Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SERVO: SIMULATION EXPERIMENTS WITH RANDOM-VECTOR OUTPUT

Bruce W. Schmeiser

School of Industrial Engineering
Purdue University
West Lafayette, Indiana 47907-1287

ABSTRACT

We discuss statistical methods, system design, and
examples for SERVO, a software package that supports
simulation experiments having output data that are
assumed to be a sequence of identically distributed ran-
dom vectors. SERVO requires two types of input: a
description of the model of interest and a description of
the desired experiment. From this input, SERVO gen-
erates C-language code that when executed is the simu-
lation experiment.

The experiment automatically creates an output report
with point estimators, and associated standard errors, for
a variety of typical performance measures. The margi-
nal performance measures include means, standard devi-
ations, variances, mean squared errors, third and fourth
standardized moments, and points on the distribution
function; the joint performance measures are covari-
ances and correlations.

1 INTRODUCTION

Stochastic simulation experimentation is commonly
used to estimate system performance measures. Given a
description of component behavior and the logical
interaction among components, random realizations of
system behavior are generated, data are collected, and
point estimators of the performance measures are calcu-
lated. In this view, performance measures are properties
of the joint distribution of the data, including marginal
distribution properties such as moments and quantiles
and dependence properties such as correlations.

Most industrial-engineering simulation software has
focused on aiding the analyst to model complex systems
such as arise in manufacturing, health, and transportation
systems. Data collection and other statistical issues have
been viewed as appendages. This orientation has
occurred because modeling effort often dominates such
simulation analyses. Moreover, the simulation data are
often a set of time series, correlated but with observa-
tions occurring at random times, which results in
statistical-analysis problems that are difficult to accom-

927

Mark D. Scott

American Airlines Decision Technologies
P.O. Box 619616 / MD3345
DFW Airport, Texas 75261-9616

modate in general-purpose software.

We consider random-vector simulation in which the
simulation model generates multivariate output. We
assume the output observations are identically — but not
necessarily independently — distributed. Each observa-
tion is a random vector, each component of which
represents a random aspect of the modeled system for
one replication or one time interval.

Although the simulation model changes from applica-
tion to application, any code for random-vector simula-
tion experiments includes these fundamental com-
ponents: reading experiment parameters, echoing experi-
ment parameters, looping for multiple replications and
for multiple design points, obtaining observations of
simulation-model performance, updating accumulators
for estimators and standard errors, computing estimators
and standard errors, and writing output.

In this paper we discuss SERVO (see Appendix),
which is designed to simplify creating these fundamental
components of random-vector simulation experiments.
SERVO, developed in Scott (1990), generates C-
language code to perform a simulation experiment. The
code sees the simulation-model as a subroutine whose
only purpose is to produce one random-vector output

observation, y def 0o.Y1s-Yr-1)- (The simulation-
model subroutine could simply read the next y from a
data file; see Example 4.3.) After a number of calls to
the simulation-model subroutine, the code computes

. ~ A0 Al ap-1
performance-measure estimates 0 def ©.,0,...,6)

and estimates of their standard errors for the system
defined by the simulation model. SERVO reduces the
responsibilities of the user to supplying the model sub-
routine and the simulation experimental parameters.

In Section 2 we discuss design issues for random-
vector simulation software, including a preliminary
example, that describe the input and output of SERVO.
In Section 3 we discuss SERVO implementation issues
— how the input is processed to obtain the output. Sec-
tion 4 contains a continuation of the example in Section
2 and two additional examples.

928

2 DESIGN ISSUES
2.1 A Random-Vector Simulation Experiment

As an example of a random-vector simulation experi-
ment, consider a circuit designer who has four network
components A, B, C, and D with two possible
configurations, C1 and C2, as shown in Figure 1. The
reliability of a configuration is the probability that all of
the components on at least one of the paths from S to T
work. The designer knows the individual component
reliabilities, but is interested in the reliabilities of
configurations C1 and C2, 6° and 6. The difference of
the configurations’ reliabilities, 62, is also of interest.

Configuration C1

| o]

Configuration C2

D C

mmm

Figure 1: Reliability Networks

Here, r =3 and the random vector is (Yy, Y, Y5).
The random variable of interest for C1 is an indicator
variable, say Yo = 0 if the system fails and Y, =1 if the
system works. Define Y, similarly for configuration C2.
Finally, define Y,=Y,-Y,, the difference of the
configurations’ reliabilities, which can take the values
-1, 0, or 1. Observations of the random vector
(yo,Y1,Y2) are computed from realizations of the indivi-
dual components, based on tAl(I)e g}ven component reliabil-
ities. The three estimators 8 , 0 , and 6 are the sample
averages of Yy, Y,,and ¥,.

In the rest of this section, we discuss the nested-loop
structure used to estimate standard errors, the design of
SERVO, and a brief comparison to some related
software.

2.2 Nested-Loop Structure

A primary consideration in designing simulation
software is the ability to report to the user the sampling
error of the point estimate 6. A straightforward

Schmeiser and Scott

approach is to use a nested-loop structure, as discussed
in Schmeiser (1990). The inner loop contains the simu-
lation model; we refer to each of the m inner-loop execu-
tions as a mlcrorepllcauon The outer loop computes
point estimates 0 using the m microreplication observa-
tions; we refer to cach of the k outer-loop executions as a

. . Al . .
macroreplication. The point estimate © and its associ-
ated standard error (s.e.) are

L P %

@[g]

k(k-1)

where [=0,1,...,p-1.
Therefore, each performance-measure estimate is a

al
function of n £ km observations. When 8 is not a
mean, the best number of macroreplications for the point

estimate él is k = 1, since bias is then minimized. How-
ever, the estimate of standard error is defined only for
k 22. If k is too large (m is too small) both estimates are
biased; if k is too small, the standard-error estimate has a
large variance, making the standard-error estimate
unreliable as a measure of precision. Typically k is
chosen in the range 10 to 30. (See Schmeiser 1982).

A typical nested-loop structure with a model subrou-
tine that returns a single random-vector observation is
shown in Figure 2. Figure 2 depicts a simulation experi-
ment in which three performance measures are being
estimated for r = 1 random variable, y = (yo). The accu-
mulator variables, such as mean, mean2, and std,
are messy and bulky even for such a small simulation.
As one tries to estimate more performance measures for
multiple random variables, the simulation becomes clut-
tered with accumulator variables that are often similar in
name and function.

The nested-loop structure, peripheral accumulators,
and performance-measure calculations are common in
all random-vector simulation experiments. Having
software to automatically handle these common com-
ponents and requiring the user to define only the simula-
tion model and experimental parameters is appealing.

estimate the mean, standard deviation,
and kurtosis for one random variable.
all variables are real.

o000 0

mean
mean2
std
std2
kurt
kurt2

QOO OO
QO QQOO

SERVO

c ...the macroreplication loop

do 200 i = 0,k-1
sum = 0.0
sum2 = 0.0
sum3 = 0.0
sum4 = 0.0

0

..the microreplication loop.

do 100 j = 0,m-1
call model (y)

sum = sum + Yy,
sum2 = sum2 +)’02
sum3 = sum3 + y,°
sumd = sumd + y,°
100 continue
xmean = sum / m
mean = mean + xmean
mean2 = mean2 + (Xxmean*xmean)
xstd = f) (sum2, xmean, m)
std = std + xstd
std2 = std2 + (xstd*xstd)
xkurt = f, (sumd4, sum3, sum2, xmean, m)
kurt = kurt + xkurt
kurt2 = kurt2 + (xkurt*xkurt)

200 continue
c ... compute point estimates

mean_hat =
std_hat = std / k
kurt_hat =

c ...compute standard-error estimates

se_hat (mean_hat) = f; (mean2, mean_ hat, k)
se_hat (std_hat) = f;(std2,std _hat,k)
se_hat (kurt_hat) = f; (kurt2, kurt_hat, k)

Figure 2: An Example of a Nested-Loop Structure

2.3 Design of SERVO

SERVO automates the development of random-vector
simulation experiments. The nested-loop structure and
the peripheral accumulators are automatically built
around the user-provided simulation-model subroutine
and the performance-measure estimates are automati-
cally calculated. In this subsection we discuss several
SERVO design decisions: code generation, multiple
design points, choice of performance measures, source
of randomness, and output reports and files.

SERVO generates a set of code that includes a main
program containing the common nested-loop structure
analogous to that of Figure 2. An alternative would be
to create template software that a user would modify.
The advantage of having SERVO generate code is that
the user needs to consider code only with respect to the
user’s simulation model. The disadvantage is that the
several SERVO system files and user simulation-model
file must be compiled and linked.

Sometimes the user needs to run an experiment at
multiple design points. For example, the circuit designer

929

may wish to estimate the reliabilities for various com-
ponent reliabilities or configurations. Each run estimates
the performance measures at a particular design point.
SERVO performs runs at different design points by sur-
rounding the micro and macroreplication loops with a
third loop. We refer to this structure as a triply nested
loop. We then have only to pass the design points,
defined by the model parameters, to the simulation-
model subroutine.

SERVO estimates several properties of the joint distri-
bution of Y. For each of the r marginal distributions, the
mean and standard deviation are always estimated, as are

the (5) covariance and correlation between each margi-

nal component of Y. At the user’s option, variance,
skewness, and kurtosis are estimated. Also optionally,
the mean-squared error E(Y,-—uj)2 is estimated, but this
requires the user to specify the base-line values ;. The
estimators used are standard; see, for example, Lewis
and Orav (1989).

The simulation model needs random variates. Either
U(0,1) random number streams or random variates could
have been passed to the simulaton-model subroutine.
Random-number streams were chosen for simplicity;
passing random variates presented possible user protocol
problems. Also, having random-variate generators asso-
ciated with SERVO would limit its portability. There-
fore we rely on the user having access to a library of
random-variate generators, such as IMSL (1987) or Tao
(1990), who provides a facility to generate data sets from
frequently used analytically solvable stochastic models.
Random number seeds (as well as simulation-model
parameters) are passed from the main program to the
simulation model as subroutine parameters.

SERVO can save the raw-output data to files. Having
access to each observation allows the user to perform
post-processing on the data, such as performing statisti-
cal tests or generating graphs from the raw output.

The standard SERVO output report consists of the
names, point estimates, and standard errors for each of
the performance measures. Examples are given in Sec-
tion 4.

2.4 Other Simulation Software

We briefly discuss two existing software packages
that have various features shared by SERVO. Both have
a more-specific context than SERVO; they estimate pro-
perties of statistical estimators.

The Monte Carlo System (Grier 1987) studies proper-
ties of estimators in designed experiments. The result of
an experiment using Grier’s package is an estimate of
the distribution of the statistic of interest over various
combinations of factor values. Features that are analo-
gous to those of SERVO include: (1) the only sections of

930

Schmeiser and Scott

' Random Variate
Input File Generation
- Simulation Experiment Simulation Routines
Parameters Model
- Model Subroutine Subroutine
Interface

support.c
- raw_ptrs
- cp_seed
- init_macro
- init_micro Header File
- col_mac defs.h
- col_mic
- raw_close
- calc_stats
- out_raw
- final_out

Code Generator
final.c

Input Parser

Generator

Simulation
Source Code
Definitions File /
defs_make.h
Structures File
structs.h
LEGEND:
Subroutine Calls: m—]- pre.c File
File Input: sess—- cdf_prep subroutine
File Output: —————————»
ileS: em— . .
Include Files [Compiled & Linked
Executable Code
Summary Output Raw-Data Output
Files ".sav" Files ".dat"

Figure 3: SERVO System-Integration Diagram

SERVO

code that are application dependent are those that gen-
erate the random data set and that evaluate the statistic of
study, (2) the data are collected in a doubly nested loop,
and (3) multiple design points are considered. Differ-
ences are that Grier’s package has predefined factors
(points include sample size, degrees of freedom, and
type of experimental design), considers only scalar
(r = 1) data, and computes no standard error estimates.

SMTBPC is the simulation test bed program provided
as a software supplement to Lewis and Orav (1989).
Like The Monte Carlo System, SMTBPC is designed to
estimate the distribution of a single random variable; like
SERVO its emphasis is on the first four moments.
SMTBPC design points differ only by the size of the
simulated univariate data sample. In addition, SMTBPC
provides estimates of the coefficients of the asymptotic
bias expansion for the estimator of the mean as a func-
tion of sample size.

The Monte Carlo System and SMTBPC provide side-
by-side boxplots that allow concise, graphical com-
parison of the estimated distributions at different design
points. SERVO provides no graphical comparisons; one
could create a variety of graphical analyses by passing
the raw-data file to a general-purpose statistical package.

3 IMPLEMENTATION

In this section we discuss high-level programming
considerations, issues of numerical error, multiple runs,
the input file, and the output file.

3.1 Two Modules of C Code

Both SERVO and the generated simulation source
code are written in C (see e.g., Damell and Margolis
1988). To maintain as much portability over computers
and compilers as possible, SERVO follows ANSI stan-
dards and uses only common string manipulation and
math routines.

Two designs for SERVO were considered. Common
to both approaches was the need for a model subroutine
and some control statements. The control statements are
needed to inform the package of important characteris-
tics of the model subroutine and the desired parameters
of the simulation experiment, such as the number of
macroreplications and microreplications.

The first approach considered was to create a single
module of code that would accept, as input, the model
subroutine name and control statements. Then, while
still in execution, the module would dynamically link the
model subroutine, perform the simulation experiment,
and output the results. This approach was appealing
because it would perform the entire simulation in one
step. However, a major problem with this approach was
the difficulty and lack of portability in having the single

931

module link itself to the model subroutine, and then per-
form the simulation.

The approach we chose requires two stages. Within
stage one, the package accepts the model-subroutine’s
name and control statements as input and then generates
source code that is capable of performing the simulation
experiment. The second stage consists of compiling and
executing the source code from stage one. In addition to
the module that generates the simulation code in stage
one, a set of support routines is needed for linking with
the generated simulation code. This second approach is
appealing because after the first stage, code tailored to
the user’s specifications has been generated. This code
can then be inspected or modified by the user.

SERVO consists of two code modules. The module
final. c parses the input file and generates the simula-
tion source code, and the module support. c contains
support routines to be compiled with the simulation
source code. Figure 3 provides a detailed interaction
picture of SERVO. The figure is more detailed than the
following discussion.

The generated simulation source code calls many sup-
port subroutines to collect data, calculate estimates, and
produce output files. The module support. c, which
contains all of these support routines, is #includedin
the generated simulation source code. An example of
the core section of the generated source code is shown in
Figure 4.

/** BEGIN THE MAIN PART OF PROGRAM **/
cp seed(iseed, seeds, &data);
for (i=0;i<NUM_RUNS;i++)
{
data.run = i;
raw_ptrs(&data);
cdf prep(arr,&data, seeds);
init_macro (arr, &data);
for (j=0; j<NUM_MACRO; j++)
{

init_micro (arr, &data);
data.mac rep = j;
for (k=0;k<NUM_MICRO; k++)
{
data.mic_rep = k;
sub _model (data.params([i], seeds,
observations);
out_raw(arr, &data, observations);
col _mic(arr, &data, observations);
}

col_mac(arr, &data);

raw_close (&data);

calc_stats(arr, &data) ;

final_out (arr, édata, iseed, seeds) ;
cp_seed (seeds, iseed, &data) ;

)

Figure 4: Core of Generated Simulation Source
Code written to SIMULATION FILE

932

The simulation source code contains the doubly or tri-
ply nested-loop structure and is never larger than 22
lines. The concise code, which allows the user to see the
simulation experiment structure, is feasible because all
of the collection and analysis of the simulation output
data are performed in support subroutines.

3.2 Numerical Error

To reduce numerical error, double-precision float vari-
ables were used for all real variables. Also, the first-
value-offset (FVO) method was implemented. The FVO
method removes the order of magnitude from the estima-
tion of the performance measure by approximately
centering the distribution around zero, where computer
arithmetic can be performed with greatly diminished
numerical error. We record the first observation sam-
pled from a distribution and call it the offser. We sub-
tract the offset from every observation including the
first, which shifts the distribution by the constant offset.
The only moment affected by this shift is the mean. At
the end of the analysis, the sample mean is corrected by
adding the constant offset.

3.3 Multiple Runs

The user may decide that the experiment needs to be
run at various design points. This multiple-run experi-
ment then necessitates a triply-nested loop. Since the
run is performed in the inner two loops, the outer-loop of
the multiple-run experiment is responsible for keeping
track of the correct parameters, or design points.

The model subroutine receives seeds from the main
routine for use in random-variate generation routines,
and returns a vector of observations. Also, the user has
an option to pass a vector of parameters to the model
subroutine. The parameters may be used for any pur-
pose, such as defining design points, within the subrou-
tine. Thus, for each run, the user may pass a vector of
parameters to the model subroutine. However, within
any given run of a multiple-run experiment, the same
vector of parameters is passed to the subroutine.

3.4 Input File

Figure 5 is a template of the user input. The purpose
of the input file is to specify user’s desired random-
vector simulation experiment to SERVO. Two sets of
information are encoded in the input file. First is infor-
mation pertaining to the interface between the user’s
model subroutine and the main routine yet to be gen-
erated. The second set of information defines the simu-
lation experiment itself. Although there are two distinct
sets of information, the set of input commands cannot be
separated since some commands pertain to both sets of
information.

Schmeiser and Scott

There are two delimiters in the input file: commas and
semicolons. Commas separate each of the input fields
and semicolons end each input line. Any characters fol-
lowing a semicolon are treated as a comment.

The eleven input commands are defined below.

1. *NAME identifies the user. Its only field, name, is
for the alphanumeric user’s name.

2. *DATE identifies the date. Its only field, date, is
used for the alphanumeric current date.

3. *MODEL has two input fields. The first field,
model name, is the alphanumeric simulation-model
subroutine name. There can be no spaces in the name.
The second field, fortran or_c, identifies whether
model_name is written in C or FORTRAN.

4. *RANDOM VARIABLES specifies an input structure.
In the command line, *RANDOM VARIABLES, there
are two numeric fields: the number of random variables,
r, and number of raw output files, f. If the second field is
blank or negative, no raw output files are produced.

Each of the r lines below the *RANDOM VARI-
ABLES input command describes one random variable.
Each random variable line contains three fields; the
random-variable name, its true value if available, and
raw-output file numbers corresponding to raw-output
files in which the user would like to save the raw data.

5. *RUNS is also an input structure. The *RUNS com-
mand line has three fields. The first is the number of
runs w. (Recall that a run is the simulation of a design
point, which requires an entire doubly-nested loop simu-
lation experiment.) If w is greater than one, the user can
change design points between runs. The second field
informs the package how many design-point parameters
p are passed to the model subroutine. If left blank, the
number of parameters is set to zero. The third field
allows the user to choose whether or not common ran-
dom numbers are used between multiple runs. The w
lines after the command line *RUNS each corresponds
to one run and should contain p parameters, each
separated by a comma.

6. *SIMULATION FILE has one field, which is the
alphanumeric name of the file into which the generated
simulation source code is to be written.

7. *MICRO has one field, which is the number of
microreplications.

8. *MACRO has one field, which is the number of
macroreplications.

9. *SEEDS has h+1 integer fields, where h is the
number of seeds. The first field specifies h, and the
remaining fields are for seed 0 through seed h-1.

SERVO 933

; Input File Template

*NAME , name;

*DATE,date;

*MODEL, model name, fortran or_c;

*RANDOM VARIABLES,num of random variables,num raw output files;

rv_name 0, true value,filel,file2,...;
rv_name 1,true value, filel,file2,...;
rv_name_ r-1,true value, filel,file2,...;
*RUNS,num of runs,num of parameters,common random numbers (y/n);
param0 of runO,paraml of run0,...,param p-1 of runO;
param0 of runl,paraml of runl,...,param p-1 of runl;
param0 of run w-1,paraml of run w-1,...,param p-1 of run w-1;

*SIMULATION FILE,name of file in which to write simulation source code;
*MICRO, number of microreplications;

*MACRO, number of macroreplications;

*SEEDS, number of seeds, seed 0, seed 1, ..., seed h-1;
*COLLECT,all,variance, mse, skewness, kurtosis;

*CUMULATIVE DISTRIBUTION FN,num of variates,num of cutoff points;

Figure 5: Input File Template

random variables:

p_hat_1: Estimate Std. Error
"""" Mean 445 (0.003797)
Std. Dev. .496645 (0.0004591)
Variance .246661 (0.0004553)
Skewness .231791 (0.0155128)
Kurtosis 1.05636 (0.007529)
Cov(*,p_hat_2) .191352 (0.001175)
Corr(*,p_hat_2) .79676 (0.003925)
Cov(*,diff) 0.0553088 (0.001112)
Corr(*,diff) .35583 (0.004036)

Figure 7: Sample from rel_sim.sav0

934

10. *COLLECT has up to five fields. SERVO estimates
means, standard deviations, covariances, and correla-
tions automatically. However, variance, mse,
skewness, and kurtosis are all optional. If all
is specified, all four of the aforementioned performance
measures are estimated for all of the random variables.

11. *CUMULATIVE DISTRIBUTION FN has two
numeric input fields. To estimate the marginal cdfs of
all of the random variables, SERVO needs reasonable
estimates of the minimum and maximum of each of the
random-variable distributions. The first field is the
number of random variates, ¢, to be sampled to estimate
the minimum and maximum values for each of the
random-variable distributions. The gstimates of the
maximum and minimum, max and min, are the max-
imum and minimum of the ¢ variates, respectively. The
minimum number of variates is 100.

The second field is ¢, the desired number of cutoff
points at which the cdf value is estimated. The cutoff
points d;, which define the cumulative probabilities D,
are

ds=m‘;n+s{mx-:—1@EJ fors =0,1,...,t-1
t —_

*CUMULATIVE DISTRIBUTION FN is the only
optional input command. If it is present, the cdf will be
estimated.

3.5 Simulation-Model Subroutine

This section discusses the interface between the
SERVO-generated code and the C or Fortran user-
written simulation-model subroutine.

There are three sets of information that must be
passed between the two modules of code: parameters,
seeds, and observations. Both the parameters and obser-
vations are placed in vectors that are of type double pre-
cision real or float, while the seeds are passed in a vector
of long integers. These vectors are passed by pointer, so
changes made to these vectors in the model subroutine
are reflected in the main routine. Of course, this is the
desired effect for the seeds and observations vectors.
We want to collect the observations after each call to the
model subroutine, and the random-variate generation
routines need different seeds each time they are called.

Parameters are numbers that are passed from the main
routine to the model subroutine, usually for defining
design points during multiple-runs. For example, if in a
bank-teller simulation multiple-runs of the entire doubly
nested loop experiment are desired with different teller
service-time distributions, the user specifies the teller
service-time distributions as parameters. In many appli-
cations, the user wishes to vary more than one parameter

Schmeiser and Scott

over the multiple runs, so the generated main routine
passes a vector of parameters to the model subroutine.
Passing the vector of parameters is optional and is
specified in the *RUNS input command. If no parame-
ters are specified in the input field number of
parameters, the interface between the subroutine and
the main routine contains no parameters vector.

The seeds vector, which is not optional, has length and
initial state defined in the *SEEDS command. The
random-seed streams, each of which is defined as an ele-
ment of the seeds vector, can be used for random-variate
generation routines within the model subroutine.

The observations vector is used to pass observations y
from the model subroutine to the main routine for collec-
tion and analysis. The length of this vector is r, as
defined in the *RANDOM VARIABLES input command
by the field. Each time the model subroutine is engaged,
SERVO assumes that each element of the observation
vector is assigned a value corresponding to the correct
observation.

To summarize the interface between the main routine
and the simulation-model subroutine (SMS), there are
either two or three vectors comprising the argument list
of the subroutine. The optional parameters vector is first
in the subroutine argument list, the mandatory seeds vec-
tor is second, and the mandatory observations vector is
last. If no parameters are specified in the *RUNS input
command, the parameters vector does not appear in the
argument list. An example call to SMS is
SMS (params, seeds, observations).

3.6 Output Files

SERVO produces two types of output files: summary
files and (optionally) output-data files. The names of
both types of files begin with the character string
specified in *SIMULATION FILE; for example, SF.
Each filename suffix indicates the type of file and relates
it to the run number, i =0,1,...,w—1. For example, the
name of the summary report from run (design point) 6 is
SF.sav5. Similarly, the fourth output-data file for run 6
is named SF.dat5_3.

4 EXAMPLES
4.1 Circuit Reliability

Recall the example in Section 2.1. Figure 6 shows the
input file used to create the simulation source code. The
name of the model subroutine is reliability and it
is written in FORTRAN. We are interested in three ran-
dom variables, p hat 1, p hat_2, and diff.
The random variables p hat 1 and p hat 2
represent the reliability of configurations C1 and C2,
respectively, whereas di ££ represents the difference in
the two configurations’ reliabilities. We have chosen to

SERVO

save the raw data in two files. In the first file, raw-data
file 0, we have only asked to save p hat_1 and
p_hat_2, whereas we have asked to save all three ran-
dom variables’ raw data into raw-data file 1. The gen-
erated source code is written to the file rel_ sim The
simulation experiment consists of one run that performs
1000 microreplications and 20 macroreplications. Three
seeds are defined in the *SEEDS input command.
Finally, we wish to collect all of the optional perfor-
mance measures.

; Circuit Example

*NAME,Mark;

*DATE, 11/30/90;

*MODEL, reliability, fortran;

*RANDOM VARIABLES,3,2;
p_hat 1,,0,1;
p_hat_2,,0,1;
diff,,1;

*RUNS, 1;

*SIMULATION FILE,rel sim;

*MICRO,1000;

*MACRO, 20;

*SEEDS,3,12345678,98765432,55555555;

*COLLECT,all;

Figure 6: Input File for the Circuit Example

A partial summary output file is shown in Figure 7;
only the summary table for random variable p hat_1
is shown. Individual component reliabilities correspond-
ing to this example are below.

P [A works]) =09

P [B works] = 0.3

P [C works] =0.8

P [D works | C worked] = 0.2

P [D works | C did not work] = 0.7

The deterministically calculated reliability for
configuration 1 is 0.4428, which is within one standard
error of the p _hat_ 1 from Figure 7.

4.2 Correlated Data

Suppose that a user of our system has two columns of
data in a file named data. The first column represents
total time to process a batch of parts, and the second
column represents the corresponding percent rework for
that batch. Since the batch size remains constant, it
would seem that there should be non-zero correlation
between the two sets of data.

A quick way to estimate the marginal distributions of
process time and percent rework and to estimate their
correlation is to read these data into SERVO, one obser-

935

vation at a time. The model subroutine’s observations
vector contains two elements. The first element is a pro-
cess time, and the second is its corresponding percent
rework. The generated simulation source code passes
one seed, as an indicator, to the model subroutine. Each
time the model subroutine is called, it checks whether
the seed is equal to one. If it is, it opens the file data.
Then it increments the seed and reads one observation of
process time and one observation of percent rework out
of the data file. No subsequent call to the subroutine will
attempt to open the file data, but every call to the
model subroutine will read an observation.

; Correlated Data Example

*NAME, Mark;

*DATE,11/30/90;

*MODEL, scan, c;

*RANDOM VARIABLES,Z2;
proc_time;

[}

%_rework;

*RUNS, 1;

*SIMULATION FILE,data;
*MICRO, 1500;

*MACRO, 20 ;

*SEEDS,1,1;

*COLLECT, skewness, kurtosis;

Figure 8: Input File for Correlated-Data Example

Figure 8 shows the input file for this example. We ask
for 1500 microreplications and 20 macroreplications,
since there are 30,000 pairs of data in the file data.

4.3 Time Slicing

SERVO can be used to analyze data generated by other
simulation software. For example, one of us (MS) has
helped Pritsker Corporation adapt SERVO to analyze
data generated with SLAM II (Pritsker 1986). The
simulation-produced output data, for example various
performance measures for each eight-hour shift (time
slice), are written to a file. The model subroutine reads
one observation y from the file each time it is called by
SERVO. The SERVO main routine then calculates the
desired point estimates and standard errors as if the
model routine were the simulation model.

Unlike the first two examples, the random vectors in
time slicing can be dependent through time. For exam-
ple, if the average length of a queue in time period n is
long, the chances are high that the length of that queue in
time period n+1 is also long. Despite this dependency,
the micro/macroreplication structure produces reason-
able standard-error estimates if the number of microre-
plications, m, is substantially bigger than the number of

936

observation lags required for dependency to become
negligible and the number of macroreplications, k, is not
too small, as discussed earlier.

ACKNOWLEDGEMENTS

This research was supported by NSF Grant DMS-
8717799 to Purdue University. We thank Barry Nelson,
Alan Pritsker, Ronald Rardin, and James Reed Wilson
for helpful discussions, and H. Philip Walton for the use
of his C-language expertise.

APPENDIX: Naming the Software Package

Every software package needs a name. Ideally the
name is a meaningful acronym as well as an image-
evoking word. In addition to being good examples,
CACI's SIMSCRIPT, Pritsker Corporation’s SLAM,
Schruben’s SIGMA, and System Modeling’s SIMAN
indicate that such a name should also begin with an "S".
Both authors agreed that "S" is a fine first letter for a
name.

Being in an engineering school, we evoke the
engineer image and name this software package
SERVO. Simulation Experiment with Random-Vector
Ouiput is a descriptive phrase capturing the essence of
our context.

Having already satisfied sufficient criteria for a rea-
sonable name, we go out on a limb over thin ice to argue
that this software package is a SERVO, which is short
for servomechanism, whose entry on our dictionary is

ser.vo.mech.a.nism: an automatic device for
controlling large amounts of power by
means of very small amounts of power and
automatically correcting performance of a
mechanism.

Automatic device seems reasonable, since our purpose is
to automatically generate the simulation-experiment
code. Large amounts of power is the information
obtained by the simulation experiment. Very small
amounts of power is the information provided by the
user. Automatically correcting performance stretches us
yet further, but why stop now? A fundamental design
consideration has been that we wanted to estimate stan-
dard error for every point estimator. The purpose of the
estimated standard error is to provide feedback on esti-
mator precision to the analyst. The analyst is then part
of the control loop that guarantees sufficient point-
estimator precision.
Ok, a twig over open water.

Schmeiser and Scott

REFERENCES

Darnell, P.A. and PE. Margolis. 1988. Software
engineering in C. New York: Springer-Verlag.

Grier, D.A. 1987. Systems for Monte Carlo work. In
Proceedings of the Winter Simulation Conference,
eds. A. Thesen, H. Grant, W. D. Kelton, 428-433.

IMSL STAT/LIBRARY. 1987. User's Manual.
Version 1.0, Houston: IMSL Inc.

Lewis, P.AW. and EJ. Orav. 1989. Simulation
methodology for statisticians, operations analysts, and
engineers: Vol. 1. Pacific Grove, California:
Wadsworth & Brooks/Cole.

Pritsker, A.A.B. 1986. Introduction to simulation and
SLAM II. Third Edition. New York: Halsted Press.

Schmeiser, B. 1982. Batch size effects in the analysis of
simulation output. Operations Research 30: 556-568.

Schmeiser, B. 1990. Simulation experiments. In:
Handbooks in operations research and management
science. Vol. 2: Stochastic models, eds. D.P. Heyman
and M.J. Sobel, 295-330. Amsterdam: North-
Holland.

Scott, M.D. 1990. A code generator for random-vector
simulation experiments. Master’s Thesis, School of
Industrial Engineering, Purdue University, West
Lafayette, Indiana.

Tao, Y. 1990. Simulation test bed. Master’s Thesis,
Department of Industrial and Systems Engineering,
The Ohio State University, Columbus, Ohio.

AUTHOR BIOGRAPHIES

BRUCE SCHMEISER is a professor in the School of
Industrial Engineering at Purdue University. He
received his Ph.D. from the School of Industrial and Sys-
tems Engineering at Georgia Tech in 1975. His under-
graduate degree in the mathematical sciences and
master’s degree in industrial and management engineer-
ing are from The University of Iowa.

Professor Schmeiser is active in a number of profes-
sional service roles. He is the current Simulation Area
Editor of Operations Research and member of the Coun-
cil of the Operations Research Society of America. He
is an active participant in the Winter Simulation Confer-
ence, including being Program Chairman in 1983 and
Chairman of the Board of Directors during 1988-1990.

MARK D. SCOTT is a consultant with American Air-
lines Decision Technologies. He is involved primarily
with the airport consulting group, which simulates both
air and land sides of airports. He received his M.S. in
Industrial Engineering from Purdue University in 1990
and his B.S. in Computer and Systems Engineering from
Rensselaer Polytechnic Institute in 1988.

