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ABSTRACT

This paper summarizes an experimental performance
evaluation of a procedure for estimating a nonhomo-
geneous Poisson process having an exponential rate
function whose exponent includes both polynomial
and trigonometric components. Maximum likelihood
estimates of the unknown continuous parameters of
the rate function are obtained numerically, and the
degree of the polynomial rate component is deter-
mined by a likelihood ratio test. Although this pro-
cedure can estimate the oscillation frequency of the
trigonometric rate component, the experimental eval-
uation of this procedure is limited to the case of a
known frequency. A “piecewise thinning” algorithm
is used to generate independent replications of se-
lected arrival processes having the postulated type of
rate function. To evaluate the accuracy of the result-
ing estimators of the true rate and mean-value func-
tions, we tabulate summary statistics for the maxi-
mum absolute error and average absolute error ob-
served in estimating each of these functions on each
replication of the estimation procedure. We also plot
tolerance intervals for the rate and mean-value func-
tions based on the sample estimates of these func-
tions.

1 INTRODUCTION

In this paper we present a Monte Carlo performance
evaluation of procedures recently developed by Lee,
Wilson, and Crawford (1991) for identification, es-
timation, and simulation of a nonhomogeneous Pois-
son process (NHPP) whose rate function may contain
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either a cyclic component, a long-term evolutionary
trend, or both. Specifically, the instantaneous ar-
rival rate of the NHPP is assumed to be an expo-
nential function of time whose exponent is the sum
of polynomial and trigonometric components—that
is, an exponential-polynomial-trigonometric function
(EPTF). Such a stochastic model is sufficiently gen-
eral to handle a broad range of input modeling sit-
uations that have been previously reported in the
literature. Lewis (1970) used spectral methods to
analyze an NHPP with an exponential-trigonometric
rate function. To model the arrival of patients at
an intensive-care unit, Lewis (1972) used an NHPP
with an EPTF-type rate function that included a
quadratic trend. Lewis and Shedler (1976) modeled
transaction-initiation times in a data base system as
an NHPP with an exponential-polynomial rate func-
tion. To represent the arrival pattern for storms at
an off-shore drilling site, Lee (1985) used an NHPP
with an EPTF-type rate function.

The estimation procedure of Lee, Wilson, and
Crawford (1991) can be applied to an NHPP with
an EPTF-type rate function whether the oscillation
frequency of the cyclic rate component is known or
unknown. Given sample data from such a process,
we compute maximum likelihood estimates of the
unknown continuous parameters of the rate func-
tion using a Newton-Raphson scheme; and the de-
gree of the polynomial component is determined by a
likelihood ratio test. The success of this approach
depends critically on the initial estimates the un-
known continuous parameters being reasonably close
to the true maximum of the associated likelihood
function. If the oscillation frequency is unknown,
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then an initial estimate of this parameter is ob-
tained via spectral analysis of the observed series
of events; and initial estimates of the remaining
trigonometric (respectively, polynomial) parameters
are computed from a standard maximum likelihood
(respectively, moment-matching) procedure for an
exponential-trigonometric (respectively, exponential-
polynomial) rate function. Although Lee, Wilson,
and Crawford (1991) reported a successful application
of this estimation procedure to the storm-arrival data
originally studied by Lee (1985), they did attempt an
analytical or empirical evaluation of the performance
of this procedure in repeated applications. In this
paper we report some initial results of a large-scale,
simulation-based performance evaluation of this pro-
cedure.

In our simulation experiments, we used the “piece-
wise thinning” algorithm of Lee, Wilson, and Craw-
ford (1991) to generate independent replications of an
NHPP with an EPTF-type rate function. The initial
step in this procedure is to approximate the target
rate function as closely as possible using a piecewise
linear majorizing function—that is, a piecewise linear
function which provides a tight upper bound for the
target rate function. At each event epoch of the tar-
get process, a series of events is generated from the
majorizing function by the method of inversion; these
events are then screened by a thinning (rejection) pro-
cedure so that the next interevent time for the target
process is finalized when the first acceptable event is
generated for the majorizing process. With this ap-
proach, the computation time can be greatly reduced
in simulating a process with a complicated cyclic rate
function such as an EPTF.

This paper is organized as follows. In Section 2
we summarize the procedure of Lee, Wilson, and
Crawford (1991) for estimating the parameters of an
EPTF-type rate function. Section 3 describes the
simulation experiments used to evaluate the perfor-
mance of this estimation procedure, including a brief
informal description of the “piecewise thinning” al-
gorithm. In Section 4 we summarize and discuss
our experimental results. Finally in Section 5 we
present our conclusions and recommendations for fu-
ture work. The Appendix contains some computing
formulas that are used in the estimation procedure.

2 IDENTIFICATION AND ESTIMATION
OF NHPPs

An NHPP {N(t) : t > 0} is a generalization of a Pois-
son process in which the instantaneous arrival rate
A(t) at time t is a nonnegative integrable function
of time. The mean-value function (or the integrated
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rate function) of the NHPP is defined by
t
u(t) = E[N(t)) = / A(z)dz for all t> 0.
0

In this study, an NHPP displaying cyclic behavior is
assumed to have an EPTF-type rate function. An
EPTF of degree m has the form

A(t) = exp{ho(m,t)} with €))
ho(m,t) = za,-t" + ysin(wt + ¢),
1=0

where: © = [ag,a1,...,0m,7,$,w] is the vector of
unknown parameters; the first term in he(m,t) is an
ordinary polynomial function representing the gen-
eral trend over time; and the second term in hg(m,t)
is a periodic function representing a cyclic effect ex-
hibited by the process. In this section we summarize
the method of Lee, Wilson, and Crawford (1991) for
identifying an appropriate value of m and for estimat-
ing the corresponding parameter vector O.

The analysis of an NHPP with a rate function of
the form (1) is substantially more difficult when the
oscillation frequency w (expressed in radians per unit
time) is unknown. Although w is often known from
prior information about the mechanism generating
the events of interest, there is a large class of simula-
tion applications for which such prior information is
unavailable so that w must be estimated from sample
data. To develop a completely general technique for
modeling and simulation of an NHPP with an EPTF-
type rate function, Lee, Wilson, and Crawford (1991)
assumed that the oscillation frequency is unknown
and must be estimated along with all of the other pa-
rameters of the rate function. If w is known, then we
simply drop the last component of © before applying
the parameter estimation technique described below.

Consider a sequence of n events occurring at the
epochs {; < t3 < --- < t; in a fixed time interval
(0, S] according to an NHPP with a rate function of
the form (1). Then the log-likelihood function of O,
given N(S)=n and t = (t1,t2,...,t5), is

LOn,t) =Y aiTy (2)

i=0

n S
+7Zsin(wtj +¢) —/ exp{ho(m,z)} dz,
ji=1 0

where T; = Z;.'___ltj- fori =0,1,...,m; see Cox and
Lewis (1966). Strictly speaking, we observe that the
degree m of the polynomial component of hg(m,t)
is also an unknown parameter which could in prin-
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ciple be estimated along with © from the given se-
quence of events by the method of maximum likeli-
hood. However, since m is constrained to be a non-
negative integer, we cannot estimate m by solving
the usual likelihood equations that are applicable to
continuous parameters; moreover the usual regular-
ity conditions ensuring the asymptotic efficiency of
maximum likelihood estimators do not apply to the
estimation of m.

In view of the fundamental problems inherent in
maximum likelihood estimation of the degree m of the
polynomial rate component, Lee, Wilson, and Craw-
ford (1991) chose to condition the estimation of ©
on a fixed value of m and then to determine the ap-
propriate value of m by a likelihood ratio test to be
described later (see equation (14) and the accompa-
nying discussion given below). Thus for a given value
of m where m > 0, we obtain m + 4 likelihood equa-
tions involving the continuous parameter vector ©

oLO|n,t)
b, = L (3)

s
—/ ' exp{ho(m,2)} dz =0, i=0,1,...,m,
0

OO _ S coet, +4) *
ji=1

s
—/0 z - cos(wz + ¢) exp{he(m,2)} dz =0

AL (O, ) _

B Z sin(wt; + ¢) (5)

ji=1

S
—/ sin(wz + @) exp{he(m,2)} dz =0,
0

0L(O|n,t) - 4
T = J; cos(wtj + ¢) (6)

S
—/0 cos(wz + ¢) exp{he(m,z)} dz = 0.

The solution to the system (3)—(6) of nonlinear equa-
tions can be obtained numerically, yielding the max-
imum likelihood estimates of the parameters. Un-
fortunately, general numerical techniques such as the
Newton-Raphson method have proven to be unstable
when they are applied to (3)-(6) outside of a fairly
small neighborhood of the optimal solution.
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2.1 Initial Parameter Estimates

If the oscillation frequency w is unknown, then it is
important to choose the initial value of w sufficiently
close to the true maximum likelihood estimate be-
cause the log-likelihood function (2) has multiple lo-
cal maxima due to the trigonometric rate component.
In this situation, an initial estimate of w can be ob-
tained from a preliminary spectral analysis of the
observed series of events; see pp. 361-363 of Lewis
(1970). The periodogram of a point process having
cyclic behavior should display peaks in the vicinity
of the corresponding frequency, even when the pro-
cess also possesses a long-term evolutionary trend.
Let wqo denote either the known frequency or an ini-
tial estimate of the unknown frequency inferred from
the periodogram of the observed series of event times
{tj :j=1,2,...,n}.

We obtain the corresponding initial estimates of
the amplitude ¥ and the phase ¢ as follows. If we as-
sume that the long-term evolutionary trend is nearly
constant over the observation interval and that wy is
the actual frequency of the cyclic component, then
the rate function for the process has the exponential-
trigonometric form

Ao(t) = exp{a + ysin(wot + ¢)} (M

for all t € (0, S]. Under the simplifying assumption
(7), the initial estimates vy, and ¢q (for v and ¢ re-
spectively) are obtained from

1[ A(wo)

¢o = tan™ B(wo)] (8)

Yo is the solution of

'nl—o\/Az(wo) + Bz(wo) =

11 (7o)
Io(7v0)

In (8) and (9), we define ng to be the number of events
in the time interval

plaE]

and | z] represents the greatest integer < z for all real
z; moreover

(9)

no

A(wo) = Zcos(wotj), B(wo) = Zsin(wntj), (11)
i=1

j=1

and I,(-) denotes a modified Bessel function of the
first kind of order u for v = 0,1. (Note that the
time interval (9) corresponding to the event count ng
is generally taken to be somewhat shorter than the
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original observation interval (0, S] to ensure that w,
is one of the frequencies included in the spectral com-
putations.) For most cases in which the evolutionary
trend changes slowly over time, the estimates v, and
¢o provided by (8)—(11) will be good initial values of
the corresponding trigonometric parameters. Equa-
tions (46) and (48) of Lewis (1970) provide the basis
for this approach to the computation of v, and ¢g.

To determine initial values for the coefficients {ay :
k=0,1,...,m} of the polynomial rate component,
Lee, Wilson, and Crawford (1991) used a variant
of MacLean’s (1974) procedure for estimating the
parameters of an exponential-polynomial rate func-
tion by moment matching. Suppose that C(m,t) =
S o cxt® is an ordinary polynomial function of de-
gree m whose first m + 1 moments over the interval
(0, S] match those of exp{he(m,t)}. Then by equa-
tion (3), we have

s
T, = /z‘exp{h@(m,z)} dz
0

cksi+k+l

S m
2'C(m,z)dz = — (12
/0 ( ) k§=:02+k+1 (12)

for i = 0,1,...,m. The values of the {cx} can
be obtained from this linear equation system by
matrix inversion. Next, hg(m,t) can be approxi-
mated by matching its first m + 1 moments over
the interval (0, S] with the corresponding moments
of log[C(m,t)]. Thus for : = 0,1,...,m, we have

S m
/ Py log (Z ckzk) dz — yM;in (i, S; w, ¢)

0 k=0
™ oy SiHEHL

=2 TreeT @

k=0

where Min(i,S; w,¢) = fos z'sin(wz + @) dz, the ith
moment of sin(wt + ¢) over the interval (0, S]. Using
the initial values of v, w, and ¢ based on (7)-(11),
we can evaluate the second term on the left-hand
side of equation (13) from the computational formu-
las for Mgin(i,S; w,¢) given in the Appendix; and
by using numerical integration, we can also evaluate
the first term on the left-hand side of (13). A sin-
gle matrix inversion for equation system (13) yields
initial estimates of the {a;}. This elaborate proce-
dure for assembling an initial estimate of the com-
plete parameter vector © is designed to ensure that
the (m + 4)-dimensional Newton-Raphson scheme for
solving the full likelihood equation system (3)—(6) will
start reasonably close to the true maximum of the
log-likelihood function (2).
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2.2 Final Parameter Estimates

Corresponding to each trial value of the degree m
for the fitted EPTF-type rate function, the proce-
dure described above is used to obtain an initial es-
timate of the associated parameter vector ©,,; then
the log-likelihood function £,,(©y,|n,t) is optimized
by the Newton-Raphson procedure to yield the max-
imum likelihood estimator ©,,. (Here the subscript
“m” is used to emphasize the dependence of the sub-
scripted quantities on the degree of the fitted EPTF.)
To determine the appropriate value of m, Lee, Wil-
son, and Crawford (1991) used a likelihood ratio test
(Cox and Hinkley 1974) as follows. Under the null hy-
pothesis that m is the true degree of the underlying
EPTF-type rate function, the difference

2[£m+1(ém+1|n,t)——Em((:)mln,t) (14)

is asymptotically chi-square with 1 degree of freedom
as n — 00. Successive differences of this form are
evaluated, and the smallest value of m yielding a non-
significant difference (14) is taken as the degree of the
fitted EPTF. The corresponding O, is taken as the
final estimator of the parameters of the underlying
NHPP.

2.3 Model Adequacy Checking

To perform diagnostic checking of the adequacy of
the fitted NHPP, Lee, Wilson, and Crawford (1991)
recommended informal visual assessment of the uni-
formity of the observed point process after it has
been “detrended” using the final estimate of the
mean-value function. Consider the observed series
of event epochs t; < t; < --- < t, for the origi-
nal process in the interval (0, S]. Let 4(t) denote
the mean-value function of the fitted NHPP corre-
sponding to the final estimate ©,,. If the original
process {N(t) :t € (0, S]} is in fact an NHPP whose
mean value function u(t) has been accurately esti-
mated by fi(t), then the detrended process {M(s) =
N[i~'(s)] : s € (0, a(S)]} with the event epochs
51 = p(t) < 82 = at) < - < 8, = fi(t,) should
closely approximate a homogeneous Poisson process
with unit rate. Thus the detrended interevent times
{)2,- =5—8i-1:i=1,...,n; 5o = 0} should closely
resemble a random sample from an exponential dis-
tribution with mean 1/X = 1; and this should be re-
flected in approximate linearity of the corresponding
exponential probability plot (Hahn and Shapiro 1967,
pp. 202-294). If { X;} is a random sample from an ex-
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ponential distribution with mean l/:\ and if X(k) is
the kth order statistic of the sample, then
=

E[Xw| =3 — for k=1,...,n

Aizg "¢

(Feller, 1971; pp. 19-20); and in this case a plot of
f((,,) versus Y F_ 1/(n — i) should be nearly linear.

As a final visual check on the adequacy of the fit-
ted NHPP, Lee, Wilson, and Crawford (1991) also
recommended comparing the plot of the fitted mean-
value function fi(t) against the plot of the cumulative
number of events N(t) observed up to time t for all
t € (0, S]. Since these visual diagnostic checks are not
easily automated and currently there are no formal
statistical tests for uniformity of the detrended event
epochs in which the null distribution of the test statis-
tic is known, we did not attempt to perform any di-
agnostic checking of the adequacy of the fitted NHPP
on each replication of the estimation procedure. How-
ever, the plots given in §4 allow visual evaluation of
the adequacy of the fitted rate and mean-value func-
tions over all 100 replications of the procedure.

3 EXPERIMENTAL PROTOCOL

3.1 Processes to be Simulated

To carry out an experimental performance evaluation
for the estimation procedure detailed in §2, we simu-
lated K = 100 independent replications of an NHPP
with a third-degree EPTF

3
A(t) = exp| ) ast' + ysin(wt + ¢) (15)

i=0
for all t € (0, S], where the actual parameter values
are displayed in Table 1. This is a variant of the
process used by Lee, Wilson, and Crawford (1991) to
model the arrival pattern for storms at an off-shore
drilling site in the Arctic Sea. Note that the time
unit is a year, and the oscillation frequency w = 2x
so there is exactly one cycle per year. To study both
the small- and large-sample properties of the estima-

tion procedure, we considered separately the cases in
which S =4 and § = 12.

3.2 Simulation Algorithm

To generate independent replications of the target
NHPP having rate function (15), we used the thin-
ning procedure of Lewis and Shedler (1979) with the
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Table 1: Parameters of NHPP Used in the Experi-
mental Evaluation

Parameter Value

ag 3.6269
a —0.4743
Qag 0.0873
a3 —0.0041
” 1.0592
é —0.6193
w 6.2831

piecewise linear majorizing function
()= (at+b) I, L)  (16)
i=1

for all ¢ € (0, 5], where the points Ly = 0 <
Li < Ly < -+ < L, = S constitute a partition of
(0, S] and I(z,_, r;)(t) is the indicator function for
the jth subinterval (L;_1, L;]. Procedure maxline()
of Lee, Wilson, and Crawford (1991) was used to
determine the parameters {a;,b;,L;} of a function
A*(t) which majorizes the target rate function A(t)
so that A*(t) > A(t) for all ¢ € (0, S]. Then the
“piecewise thinning” procedure nhpp() of Lee, Wil-
son, and Crawford (1991) was used to simulate the
target NHPP.

For completeness we provide a brief description of
procedure nhpp(). To simplify the notation in this
discussion, we will write the increment of the majoriz-
ing mean-value function over the subinterval (t;,12]
as follows:

t2

/A‘(tl,tg)z /\‘(z)dz, 0ty <t255. (17)

t
For the majorizing process with the rate function (16)
and mean-value function (17), the cumulative distri-
bution function of the ith event time 7;* conditioned
on the value of the previous event time 7;_; can then
be expressed as

Fr:(tr_y) = Pr{r] <t|rf_,} (18)
_ 0, t< 1,
- { 1—exp{—p*(r_,t)}, t>1",
with 75 = 0.

Given the (i — 1)st event time 7;"_, for the majoriz-
ing process, we generate the next event time 7;* for
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this process via the method of inversion by sampling
a random number U, solving for ¢t in the equation
Fr:(t|7i_;) = U, and setting 77 = t. This amounts to
solving for 7* in the equation

# (o, ) = —log(1 - U). (19)

Suppose that the (i —1)st event time 7;*_; falls in the
jth subinterval (Lj_1, L;]. We compute the ith event
time 77 from (16)—(19) using the sampled random
number U as follows. If —log(1 — U) < p*(7_,, L;)
so that both 7°_; and 77 occur in the jth subinterval,
then we have

. —bj+§/(ajr,-‘_l+b,-)2—2aj log(1-U)
T =

a;

if a; # 0; (20)
and

* * lOg(l—U)
R
J

if a;=0.  (21)
On the other hand, if —log(1 — U) > p*(7_,, Lj) so
that 77 occurs in the kth subinterval for some k& >
Jj+1, then from (16)—(19), we have

*

=
— b+ /(ax Lot + bi)? — 2a,[Q + log(1 — U)]
af
(22)
if ax #0, and
e Qili’il_—U—) if e =0, (23)
k

As the final step on each iteration of the logic
of procedure nhpp(), the next event epoch 7 of
the majorizing process is “thinned” with probability
1= X(7})/A*(7}) to yield the next event epoch 7, of
the target process. This means that another random
number U’ is generated and if

U < M)/ (), (24)

then 7} is delivered as the next event epoch 7 of
the target NHPP. Otherwise, i is incremented by one
and the steps described in equations (19)-(24) are re-
peated by sampling another pair of random numbers
(U, U"). The preceding sequence of steps is reiterated
until condition (24) is satisfied.
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3.3 Performance Measures

To characterize the accuracy of the approximations
to the target NHPP that were obtained by the esti-
mation procedure detailed in §2, we used several nu-
merical and graphical techniques. On the kth repli-
cation of the estimation procedure, let Ay (t) (respec-
tively, fix(t)) denote the estimated rate function (re-
spectively, the estimated mean-value function). The
average absolule error in the estimation of the rate
function A(t) on the kth replication is

1 1%
8 = —/ I/\k(t) - ,\(t)| dt,
S Jo
and the mazimum absolute erroris
8 = max{|ik(t) - )\(t)| :0<t< S}

for k =1,...,K. We computed similar performance
measures with respect to estimation of the mean-
value function p(t):

A= %/S (0 - o) a
and
A; = max{|f(t) - w)| : 0 < t < S}

fork=1,...,K.

To provide a visual assessment of the quality of
the estimates of the rate and mean-value functions,
we also plotted tolerance intervals for these functions.
For a fixed time ¢ € (0, S], let

Ay(t) < Aay(t) < - < Aoy (?)

denote the ordered estimates of A(t) obtained on all
K = 100 replications of the estimation procedure.
Then we have the following approximate 100(1—3)%
tolerance interval for the quantity A(¢) when t €

(0, ):

Awwesrzen(®), :\(LK{I—ﬁ/2}J+1)(t)] (29

where |z| denotes the greatest integer strictly less
than z. Thus in particular when K = 100 and 8 =
0.10, the 90% tolerance interval for A(t) at a single
fized time t € (0, S] is [A(s)(t), Aosy(t)). Similarly
we obtained tolerance intervals for the mean-value
function u(t) at an arbitrary fixed time t € (0, S].
By superimposing plots of true rate function and the
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Table 2: Statistics Describing the Errors in Estimat-
ing A(t) and u(t) for t € (0, S] when S =4

A(t) p(t)
DataSet {6:} {67} 18k} {AL)
Mean 503 20.58 6.85 11.32
Std Dev 158  9.19 440  5.68
Min 2.24 8.37 1.29 3.19

Max 8.96 57.26 18.79  25.51

corresponding the upper and lower tolerance limits
in (25), we get an overview of the accuracy of the
estimation procedure. Similar remarks apply to the
mean value function.

The estimation procedure detailed in §2 and the
simulation algorithm discussed in §3.2 have been im-
plemented in portable FORTRAN 77 subprograms
which are in the public domain and are available
upon request. These subprograms make extensive
use of NETLIB routines (Dongarra and Grosse 1987)
and the portable random number generator UNIF()
of Bratley, Fox, and Schrage (1987). For all of the
experiments reported in the next section, we used a
significance level of 10% in the likelihood ratio test
(14) to determine the degree of the polynomial rate
component.

4 EXPERIMENTAL RESULTS

First we consider the “small-sample” results for the
case in which S = 4 so that the cyclic behavior in the
target arrival process can only be observed for four cy-
cles. On each replication of the estimation procedure,
the number of observations n is Poisson distributed
with mean p(S) = 118.51. Table 2 summarizes the
results for this case.

Figures 1 and 2 display 90% tolerance intervals for
the rate function and the mean value function in the
case that S = 4. The results presented in Table 1
taken in conjunction with the tolerance intervals in
Figures 1 and 2 provide some evidence of the ability
of the estimation procedure to accurately estimate
the NHPP having rate function (12) based on small
to moderate sample sizes.

Next we consider the “large-sample” results for the
case S = 12 so that the cyclic behavior of the tar-
get process can be observed for twelve cycles. Ta-
ble 3 summarizes the results for this case. On each
replication of the estimation procedure, the number
of observations n is Poisson distributed with mean
u(S) = 405.5. Although the sample mean of the
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Table 3: Statistics Describing the Errors in Estimat-
ing A(t) and p(t) for t € (0, S] when S =12

At) p(t)
DataSet {8} {8}  {A:} {A}}
Mean  3.99 2152 1021 20.46
Std Dev  1.63  9.60 6.48 11.13
Min 105 4.78 174 447
Max 837 5457  31.17 55.25

5
o
J

120.0

100.0
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PR T W0 T N U U U0 W N Y WS W S N WS W W T N Y U U T 0 U T T O A W O |
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X 2.0 3.0

Time t '(yeara)

Figure 3: 90% Tolerance Intervals for A(t), t € (0, 4],
when S = 12

maximum absolute estimation errors {é;} is roughly
the same for the small-sample case as for the large-
sample case, we also observe that the sample mean
of the time-averaged absolute estimation errors {6y}
declines by about 20% in the latter case. Figures 3-
5 depict this phenomenon graphically—although the
estimation errors remain relatively stable in magni-
tude within a small neighborhood of each local mini-
mum and maximum of the underlying rate function,
everywhere else the estimation errors decline in mag-
nitude as the size of the data set increases.

5 CONCLUSIONS AND RECOMMENDA-
TIONS

It is generally difficult to characterize periodic be-
havior in nonstationary point processes. In our ex-
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perience, an NHPP whose rate function includes a
long-term trend or a cyclic rate component can be ad-
equately modeled with an EPTF-type rate function.
Moreover, the parameters of an EPTF-type rate func-
tion can be estimated efficiently by (a) using a likeli-
hood ratio test to identify the degree of the polyno-
mial rate component; and (b) solving the usual like-
lihood equations to derive the maximum likelihood
estimates of the continuous parameters of the rate
function. The scheme for obtaining initial parame-
ter estimates using equations (7)-(13) has been found
to work reliably in practice. In our experience, the
Newton-Raphson scheme for solving the likelihood
equations (3)—(6) requires much more computing time
than the scheme for determining the initial parameter
estimates; and yet the Newton-Raphson scheme often
yields relatively little additional improvement in the
accuracy of the fit. Thus the scheme for determining
initial parameter estimates may be used as a “quick”
method for fitting a sample data set using an NHPP
with an EPTF-type rate function.

An NHPP with an EPTF-type rate function can
be generated exactly and efficiently by the piecewise
thinning algorithm nhpp() of Lee, Wilson, and Craw-
ford (1991). The supplemental procedure maxline()
provides a piecewise linear majorizing function which
is close enough to the original rate function to achieve
high efficiency. To facilitate the use of the statistical-
estimation and simulation procedures discussed in
this paper, we have implemented all of these proce-
dures in portable, public-domain subprograms writ-
ten in FORTRAN 77.

The experimental performance evaluation reported
in this paper is the first step in a more comprehen-
sive Monte Carlo study of the estimation procedure
of Lee, Wilson, and Crawford (1991). To support
truly general conclusions about the performance of
the estimation procedure, we must experiment with
a much broader diversity of NHPPs whose rate func-
tions exhibit different types of periodic behavior or
evolutionary trends. We also need to examine situ-
ations in which the oscillation frequency is unknown
and must be estimated. Finally, we need to test the
estimation procedure using NHPPs with non-EPTF-
type rate functions. On the basis of the preliminary
results reported in this paper, there is some reason to
believe that satisfactory performance can be expected
in a wide range of input-modeling applications.

Several extensions of the estimation procedure
should also be considered. Of particular interest is
the case of an NHPP whose rate function exhibits
multiple periodicities. Issues of numerical stability
should also be investigated. Although we have devel-
oped special computation techniques to avoid numeri-

Johnson, Lee and Wilson

cal problems in the estimation procedure, it is unclear
whether these techniques are absolutely necessary or
whether these techniques can be made substantially
faster.
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APPENDIX

If k =0, then we have

[cos(9) — cos(wS + 9)]

w

M;in (0,55 w, 8) =

If £ > 0, then repeated integration by parts yields
Msin(k’ S; w:¢) = (A‘l)

Lk/2) -
-1 r+1k!Sk 2r
cos(wS +9) 3 T ES T

=0 (k—2r)lw?r+l
1k-1/2)

. (=1)rktGk-2r-1
+sin(wS + ¢)
,Zz:o (k —2r — 1)!w?+?

1
_(_I)L(k—l)/2J_L Rk, (A-2)
wk+1

where | z] represents the greatest integer < z and

Ry = { cos(¢) if k is even

sin(¢) if k is odd (A-3)

Note that (A-1) and (A-3) correct analogous formulas
given in Lee, Wilson, and Crawford (1991).
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