Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

OPTIMIZATION TEST PROBLEMS WITH UNIFORMLY
DISTRIBUTED COEFFICIENTS

Charles H. Reilly

Department of Industrial and Systems Engineering
The Ohio State University
1971 Neil Avenue
Columbus, Ohio 43210-1271

ABSTRACT

When an empirical evaluation of a solution method
for an optimization problem is conducted, a standard
approach is to generate test problems in which all of
the coefficients are assumed to be independently and
uniformly distributed. However, the performance of
algorithms and heuristics can degrade as the corre-
lation among the coefficients in integer programming
test problems is strengthened. We show how to char-
acterize the joint distribution of two discrete uniform
random variables with any feasible correlation and
any feasible value for the smallest joint probability
when the number of possible values of one random
variable is a multiple of the number of possible val-
ues of the other. We use this characterization in
an experiment with randomly-generated 0-1 knapsack
problems, and we summarize the results of the exper-
iment.

1 INTRODUCTION

Empirical evaluations of solution methods for op-
timization problems are commonly conducted. In
many cases, test problems are randomly gener-
ated under the assumption that the coefficients in
the problems are independently and uniformly dis-
tributed. This approach to evaluating a solution pro-
cedure is inadequate for at least two reasons. First,
the coefficients in actual instances of optimization
problems may not be probabilistically independent.
For example, consider a product-mix problem. We
would expect the selling prices of products that re-
quire more resources for production to be greater
than the selling prices of products requiring fewer
resources. Second, there is usually no basis for the
assumption that the coefficients in optimization prob-
lems are uniformly distributed.

Both of these concerns can be addressed if different
approaches to generating test problems are taken. For
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example, randomly-generated test problems could in-
clude problems in which correlation among the co-
efficients is controlled and varied, at least when an
argument for dependence among the coefficients can
be made. Also, problems whose coefficients are drawn
from a variety of different distributions, including the
uniform distribution, could be included when there is
uncertainty about the distributions of parameters in
real instances of the problem of interest. In this pa-
per, we deal only with the first concern and the first
remedy.

Moore (1989) studies the effect of correlation be-
tween the objective function and constraint coeffi-
cients in 0-1 knapsack problems. She finds that the
number of iterations required to achieve optimality
with implicit enumeration increases exponentially as
the expected correlation between the two sets of coef-
ficients increases. Martello and Toth (1979) find that
implicit enumeration performs better than dynamic
programming on 0-1 knapsack problems with weakly
correlated coefficients, but dynamic programming
performs better when the coefficients are strongly cor-
related. Balas and Zemel (1980) present an algorithm
for 0-1 knapsack problems in which enumerative steps
play a small role. They experiment with the same
types of problems that Martello and Toth (1979) use
and find that the performance of their method is bet-
ter on problems with perfectly correlated coefficients
than on problems with uncorrelated or weakly corre-
lated coefficients.

Moore (1990) investigates the effects of corre-
lation between objective function coefficients and
constraint-matrix column sums, distribution of the
column sums, and constraint-matrix density on the
performance of implicit enumeration and two heuris-
tics for the weighted set covering problem. In this
study, she finds that high, positive (expected) correla-
tion between the two sets of problem parameters leads
to poorer solution procedure performance. Also, solu-
tion procedure performance on sparse problems with
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column sums that are uniformly distributed is slightly
worse than on problems whose column sums are bi-
nomially distributed.

Balas and Martin (1980) generate capital budget-
ing (multidimensional knapsack) problems in which
each decision variable’s constraint coefficients are re-
lated to its objective function coefficient. They find
that these problems are more difficult than problems
with independent coefficients.

Peterson (1990) shows how the probability mass
function (pmf) for a discrete multivariate random
variable with the maximum value for the smallest
joint probability and a specified feasible correlation
can be found by solving a linear program. In the bi-
variate case, this linear program is a bottleneck trans-
portation problem with a side constraint (BTPSC).
He presents a solution procedure for BTPSC that is

based on (at most) four applications of the North-

west Corner Rule (NWCR) and sensitivity analysis,
and he constructs a parametric curve that shows the
maximum value of the smallest joint probability as
a function of the expectation of the product of the
random variables or, equivalently, as a function of
their correlation. Peterson also presents special-case
results for bivariate random variables with symmetric
marginals and uniform marginals.

Whitt (1976) characterizes bivariate distributions
with extreme correlation. He also suggests a proce-
dure for constructing distributions with extreme cor-
relation based on a rearrangement theorem. A similar
notion is used by Evans (1984) to show that NWCR
finds the optimal solution to the factored transporta-
tion problem. Peterson (1990) bases his solution pro-
cedure for BTPSC on the theorem by Evans.

There are many articles dealing with characteriza-
tions of discrete bivariate random variables. Exam-
ples include Kemp and Papageorgiou (1982), Kocher-
lakota (1989), Marshall and Olkin (1985), and Na-
garaja (1983). Some of these papers deal with char-
acterizations that preserve properties, e.g., memory-
lessness in the case of the bivariate geometric distri-
bution, of the associated univariate marginal distri-
butions.

Moore, Peterson, and Reilly (1990) summarize the
work of Moore (1989, 1990) and Peterson (1990).

In this paper, we study the pmfs for random vari-
ables (Y1,Y,2) where the marginal distributions are
uniform and the number of possible values of one
random variable is a multiple of the number of pos-
sible values of the other. We present closed-form ex-
pressions for the pmfs that maximize and minimize
E(Y1Y>) for a specified smallest joint probability and
a procedure for finding other pmfs with the same
smallest joint probability and a specified value for
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E(Y1Y2). Given specified values for the smallest joint
probability and E(Y;Y>), we show that, when Y7 and
Y2 both have at least three possible values, a pmf
with at most four values can be found by mixing the
extreme-correlation pmfs and the pmf for Y7 and Y,
independent. Finally, we summarize an experiment
on 0-1 knapsack problems with independent coeffi-
cients and with correlated coefficients generated using
our pmf characterization.

2 ASSUMPTIONS

To characterize pmfs of a bivariate random vari-
able (Y7, Y2) with uniform marginal distributions, we
make the following assumptions:

1. Y7 is distributed over the support I = {j; +
1,7142, ..., ji+n1 }, where j; is integer, according
to pmf

1
ny’

for y, € Iy;
film) =

0, otherwise.

2. Y is distributed over the support In = {js +
1,42+2, ..., jo+n2}, where j» is integer, according
to pmf

ay for yz € In;
fa(y2) =

0, otherwise.

3. ny|ng; that is, m = ny/n, is integer.

These assumptions are typical of those made when
an experiment to evaluate a solution procedure for an
optimization problem is designed. The first (second)
assumption implies that Y; (Y2) is a discrete uniform
random variable; that is, Y; ~ U[ji + 1,5 + ni], i =
1,2. The third assumption allows us to find closed-
form solutions for the transportation problems that
Peterson (1990) recommends solving to find pmfs for
(Y1,Y2) with a specified value for the smallest joint
probability and maximum and minimum correlation.

We note that

B(Y) =i+ 20, i=12;
and
n? -1
Var(Y;) = 7 i=1,2.

The support of (Y1,Y2)is I = 1) x I5.
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3 ALL POSSIBLE JOINT PMFs

Let 6 be the smallest joint probability for any
(y1,y2) € I. The largest possible value for 6 is
6* = 1/n1n,. In other words, the smallest joint prob-
ability over (y1,y2) € I is maximized when Y; and Y2
are independent. We denote the pmf of (Y1,Y3) as
9*(y1,y2) when Y; and Y> are independent.

Peterson (1990) showed that the parametric curve
that plots the largest possible value for 6 against
E(Y1Y,) or the correlation, p, is an isosceles triangle
symmetric about

K* = E(Y1)E(Y2)

or p=0.
Let

1 3 n+1
)+12( D) )

The largest possible value for E(Y;Y?) is

.. . [ na+
A‘—‘.71.72+.71( 22

Kmaz = max{E(Y1Y2|6 =0)}
"ll; 1[4n2 —m+3]+A,

and the smallest possible value for E(Y1Y?) is

Kmin = min{E(Y;Y2|0 = 0)}
1
nll_; [2n, + m+ 3]+ A.

It follows that the maximum and minimum feasible
correlations for (Y;,Y3) are

pose = =) [y ]

and

Pmin = —Pmaz,

respectively.

Suppose, for example, j; = 0, ny = 2, j, = 0, and
ny = 4. Then E(Y;) = 1.5, E(Y2) = 2.5, Var(Y;) =
0.25, Var(Ys) = 1.25, 6* = 0.125, K* = 3.75, A =
0, Kmaz = 4.25, Kpmin = 3.25, pmaz = 0.894, and
Pmin = —0.894.

The parametric curve suggested by Peterson (1990)
is competely defined by the points (Kpmin,0),
(K*,6*), and (Kmaz,0). A typical parametric curve
is shown in Figure 1.

Let K be the desired value of E(Y;Y2). The para-
metric curve can be expressed as follows:

K.-Kmtn

K-Kpin g*  if Kpnin < K < K*;
6 =
K—Kmaz 9*

KKmazg*, if K* < K < Koz
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0*

Kmin K* Kma:r:
E(Y1Y,)

Figure 1: Typical Parametric Curve

It follows that
K*(6) = max{E(Y1Y:|0)}
= Kmas + (K"~ Kmax)%
and
K~(0) = min{E(Y1Y2]9)}
= Kpin + (K" - Km,-,,);?

Let ¥} = w — ji; that is, ¥} € {1,2,..,n}. A
common way to characterize the pmf for (Y7, Y?) with
correlation pp > 0 is to “mix” the pmfs g*(y1, y2) and
yrnaz(yl ) y?) as follows:

(l_p"" >g~<yl,y2>+( po >gm,,z<y1,yz), 1)

mazxr mar

where

=, ifm(y) — 1) < yp < myl;
gmaz(ylyy'l) =

0, otherwise;

is the pmf with Y; and Y, maximally correlated. In
this case, 8 = (1 — po/pmaz)0*. A similar mixture of
9" (y1,92) and gmin(y1,92),

(1 - ppo ) *(y1,92) + (ppo )gmin(yhy?)v (2

min min

where

L, ifm(ny - y) <) <

- 1):
Imin(Y1,¥2) = m(n =41 +1);

0, otherwise;
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is the minimum-correlation pmf for (¥1,Y2), can be
used if po < 0. The points on the parametric curve
correspond to unique pmfs that are mixtures of the
form (1) or (2). Hence, there is no need to solve
BTPSC to find the pmf of (Y1,Y2) with the largest
possible value for § and a specified correlation. The
points on or above the horizontal axis and below the
parametric curve correspond to classes of other pos-
sible pmfs for (Y1,Y,). We may view the parametric
curve as defining the envelope of all possible joint dis-
tributions of (Y1, Y2).

4 EXTREME-CORRELATION PMFs

Suppose 6 = 6y. The joint distribution for (Y1,Y>)
with the maximum or minimum possible value for
E(Y1Y2]00) can be found by solving a transportation
problem with NWCR (Peterson, 1990). When Y; and
Y, are uniform, a closed-form expression for the pmf
with max{E(Ylelﬂo)} is

g% (y1,y2160) =
nlz—(nl—l)ﬂo, if m(y; — 1) < vy, < myy;

fo, if 1<y <m(y; —1)
or my; < yp < ng;

0, otherwise.

A similar closed-form expression for the pmf with
min{E(YlY2|00)} is:

9™ (y1,¥2/60) =
(& - (n—1)8o, if m(ny—91) <4} <
m(n1 - 1/1 + 1)7
o, if 1 <y < m(ny —y}) or

m(nl—y’1+1)<y’2§n2;

0, otherwise.
Note that

0
_2) 9 (ylayZ) +

(
(1 )gma,@l,yz) (3)
(
(

Il

9% (y1, y2160)

and

9
—E)y (v1,92) +

9™ (1, ¥2160)

»

- ) gmin(y,32). (4)
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Y,
Jat+1l j24+2 ja4+3 jo+4
i+l 3=60| 3060 bo bo 3
Y
J1+2 bo bo 1—060| 360 :
1 1 1 1
3 3 3 Y
Figure 2: Joint pmf for max{E(Y;Y2|6)}
Y,
J2+1 j2+2 jo+3 j2+4
n+1 bo bo 300 | 5—060 |3
Y,
42| 3-60|5-06o 6o o 3
1 1 1 1
1 3 Y 2

Figure 3: Joint pmf for min{E(Y1Y2|60)}

Mixtures of the form (3) [(4)] are actually mixtures
of the form (1) [(2)], where 00/0* = 1 — po/pmac
(1 = po/pmin]-

Suppose n; = 2 and ny = 4. The pmf for Y; and
Y, that maximizes E(Y;Y2]6o) is shown in Figure 2.
See Figure 3 for the pmf that minimizes E(Y;Y>|6o).
Note the staircase structure in both figures.

5 NONEXTREME-CORRELATION PMFs

Consider the pmf g% (y1,y2/00). Other pmfs,
9(y1,¥2|60), with different values for E(Y1Y2) can be
found by redistributing probability from (y1,y2) €
I with g*t(y1,v2100) > 60 to (y1,¥2) € I with

97 (y1,¥2/00) = 6o. For example, up to n— — n16
could be redistributed from (Y1,Y2) = (j1 + 1,52+ 1)
to (j1 + n1,Jj2 + 1) and from (j; + ny, j2 + n2) to
(71 + 1, j2 + n2) without affecting the smallest joint
probability, 6y, or violating the marginal probabili-
ties. If 8, 0 < B < L — n1 6, is the probability to be
redistributed, the ¢ value of E(Y1Y2) would change by
(1= naz)(ny — 1)B.

Peterson (1990) uses a probability realloca-
tion scheme in his algorithm to find a pmf
when the desired value for E(YY3|60*) is between
min{E(Y1Y|6*)} and max{E(Y1Y>]|6*)}. Given a tar-
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get value for E(Y1Y2), Ko, and a feasible choice for
6o, the following procedure which is based on Peter-
son’s method is an example of a method for finding
an appropriate pmf g(y1, y2/60):

1. Let 1 = 1, K' = max{E(Y1Y2)|6o)}, and
h(y1,y2) = 9t (y1,2100), Y1, v

2. 0[] ¢=(ng—2i+1)(ny — 20— 1).

. I_
3. 8 —min{K5Ka, L — 500}

h(ji + €4 1,ja+13) — h(j1 + £+ 1,52 + 1) = 5,

h(ji+2+1,ja+n3—i+1)
h’(]l +Z+1,]2+n2—z+1)+,3,

h(jr +n1 — £, ja + 1) —
h(ji+n1—¢€,j2+ i)+ B, and

h(ji+ni —£€,ja+ny—i+1) —
h(ji+n1— € jz2+ny—i+1)—p.

4. K' — K' — Bé.

If 3= (K'— Ko)/é, 9(y1,y2/00) = h(¥1,y2) and
stop. Otherwise, i — i+ 1 and go to step 2.

If ny > 2, there will be some values (y;,y2) € I
that will have joint probabilities of 6y in the pmfs
9% (y1,42160) and ¢~ (y1,y2/60). Consequently, an
appropriate pmf can be found by simply mixing
97 (y1,¥2160) and g~ (y1,y2/60). The resulting pmf
would be different than the one that would be con-
structed with the probabilty redistribution procedure
above.

Assume ny > 2. Let K~(6) < Ko < Kt(6p). A
pmf with E(Y1Y2|69) = Ko can be found as follows:

K*(6) - K _
(I{+(00) — 1{—(?90)> 97 (y1, y2160)+

( Ko — I{_(OO)
I{+(00) - K_(eo)

) o wl0). (5)

After substituting for g*(y1,y2/|00) and g~ (v1, y2/60)
using (3) and (4), we can express this mixture as

o\ .
(58‘) 9" (y1,y2)+
K*(60) — Ko
I<maa: - -Kmin
( Ko — K~ (6o)

I\,ma:: - I<min

) gmin(yl ) y2) +

) Imaz (Y1, ¥2). (6)

This indicates that a pmf for any feasible combination
(Ko, bo) can be expressed as a mixture of the unique
pmfs corresponding to the points (K*,60*), (Kmin,0),
and (Kmaz,0) on the parametric curve when n; > 2.
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1 1] 1 1 1 111
i 2 36 | 36 9 36 | 36 | 3
;30 I U I W e TR I T R X 1 {1
36 | 36 | 36 | 36 9 9 |3
1 1 1 1 1 1
6 6 6 6 6 6

Figure 4: Joint pmf g+(y1,y2|_.31—6) (n1 =3, n2=06)

The mixture (6) has three interesting properties.
First, the number of joint probabilities that equal 6
is na(ny; —2)+m, if n; > 3 and odd, and na(n; —2), if
ny > 4 and even. For example, if n; = 50, ny = 100,
and 0y < 0*, the number of joint probabilities equal
to o is 4800 or 96% of all of the joint probabilities.
Second, the joint probabilities that are equal to g
form an “X” along the main “diagonals” in tabular
representations of the pmfs like those in Figures 2 and
3. This occurs because of the staircase structures in
9% (y1,92/600) and g~ (y1,y2|60) noted earlier in Fig-
ures 2 and 3 and the fact that both of these pmfs are
included in this mixture. Finally, the maximum num-
ber of different probability values associated with the
(%1,¥2) € I in this mixture is four. These properties
may be exploited in a random generation procedure.

Suppose j; =0, ny = 3, jo = 0, and ny = 6. Let
Ko =2 and 6, = 3- Then K*(X) = 2. The pmf
g+(y1,y2|31—6) is shown in Figure 4. Our probability
redistribution procedure would yield the pmf shown
in Figure 5. Figure 6 shows the pmf that results from
the mixture (6).

When n; = 2, the smallest joint probability for
any (y1,¥2) € I in a mixture of the form (6) would
be greater than 6, for all but one case and E(Y;Y2)
would always be K. Consider the pmfs g% (y1, y2(f0)
and ¢~ (y1,¥2|00). The joint probability associated
with (y1,y2) € I is at least 6, by definition, in both
of these pmfs. Note that nl_, — (n1 — 1) > 0 unless
6o = 0*. If we assume 6y # 6*, then every joint
probability associated with the pmf Ag*(y1, y2|60) +
(I=X)g~ (y1,y2/60), where 0 < X < 1, is greater than
6o because it is a strict convex combination of 6, and

1 (Tll - 1)00

ny
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Y,

1 2 3 4 5 6
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Figure 5: Joint pmf from redistribution
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Figure 6: Joint pmf from mixing
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6 THE 0-1 KNAPSACK PROBLEM

The 0-1 knapsack problem has the following form:

Maximize
n

z:cjzj

ji=1

Subject to
n
Zaj:cj <b
j=1

zj=0orl, j=1,2,.,n,

where

1 ifitem j is included in the knapsack;
%= {0 otherwise;
¢; > 0 is the value of item j; a; > 0 is the weight of
item j; b is the capacity of the knapsack; and n is the
number of items to be considered for inclusion in the
knapsack.
This problem is known to be NP-complete (Garey
and Johnson, 1979).

7 RANDOM GENERATION OF 0-1
KNAPSACK PROBLEMS

Suppose we are interested in evaluating the perfor-
mance of a solution procedure for the 0-1 knapsack
problem with randomly-generated test problems. A
typical approach would be to sample n constraint co-
efficients a; from the uniform distribution over the
integers from 1 to 50 and n objective function coef-
ficients ¢; from the uniform distribution over the in-
tegers from 1 to 100. The constant b would be some
fraction of the sum of the constraint coefficients. For
example,

b=|33a] )

i=1

With this approach, the values of E(Y1Y3) and 6 that
correspond to the pmf for every problem generated
are E(Y1)E(Y2) and 1/nn3, respectively. Only one
of the infinite number of pmfs associated with the
bivariate random variable (A4, C) would ever be used.
An alternative approach is to generate problems using
pmfs of the form (6) corresponding to various feasible
combinations of E(Y;Y3) and 6.

With either approach, the problems that are ran-
domly generated belong to the same class of prob-
lems: those with objective function and constraint
coefficients uniformly distributed over specified sets
of integer values. In the first case, the plan is to
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generate problems with objective function and con-
straint coefficients for each variable that are indepen-
dent. Because the number of decision variables is fi-
nite, this is unlikely to ever occur. However, it would
be rare to generate a problem in which there was
very strong positive or negative correlation among
the problem parameters. With the second approach,
the expected strength of the relationship between A
and C is varied from problem to problem. The cor-
relation in some problems will be strong, sometimes
positive and sometimes negative. In other problems,
there will be weak correlation, and sometimes negligi-
ble correlation. In either case, 0-1 knapsack problems
are “pulled out of a hat”. One difference between the
two approaches is that the problems are “arranged” in
the hat in the first approach, with the problems with
weakly correlated coefficients near the top and those
with strongly correlated parameters near the bottom.
Another difference is the inference space; the second
approach allows experimenters to draw more general
conclusions.

8 COMPUTATIONAL RESULTS

We solved 200 25-variable randomly-generated 0-1
knapsack problems with a simple implicit enumera-
tion routine. The test problem parameters are as-
sumed to be distributed as follows: A ~ U[1,50] and
C ~ U[1,100]. The right-hand side constant in the
constraint is calculated using (7).

For the distributions we used, E(Y;) = 25.5,
E(Y2) = 50.5, Var(Y;) = 208.25, Var(Y2) = 833.25,
6* =0.0002, K* = 1287.75, A = 0, Ko = 1704.25,
Kmin = 871.25, pmar = 0.99985, and ppnin =
—0.99985.

The following procedure was used 100 times with
100 random number seeds to generate the test prob-
lems. First, desired values for E(Y1Y3) and 6 were
randomly generated. Next, two problems were gen-
erated using synchronized random numbers: an “in-
dependent” problem was generated according to the
pmf g*(v1,y2) and a “dependent” problem was gener-
ated according to the pmf (6). Finally, both problems
were solved to optimality. All computer runs were
made on an IBM 3081-D at The Ohio State Univer-
sity.

For the independent problems, the average sam-
ple correlation was -0.008. The sample correlations
ranged from -0.550 to 0.405. The target correlations
for the dependent problems ranged from -0.930 to
0.933, with a mean of 0.042. The average of the
sample correlations for the dependent problems was
0.035, and the range was -0.998 to 0.998. Clearly,
the coefficients in the independent problems are cor-
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Table 1: Iteration Count Statistics

Independent | Dependent

Statistic Problems Problems
Mean 30,637 253,816
Std. Error 3,931 50,983
Maximum 228,925 2,659,561
Median 17,875 48,521
Minimum 1639 725

related. However, no independent problem has coef-
ficients that have extreme correlation.

Some statistics on the number of iterations to op-
timality are shown in Table 1. This table indicates
that the independent problems are collectively easier
to solve than the dependent problems. Additionally,
there were 23 dependent problems for which the num-
ber of iterations exceeded the maximum number of
iterations for any of the independent problems. The
independent problem required more iterations than
the dependent problem in only 35 pairs of problems.
For 32 of these cases, the sample correlation for the
dependent problem was negative.

Let p be a sample correlation for the coefficients
in a knapsack problem. Table 2 shows a breakdown
of the number of iterations for independent and de-
pendent problems with negative and positive sample
correlations. This table illustrates the effect of corre-
lation among knapsack coefficients on the number of
implicit enumeration iterations. For the dependent
problems, there is exponential growth in the number
of iterations as the correlation increases. The same
might be said for the independent problems, but the
trend is more difficult to discern. Still, independent
problems with positively correlated coefficients tend
to require more iterations than independent problems
with negatively correlated coefficients.

The results of this experiment are not surprising,
since they are consistent with the results reported by
Martello and Toth (1979), Moore (1989, 1990), and
Moore, Peterson, and Reilly (1990). However, our ex-
periment is interesting because we use a different pmf,
selected at random, for generating the coefficients in
each dependent problem.
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Table 2: Sample Correlations and Iterations

Independent Dependent

Iterations | p<0 | p>0| p<0 | p>0

100s 3
1000s 24 7 23 2

10000s 27 37 18 17

100000s 1 4 1 27

1000000s 9

9 DISCUSSION

Empirical evaluations of solution methods for opti-
mization problems are conducted too often using only
test problems that are randomly generated under the
assumption that all coefficients are probabilistically
independent. We view this practice as analogous to
the fauz pas of equating the expected value of a func-
tion of a random variable with the value of the func-
tion at the expectation of the random variable.

Test problems with controlled dependence among
the problem parameters are more likely to be included
in computational studies if there are easy-to-use char-
acterizations of the joint pmf of the coefficients. We
have presented a simple and general probability redis-
tribution procedure as a means of finding a pmf for
the random variable (Y1, Y2), given specified values
for E(Y1Y;) and the smallest joint probability. We
have shown that a pmf for a random variable (Y1, Y3)
with uniform marginals is a mixture of three simple
pmfs when the number of possible values of one ran-
dom variable is a multiple of the number of possible
values of the other random variable and both Y; and
Y, have at least three possible values. Furthermore,
this pmf has at most four values over the support of
(Y1,Y2). Because of its simple form, this pmf may be
exploited when values of (Y}, Y2) are simulated, mak-
ing the random generation of optimization test prob-
lems with controlled dependencies relatively easy.

This mixture was used in a computational experi-
ment in which 200 0-1 knapsack problems were ran-
domly generated and solved to optimality. One hun-
dred of these problems were generated with the con-
straint and objective function coefficients assumed to
be independent. An additional 100 problems were
generated after a target correlation for the two sets
of coefficients and a value for the smallest joint prob-
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ability were selected at random.

The results of the experiment reaffirm that im-
plicit enumeration generally requires more iterations
to solve knapsack problems with positive correla-
tion among the coefficients than knapsack prob-
lems with negatively correlated or uncorrelated co-
efficients. Furthermore, the number of iterations to
optimality tends to be an exponential function of the
correlation induced among the coefficients.

Note that we do not advocate the exclusive use of
the uniform distribution in empirical evaluations of
solution methods. Rather, we suggest that optimiza-
tion test problems with a variety of reasonable de-
pendence structures and distributional assumptions
be used in such evaluations and we demonstrate that
this is straightforward to do when the there are two
sets of coefficients, each with a uniform marginal dis-
tribution.

Possibilities for related research abound. Two ex-
amples are the characterization of pmfs for a mul-
tivariate random variable with uniform marginals
and experimentation with other types of optimization
problems that might be expected to have dependen-
cies among their coefficients.
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