e., markers) are normally used (Chandy and Lam-
port 1985). A termination algorithm is also needed
in order to detect the end of the recording. By exe-
cuting COPS in phases we can eliminate most of the
overhead needed for global state recording.

The problem is reduced to defining the computa-
tion phases in an efficient manner. In other words, the
message passing for synchronization of phases should
be minimized. Fortunately, in COPS, the phases are
defined naturally. During each phase, each proces-
sor is required to send precisely one message on every
output channel. A processor starts a new phase af-
ter receiving messages on all of its input channels.
The message is defined as one or several event or null
messages lumped together.

The simulation program for each processor II; is as
follows:

ph .= —1;
while (not_finished) do
if (ph > 0)
accept all in-msgs for phase ph;
record local state (s;, ph);
ph := ph+ 1 mod M;
simulate for period P saving out-msgs in mboxes;
for every output channel do
deliver mbox m; to processor II; as (m;, ph);
endwhile;

/* initial phase number */

Groselj

The line “simulate for period P...” includes
scheduling all of the logical processes for simulation,
running the local TNE algorithm and processing the
incoming messages. Outgoing messages are concate-
nated in mailboxes corresponding to different proces-
sors. If there is no outgoing simulation message, a
null message, containing the value computed by the
local TNE algorithm, is inserted.

Note that a processor might receive input messages
labeled with a higher phase number than the local
variable ph. These input messages are stored in the
input buffer and are not a part of the current local
state.

3 CORRECTNESS PROOF

We prove that the global state recorded by the de-
scribed procedure is consistent and that the simula-
tion makes progress.

Let (S,k) represent the global state recorded in
phase k and let (s;, k) represent the local state of
processor II; recorded in phase k.

First, let us define a consistent global state. During
the computation, that starts in the initial state, each
process finds itself in a different state. The transi-
tion from one state to another is caused by an atomic
action, event e. The state of the channel is repre-
sented by the corresponding message queue. This
state changes as a new message is appended to the
channel (i.e., sent) or if the message at the head of
the channel is deleted (i.e., received). A recorded
global state (S, k) represents a history of events up
to phase k. It divides all of the events in the entire
computation in two sets, PAST, and FUTURE;.

Following Chandy and Lamport (1985), and
Bracha and Toueg (1987), we define partial relation
BEFORE on events: e; BEFORE e;j if
(1) both e; and e; occurred at the same processor,
and e; occurred before e;, or
(2) ei is the sending of a message and e; is the receipt
of this message.

Definition 1. A global state (S, k) is consistent
iff (Vei,e; : (e; € PASTy) A (¢; € FUTURE;) =
e; BEFORE ;).

For simplicity first assume M = oco.

Lemma 1. Let ¢; be the sending of a message and
ej be the receipt of the same message. Then, (3k :
k> —1:((S,k) BEFORE e; BEFORE (S,k + 1)) A
((S,k) BEFORE e; BEFORE (S,k + 1))).

Proof. Each message is labeled at the sending
processor with the number of the next snapshot.
The message is recorded at the receiver in the lo-

Fault-Tolerant Distributed Simulation

cal snapshot that has the same number as the mes-
sage label. Hence if message label is (k + 1),
then ((S,k) BEFORE e; BEFORE (S,k + 1)) A
((S,k) BEFORE e; BEFORE (S,k + 1)) holds. O

Lemma 2. (Vk:k > —1: U?;l(s;,k) =(S,k)is a
consistent global state).

Proof. We use induction. For k = —1, (S, —1) is the
initial state and is by definition consistent. Let (S, k)
be consistent. We have to prove, that (S,k + 1) is
consistent as well. Since the time and phase numbers
on the same processor are monotonically increasing,
the BEFORE relation is maintained. We have to con-
sider only those events that represent message send-
ing and receiving. Let e; represent message sending
and let e; represent receiving of the same message.
From the consistency of (S,k), and Lemma 1, there
exist only the following two cases:

(a) (e,; € PAST};) A (ej € PAST}C)
(b) (e; € FUTURER) A (¢; € FUTUREy)

Snapshot (S, k + 1) preserves the consistency in case
(a). Case (b) may or may not be maintained. It
remains to analyze the situation in which case (b)
is not maintained. The following three cases do not
maintain (b):

(bl) (e,- € PASTk+1) A (e]- € PASTk+1)

(b2) (6,‘ € PASTk+1) A (ej € FUTUREk+1)

(b3) (ej € PASTir4+1) A (ei € FUTURE:4.)

From Lemma 1, only case (bl) is possible, thus pre-
serving the consistency of the global snapshot. O

From the two lemmas it follows that in the recorded
global state (S, k) all of the messages are recorded in
the local state of the receiver. The input channels are
recorded as empty.

Next, we prove that at any moment, the maximum
lag between two phase numbers is bounded. Let ph;
and ph; be the current phase numbers at processor
II; and II;, respectively. Then,

Lemma 3. (Vi,j:1<1i,j < N = |phj — phi|l < N)
is an invariant.

Proof. Initially, the invariant holds since all phase
numbers are —1. Consider two processors II; and II;
connected by channel (II;,II;). Let ph; = k. Then,
the largest label of a message sent from II; to II; is
k. This message can cause II; to increment ph; to at
most k+1. The invariant follows by induction and the
fact that the processor graph is strongly connected.
(m]

Next we bound the phase numbers.

Lemma 4. M > 2N — 2.

639

Proof. Let the highest newly generated phase num-
ber be phy, and the current lowest phase number in
the system be ph;. M has to be large enough such
that ph; BEFORE ph,, for all current i’s except for
i = h. Let us first consider the case equivalent to the
unbounded phase numbers, namely ph, — phi > 0.
By Lemma 3, phy, — ph; < N and BEFORE relation
can be easily established. If phy, — ph; < 0, then a
wrap-around of phase numbers must have occurred.
Assume that there exists the following rule:

phi — ph; > N = ph; BEFORE ph;
By this rule,
phi — phy > N = ph; BEFORE phy
and
(Yphi : phy < phi < M :: ph; BEFORE phy)

From Lemma 3, there are at most N different phase
numbers at a time. The smallest M that can accom-
modate all of the different phase numbers plus the
gap between phy and ph;is 2N — 2. O

In order to use common arithmetic operations and
relation “<” on phase numbers, we adopt the fol-
lowing rule: if ph; — ph; > N then change ph; into
M + 1+ ph;.

Let last; be the phase number of the last snapshot
at II;. Then,

Lemma 5. (Vi,j:1<4,j <N : |last;—last;| < N)
is an invariant.

Proof. It follows from Lemma 3 and the invariant
(last; = ph;) V (last; = ph; — 1). O

Next, we define the last consistent global state

(S,last).
Definition 2. (S,last) = (Uf\;l s;,min;(last;))

The last consistent global state is important for
checkpointing. It is the state at which a computation
has to be restarted after a processor crash. The com-
putation at the processor with the largest last; has
to be restarted from the snapshot numbered with the
smallest last; in the system. It follows, from Lemma
5, that each processor has to store at least N+1 latest
local snapshots.

Next, we prove that the simulation program makes
progress.

Lemma 6. (Vi:1<i< N
(phi = k) — (phi = k+1 mod M)V -not_finished,).
The meaning of the lemma is that for every processor

the phase number is incremented in finite time or the
program terminates.

640

Proof. We assume that each line of the program is
executed in finite time. The line “simulate for period
P..” guarantees that every output channel receives
a message since null-messages are generated for every
output channel. Therefore, it remains to prove that if
phi = k, II; eventually receives messages labeled with
ph = k + 1 on all input channels. Initially, ph = —1
and is incremented to ph = 0 at every processor. All
processors send output messages labeled with ph = 0.
Hence all processors can accept these messages and

can increment ph to 1. Lemma 6 follows by induction.
a

4 DEADLOCK BREAKING AND CHECK-
POINTING

This section describes the implementation of the
deadlock breaking algorithm and the mechanism for
crash recovery.

4.1 Deadlock Breaking

As already mentioned, there exists an algorithm
(TNE) that breaks all simulation deadlocks if the
global state of the system is known (Groselj and Trop-
per 1990).

After recording the local state, each processor can
send it to the host processor. The global TNE algo-
rithm is executed at the host after it receives all of
the local snapshots numbered with the same phase
number. After the computation, the host sends to all
processors the estimates on future event times for the
incoming communication channels. These values are
then used by the local TNE algorithm. Note that the
global snapshot need not be taken during each phase.
It can be taken every kth phase instead.

4.2 Crash Recovery

The last consistent state is found by following Lemma
2 and Definition 2. Crash recovery is initiated by the
processor that crashed and recovered. It initiates the
computation to find the last local snapshot with the
smallest phase number. The computation consists of
a broadcast by the recovered processor and collection
of all last;’s, followed by the broadcast of the small-
est last;. The computation can also be implemented
as a two phase diffusing computation (Dijkstra and
Scholten 1980). In the first phase, the smallest last;
is found, and in the second phase it is propagated to
every processor.

After knowing the smallest last;, each processor
can restart the simulation from the recorded local
state, numbered with the smallest last;. The compu-
tation resumes after the line “record local state...”.

Groselj

5 DISCUSSION

We have shown that the global state of the distributed
simulation can be recorded efficiently. This enables
efficient deadlock breaking and crash recovery.

We assumed that the processor graph is strongly
connected. This is not a necessary condition for
global state recording. It limits the number of saved
states. It also limits the number of messages in the
system and thus serves as a flow control mechanism.

Consider the following example. The processor
graph in Figure 1 is not strongly connected. Since
II; does not get any input messages, it is not synchro-
nized with II; and II3. Therefore, it can increment
phy on its own, and flood II; and II3 with messages.
This phenomenon is enhanced if II; and II3 are slowed
down because of a deadlock.

Figure 1: II; Is Not Synchronized With II; And II3

The deadlock breaking algorithm, using global
snapshots, has been implemented in COPS. The per-
formance tests on a 32-node Intel iPSC/2 hypercube
show that the overhead is relatively small. In other
words, in a distributed simulation with a good looka-
head the safe simulation was never more than 10%
slower than the unsafe simulation. The safe simu-
lation was also tested on a worst-case example — a
simulation of a hypercube with zero lookahead. The
simulation did not deadlock in spite of zero lookahead
and many cycles in the communication graph.

We were fortunate enough to implement the first
version of COPS on a network of SUN workstations
using the Cosmic Environment (Seitz and Su 1988).
Since the system would not run without a flow con-
trol, we were forced to invent one of our own. That
is how the idea of fault-tolerant COPS was formed.

ACKNOWLEDGMENTS

I am thankful to David Nicol and to Intel Corporation
for allowing me to use their machines. The support

Fault-Tolerant Distributed Simulation

from the National Science Foundation (Grant CCR-
8909098) is greatly acknowledged.

REFERENCES

Bracha, G. and S. Toueg. 1987. Distributed deadlock
detection. Distributed Computing 2: 127-138.

Chandy, K.M. and L. Lamport. 1985. Distributed
snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems
3: 63-75.

Chandy, K.M. and J. Misra. 1979. Distributed sim-
ulation: A case study in design and verification of
distributed programs. IEEE Transactions on Soft-
ware Engineering 5: 440-452.

Chandy, K.M. and J. Misra. 1981. Asynchronous
distributed simulation via a sequence of parallel
computations. Communications of the ACM 24:
198-206.

Dijkstra, E.W. and C.S. Scholten. 1980. Termination
detection for diffusing computations. Information
Processing Letters 11: 1-11.

Groselj B. 1990. Cocktail Party Simulation and its
performance on a network of workstations. In Pro-
ceedings of the 1990 SCS Western Multiconference,
ed. D. Nicol, 70-73. SCS Simulation Series 22, San
Diego, California.

Groselj, B. and C. Tropper. 1990. The distributed
simulation of clustered processes. Distributed Com-
puting 4: 111-121.

Lubachevsky, B. 1988. Bounded lag distributed dis-
crete event simulation. In Proceedings of the 1988
Distributed Simulation Conference, eds. B. Unger
and D. Jefferson, 183-191. SCS Simulation Series
19, San Diego, California.

Nicol, D.M. 1988. Parallel discrete-event simulation
of FCFS stochastic queuing networks. In Proceed-
ings of the ACM SIGPLAN Symposium on Paral-
lel Programming, Environments, Applications, and
Languages 23, 9, 124-137. Yale University, New
Haven, Connecticut.

Seitz, C.L., J. Seizovic, and W.K. Su. 1988. The C
programmer’s abbreviated guide to multicomputer
programming. Technical Report CS-TR-88-1, Cal-
tech, Pasadena, California.

AUTHOR BIOGRAPHY

BOJAN GROSELIJ is a Visiting Assistant Profes-
sor in the Department of Computer Science at the
University of Maryland, College Park. His research
interests are distributed computing, algorithms, and
program proving. He is Guest Editor for the Interna-
tional Journal of Computer Simulation.

641

