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ABSTRACT

We explore the use of models of continuous tandem (CT)
lines for performance analysis of discrete tandem (DT)
production lines. We formalize the translation of input
parameters and performance measures (PMs) between DT
and CT lines. We show that the CT model can be repre-
sented as a generalized semi-Markov process (GSMP).
This leads to a concise simulation algorithm for a CT
model. We show empirically that the CT model provides
reasonable estimates for the DT line PMs. We provide
preliminary results on gradient estimation for CT models
via infinitesimal perturbation analysis (IPA). The aim of
the paper is to provide a basis for the further exploration
of CT models as a means to parameter optimization for
DT lines.

1 INTRODUCTION

There exist two distinct types of manufacturing systems:
discrete and continuous. These terms indicate whether
material moves through the processes as discrete entities
(e.g. an automobile factory) or as continuous fluid (e.g. a
chemicals plant). In this paper we are concerned with a
particular configuration of production line, namely a tan-
dem line consisting of a sequence of machines in series
(Figure 1).
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Figure 1: Tandem Production Line

This paper summarizes some initial work which is
part of our long term research aim to enhance the set of
tools available for modeling and parameter optimization
of discrete tandem (DT) lines. Further details are avail-
able in Suri and Fu (1991a and 1991b).

Our approach focuses on the analysis of DT lines
using continuous tandem (CT) models. The reasons why
it is worth exploring this avenue are as follows. i) the
optimization of real world DT lines continues to require
large amounts of computational effort (e.g. see Wei,
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Tsao, and Otto 1989). We feel the simulation algorithm
and other characteristics of the CT model (below) will
provide considerable increase in computational efficiency.
ii) all the parameters in the CT model are continuous
(e.g. buffer sizes). For stochastic systems, techniques for
continuous parameter optimization are much more
efficient, and better understood than those for discrete
parameter optimization (Glynn 1986). iii) with con-
tinuous parameters there is the possibility of using gra-
dient information to speed up the optimization algo-
rithm. Recently there have been many advances in gradi-
ent estimation for stochastic systems (see Suri 1989),
and there is much evidence for the fact that such
estimates considerably improve the convergence rate of
optimization algorithms. iv) a few previous researchers
have also considered the use of CT models to analyze DT
lines (see section 1.2). However, this has been done on a
somewhat ad-hoc basis, with each study using different
assumptions. We hope to provide a formal framework.

Our research concept is summarized in Figure 2. The
figure indicates that production lines are currently
analyzed using simulations of DT lines (A). The first
step is to study the relation between DT and CT models
(B), and then to obtain methods for optimizing CT
models. With such tools available, we could then hope
to use CT models themselves as decision support tools
for production lines (C). Figure 3 outlines the main
research steps needed to obtain this goal.

There is a substantial body of literature on the analysis
of tandem production lines (see the bibliography in Suri,
Sanders, and Kamath 1992). Even so, analytic results are
available only for 2-machine and 3-machine lines. The
analysis of longer lines has involved the use of heuristic
approximations or simulation models.

Analytic solutions for 2-machine DT lines are given in
Gershwin and Schick (1983). For longer DT lines, ap-
proximate solution algorithms are proposed in Choong
and Gershwin (1987), and Dallery, David, and Xie
(1988). An alternative approach to DT line analysis has
been to use simulation along with gradient estimation
arglg optimization techniques (Ho, Eyler, and Chien
1983).
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Solutions for 2-machine CT lines are in Gershwin and
Schick (1980), and Dallery, David, and Xie (1989). An
approximation for longer CT lines is presented in
Dallery, David, and Xie (1989). A comparison of 2-
machine DT and CT models can be found in Koster and
Wijngaard (1989) and for longer lines in Alvarez,
Dallery, and David (1991). These results indicate that the
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use of a CT model to approximate a DT line is often jus-
tified.

In our search of the literature, we have not found pre-
vious work that provides a clear translation of parameters
and detailed PMs between the two models, and which
thoroughly compares the detailed PMs for the cases of
longer lines. There also does not appear to be any work
on gradient estimation or optimization for simulations of
CT lines.

2 MODEL DESCRIPTION

A tandem line, whether discrete or continuous, consists
of M processing machines (S;, ..., Sp) in series, con-
nected by M-1 buffers (By, ..., By—j), see Figure 1. A
line in which the cycle times at all machines are the
same is called a homogeneous line. Here we will allow
the cycle times to be different (a nonhomogeneous line).

We discuss a short sample path for a 2-machine sys-
tem for each of the two models. The two sample paths
are shown in Figure 4. First we discuss the DT line, see
Figure 4(a). Let the cycle time for S; be 1 and for S, be
2, and the capacity of B be 1. The products being made
are labelled as PI, P2, and so on. Assume that, at time
0, both §; and S, are working (not failed), with P2
starting a cycle at S;, and PI at S, and that B; is
empty. At time 3, P4 completes its cycle at S; but since
B is full, P4 cannot leave, and §; cannot continue to
work. In this case, S; is said to be blocked. Similarly,
the reader can follow the sample path through time 6.
Suppose the first failure of S; is destined to occur after it
has operated for 4.5 time units. This is called the operat-
ing time to failure. Then we see in Figure 4(a) that §;
fails at time 6.5 (since it was not working for 2 time
units while it was blocked), while still processing P6.
S7 is now said to be down. Meanwhile, §7 continues to
operate, but at time 10 we see that it has no more prod-
ucts to work on. It is said to be starved. Suppose S; is
repaired 4.5 time units after it failed. This is called the
time to repair. Then it starts working again at time /1,
finishes its work on P6 at time 1.5, at which point P6
goes immediately to §2 which can now start working
again.

Figure 4(b) shows a sample path for a CT line. We
have chosen parameters and operating conditions in a
way such that the sample path "resembles” that of the
DT line. The processing capacity of §; is I unit of vol-
ume per unit time, and that of S, is 0.5. The capacity of
Bj is 1 as before. Let v; and vy be the actual processing
rate of §7 and Sy, at a given point in time. Figure 4(b)
shows plots of v; and v, over time. Also shown is the
level of the buffer. We start at time 0 with the buffer
empty and S; working at its full rate of 1. As soon as
§; begins producing, due to the nature of the CT line,
product is immediately available to S, which begins
working at its full rate of 0.5. Since the rate of S7 is
less than that of §;, the buffer level starts to rise at the
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rate of 0.5 units per unit of time. At time 2, the buffer is
full, so §; is constricted by S, and the processing rate at
§; is reduced to 0.5. Note, however, that unlike in the
discrete case where §; got blocked and completely
stopped processing, in this case product still keeps flow-
ing through S;, B, and S2. We will say S; is in a re-
duced flow condition. There is a strong correspondence
between the two sample paths. Consider time units 2
through 6 for §; in both lines. We see that the average
production rate in both cases is 0.5. The reduced flow in
the CT line thus mimics, in a "smoothed out" manner,
the blocking in the DT line.

Next, for the CT line we suppose that the failure of S;
occurs after it produces 4.5 units of volume. We will call
this the operating volume to failure. Because of the peri-
ods of reduced flow rate of Sy, this failure will occur at
time 7. §7 can still keep processing and the buffer level
decreases at a rate of 0.5. At time 9 the buffer becomes
empty and S is starved. As before, we suppose the re-
pair of §; occurs 4.5 time units after the failure, so in
this case Sy is repaired at time 711.5. Note that S2 also
resumes its operation instantaneously.

These observations will form the core of our method
for translating performance measures from the CT model
to the DT line.

Now we formalize our models for the two types of
lines. The following assumptions apply to both types of
models.
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Figure 4: Sample Paths of 2-Machine Lines
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Al. There is an unlimited supply of material avail-
able to S, that is, S; is never starved.

A2. There is an unlimited storage area following
Su. that is, Sps is never blocked.

A3. There is no transfer delay.

A4. A machine can fail only when it is operational.

AS. The repair time for each machine is exponen-
tially distributed. (A general distribution can be
used here. However, we choose the exponential
distribution in order to compare our results with
analytic ones, where available.)

For the DT model, we have the following additional

assumptions.

A6D. The cycle times of machines are deterministic.

A7D. The operating time to failure for each machine
is exponentially distributed. (The remark in A5
applies here t00.)

A8D. Machines operate and are blocked via the
"manufacturing blocking” procedure (Altiok and
Stidham 1982).

With the above assumptions, our DT line model can

be completely characterized by the following parameters:

T; Cycle time of §;

fi Mean operating time between failures for S;

ri Repair rate for §;

B(j)  Buffer size of Bj (non-negative integer)

For the CT model, we have the following additional

assumptions.

A6C. The processing rate at a machine can range from
0 to its maximum processing capacity.

A7C. The operating volume to failure for each ma-
chine is exponentially distributed. (The remark
in AS applies here too.)

With the above assumptions, our CT line model can

be completely characterized by the following parameters:

C;  Maximum flow rate (processing capacity) of S;

w;  Mean operating volume to failure for S;

ri Repair rate for S;

B(j) Buffer size of B j (non-negative real number)

We propose the following translation for the parame-

ters from the DT model to the CT model:

Ci=1T;

w; = filT;

ri and B(j) remain the same.

3 A FORMAL MODEL FOR A CT LINE

Now we provide a formal model for the dynamics of a
CT line. For DT lines, such a model is commonly avail-
able, thus we will only present a CT line model here.

A generalized semi-Markov process (GSMP) is a
mathematical framework for studying DEDS. For more
about GSMPs see Glynn (1989).

Now we show that it is possible to construct a GSMP
representation for the dynamics of a CT line. This may
be surprising since one associates GSMP models with
DEDS which typically have discrete entities (e.g. cus-
tomers), and as stated by Glynn (1989), "DEDS are fre-
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quently used as models of systems having piecewise con-
stant trajectories”. Thus, one does not expect a model
with continuous fluid in it, and with a time-varying tra-
jectory as in Figure 4(b), to be representable as a GSMP.
Making this formal connection has some benefits: i) it
provides a formal model of CT lines that might serve as
a standard reference for researchers. Such a standard seems
to be lacking in the CT line literature. ii) the resulting
simulation algorithm is simple. iii) many results are
available in the context of GSMPs and these could be
brought to bear on CT models where needed (Glynn
1989). Also Glasserman (1991) provides several results
on consistency of IPA for gradient estimation in
GSMPs.

First we define the physical state of the line. The dis-
cussion here is greatly abbreviated (see Suri and Fu
1991a for details). Let ¢ denote time and ¢;j(¢) be the state
of §; at time ¢, where

D, if §;is down (failed),

0, if §;is operational (full flow),

%(t)=3g, ifs§; is starved (reduced/zero flow),
B, if S;is blocked (reduced/zero flow).

Let vj(t) be the flow rate of §; at time ¢. Let xj(t) be the
level of B j at time f.

The set of event types in a CT line is E = {Fi, Ri,
BE;j, BFj, Tfi=12_..,Mj=1, 2, ..., M-I}, and
each of these events is defined in Table 1.

Table 1: Summary of Events

Symbol Event Represented

Fi Failure of §;

Ri Repair of §;

ij Bj becomes Empty

B]-"j Bj becomes Full

Tf Termination of the simulation

In a GSMP, each event is associated with a clock rep-
resenting the residual lifetime of that event, and each
clock has a speed at which it runs down. When the clock
associated with an event runs down to 0, that event oc-
curs. Upon the occurrence of an event, changes may oc-
cur to the physical state, clock settings, and clock
speeds, according to defined rules. The clock definitions
and speeds for the CT line are in Table 2.

Now we describe how the system evolves. Let

k(e, t) be the reading of the clock for event e at time ¢

r(e,t) be the speed of k(e, t)

E(t)  be the set of events for which r(e, t) 20
E(1) can be thought of as the current set of possible
events. At time ¢, the additional time to the possible oc-
currence of event e is defined as At(e, t) = k(e, t)/r(e, 1),
fore € E(t). )

With the above definition, the next event to occur 1s
given by
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e*(t) = argmin {At(e, 1): e € E(1)}.
e

Now consider the effect of an event, say e, on the sys-
tem. Define pseudo-buffers Bg and By with xp(t) = o
(for all ¢) and B(M) = oo. We start by understanding the
"local" dynamics of a CT line, i.e. how buffers and ma-
chines interact with their immediate upstream and down-
stream neighbors:

If event at time ¢ is BFj then

{ vi(t) = vi+1(1); ai(t) =B;}
If event at time ¢ is BE; then
{ Vit 1() = vi(t); 041(1) = S; }
If event at time ¢ is ¥ then
{vi(t) = 0; aj(t) = D; k(Rj, t) = sample(1ir;); }
If event at time ¢ is R then {
set vj(t) according to Table 3;
S, if x;.7(t) = 0 and vj(t) = vj-1(t),
aj(t) = {B, if xj(1) = B(i) and vj(t) = vi4+ (1),
0, otherwise;
k(Fi, t) = sample(w;); }

where sample(y) denotes a sample taken from an ex-

ponential distribution with mean g.

Finally we model the "global" dynamics, i.e., how an
event at §; or B; affects buffers and machines in the rest
of the line. Here we simply present the logic for the up-
stream and downstream effects of a change. For a detailed
explanation see Suri and Fu (1991a).

If vj(t) is changed at time ¢ then do {

m=1,

while (x;,(t) = 0) and (m <M - 1) do {
Vm+1(t) = min(v(t), Cm+ 1),
ifVm+](t) = Vm(t) then am-{.](t) = S,'
else ayp+1(1) = 0;
m=m+1;]}

m=i-1;

while (xp,(t) = B(m)) and (m 21) do {
vm(t) = min(Cpy, v+ 1(1));
if vip(t) = v+ 1(t) then oy 4 4(t) = B;
else oyy(t) = 0;
m=m-1;}}

Any clock, clock speed, or other physical variable not
updated in the above equations simply retains its value
prior to the event. After this event, the system proceeds
along its sample path until the next event occurs, and the
process repeats itself until the termination event.

This completes the formal description of the CT model
in terms of a GSMP. A simulation algorithm imple-
menting the above logic is given in the Appendix.

4 TRANSLATION OF PERFORMANCE
MEASURES

We assume that the PMs to be estimated for the DT line
are steady state values of: line throughput, average buffer
levels, machine utilizations, average product flow time,
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Table 2: Clock Definitions and Clock Speeds

Symbol Clock Description Clock SpeedT
Wit) Remaining operating  vi(t)
volume to failure
for S; at time ¢
Ui(1) Remaining repair time  1,,,.) _ p
for S; at time ¢ {ai(t) J

xj(1) Level of Bj at time ¢ [Vj+1(f)—vj(f)]+
B(j) - xj(t) Excess capacity of Bj  [vj(t) - Vj+1(f)]+
at time ¢
q@t) Remaining volume to  vum(?)
be produced by Sy
at time ¢

1 {-} is the indicator function of set {-}. [x] +=max(0, Xx).

Table 3: Flow Rate Update Table for S;

If then
xi—1(t) __ xi(t) vi(t)
=0 =B(i) | min (vi-1(1), Ci, vi+1(1))

=0 < B(i) min (vi-j(t), Cj)
>0 =B(i) min (Cj, vi+ (1)
>0 < B(i) Ci

and average work-in-process (WIP). The definitions of
these PMs for DT lines are well accepted. On the other
hand, for CT lines it will be seen that the definitions of
certain PMs are not straightforward. While several defini-
tions could be justified, in each case we propose one that
will most closely track the DT line PM.

Let tp, t;, ... be the times of the Oth, Ist, ... occur-
rences of events in a sample path. We assume that stan-
dard methods are being used to estimate steady state PMs
from a finite observation period, namely the interval
from ¢y to ty (where ¢y, < ty). Define At; = t; - tj_;
and T = ty, — ty,. For the derivations below, note that the
machine states do not change in [t;_y, tj) and hence the
flow rate of machines is piecewise constant.

We use the argument "DT" with a PM to denote the
definition for a DT line. PMs without this argument de-
note our suggested definitions of PMs derived from the
CT line model.

Throughput: For a DT line, the throughput is defined by
TPpT = no. of pieces produced by Sps in [ty, tp]/T. For
the CT line, we define throughput in the natural way,
namely,

fn n
1 1
TP = T J'vM(l)dl=7 2 vM(ti-1) - At
Im i=m+l

where we use the fact that vy(t) is piecewise constant.
Average buffer level: For the CT line we define average
buffer level in the same way as for a DT line:

Suri and Fu

T
Xj= 7T jxj(t) dt.
Im

Machine utilizations: In a DT line, the utilization of a
machine is broken out into four categories: cycle,
starved, blocked, and down. Each represent the proportion
of time the machine spends in the corresponding state.

For a machine in the DT line, the cycle utilization rep-
resents the proportion of time the machine is busy. This
is not the quantity we should observe for the CT line,
since a machine can be busy but working at a highly re-
duced rate. To get to a suitable definition for the CT line,
consider again the DT line definition:

U, prfi) = time in cycle/total time
= (time in cycle/T;)/(total time/T5).

Now the numerator is the number of pieces actually pro-
duced in the observation period, while the denominator
represents the potential number of pieces that could have
been produced. With this in mind we propose:

t n

n

. 1 1

Ueli) =G [vidt = oz T vifte-1) - At
¥otm Y k=m+1

Similarly, we propose for the starved utilization and
blocked utilization:

n
. 1
Ugi) = o7 z [Ci~viltk-1)]-{a(ty ;) = S} Akk-
k=m+1

n
L
Unli)=g1 . [Civiltk-DI " {o(ty.1) = B} Atk
k=m+1

The indicator function ensures the integral takes into ac-
count only the times when §; is starved (or blocked).
The down utilization is

n
.1
Uafl)=f Z I{ai(tk-l) = D} Atk
k=m+1

Average WIP: In a DT line, this includes products at the
buffers and at the machines. In our CT model, however,
there is no WIP at a machine. Thus we need to account
for this difference. In a DT line the average WIP in a ma-
chine S; is given by 1 — U(i). Since we already have an
estimate for the DT line value of Ug(i) from our CT
model, we can use this to get an estimate of the average
WIP for the DT line by adding a term to the CT line
WIP, giving

M-I M
WIP= Y xj+ 3 (1 -Us(i)].
=1~ =l
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Average Flow Time: Since the material in a CT model is
continuous fluid the calculation of product flow time
would require complex integration to account for the
time spent in the system by each infinitesimal piece of
material. Rather than compute this, we suggest using an
indirect estimate of the average flow time via Little’s
law. Therefore, we define a pseudo flow time as Flow
Time = WIP/TP.

This completes our set of proposed definitions of PMs
for the CT line. The merits of all these proposed defini-
tions will be tested via numerical results.

5 NUMERICAL RESULTS

Now we compare the PMs estimated from simulations of
DT lines (DTL) and CT lines (CTL). Our simulation
program for CTL, written in the C language, is an im-
plementation of the algorithm in the Appendix, while
the simulation of the DTL is written in the SIMAN lan-
guage. The PMs shown in the tables below are obtained
from the average of 10 independent replications. For each
replication, the simulation is run for 10,000 time units
(warm up) to eliminate the effects of the initial transient,
and then statistics are collected for a production quantity
of 30,000.

Three cases of CT lines are considered. Case 1 is a 2-
machine homogeneous line and Case 2 is a 2-machine
non-homogeneous line, both from Gershwin and Schick
(1980). Case 3 is a 6-machine non-homogeneous line
from Dallery, David, and Xie (1989). The input parame-
ters for the CT lines are listed in Tables 4 and 5. The last
column lists the isolated throughput (TP;) of S; defined
as TP; = wi/(wij/C; + 1/rj). The isolated throughput
gives an indication of how well the machines are
matched.

For Cases 1, 2, and 3, we translated the parameters to
their DT line equivalents (section 2) and simulated the
resulting DTL. Table 6 compares the main PMs from
simulations of DTL and CTL for all three cases, along
with 95% confidence intervals. The last column shows
the percentage deviation of the average CT line simula-
tion estimate from the average DT line simulation esti-
mate. We see that the throughput and WIP estimates are
within 3%, while the average buffer level estimates are
within 4%.

Tables 7, 8, and 9 show the details of machine utiliza-
tions for Cases 1, 2, and 3, respectively. (such detailed
PMs have not been defined and studied in previous
work.) For Case 1 (Table 7), all the machine utilizations
of the CT line agree with those of the DT line to within
10-3. The estimates of starved utilization of S, are not

significantly different from zero (< 2x10-4) in both the
DT and CT lines, so an error term is not calculated here.

From Tables 8 and 9 we see that for Cases 2 and 3 the
relative errors of the detailed machine utilizations for
blocked, cycle and down are within 8%. The errors for
starved utilizations are higher. We will now discuss this
further.
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Of course, there are fundamental differences in the op-
eration of CT and DT lines. Beyond the simple fact that
entities are discrete in one case and continuous in an-
other, is the fact that this affects the detailed dynamics of
the line. For instance, suppose S; is starved because of
the failure of S;_;. In a DT line, after S;.; is repaired, S;
still has to wait for a workpiece to complete its process-
ing at §;-; before S; can start working again. On the
other hand, in a CT line, as soon as §;-; is repaired it
starts producing, and S; is also immediately operational.
These (and other) differences in the dynamics mean that
we can certainly expect some discrepancies between the
detailed performance measures of the lines. While the de-
tailed utilizations of the machines are not as accurate, we
find the main PMs (throughput, WIP) are still surpris-
ingly accurate. Furthermore, as shown in Suri and Fu
(1991a) the CTL estimates typically require less compu-
tation time since fewer events are processed.

6 GRADIENT ESTIMATION

In this section we preview some of our results on gradi-
ent estimation for CT lines. The aim is to show that,
although the IPA technique for gradient estimation was
originally developed for systems with discrete entities, it
can be applied (with appropriate extensions) to CT lines
as well. We consider estimating the gradient of steady
state throughput with respect to the flow rates of the M
machines (i.e. the M-vector of values dTP/dC,,, for
m=1, ..., M). The IPA algorithm for calculating this
gradient vector is concise and easily inserted in the simu-
lation code, as seen in the Appendix. The derivation of

Table 4: Input Parameters for Case 1 and 2

Case|M/c |Flow| Mean |Repair[Buffeq Isolated
Si |Rate | Operating | Rate |Size |Throughput
Ci |Volumeto| ri |B(j) TP;

Failure w;
1 1 1 10 07 | 4 0.875
2 1 1.429 0.1 0.125
211 3 2.5 04 | 5 0.75
215 2.976 0.32 0.80

Table 5: Input Parameters for Case 3

M/c | Flow Mean |Repair|Buffer| Isolated

Si | Rate | Operating | Rate | Size | Throughput
Ci |Volumeto| ri | B(i) TP;

Failure w;

1 12.809] 25955 ]1.316] 4 2.596
2 |3.571 160.714 0.2 2 3.214
3 13.571] 160.714 0.2 2 3.214
4 |3.571] 160.714 ]0.2 2 3.214
5 13.571] 160.714 0.2 4 3.214
6 12.882) 26.628 |1.316 2.663
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the algorithm will not be discussed here -- see Suri and
Fu (1991b) for a full discussion.

Preliminary numerical results indicate that this algo-
rithm is accurate. As a first example, we compare the es-
timates from the IPA algorithm with those obtained by a
central finite difference (CFD) estimate from the analyti-
cal formula for 2-machine lines (denoted
"CFD+formula"). This is done for two lines, namely
Cases 1 and 2 in section 4. (We chose the finite differ-
ence § = +0.01C,, to obtain CFD estimates for all the
tables in this section). The results are in Table 10. We
see that the IPA algorithm appears to give accurate esti-
mates for the four gradients shown in the Table.

Next we compare the IPA estimate with a CFD esti-
mate obtained via multiple simulation runs for a 6-ma-
chine non-homogeneous line taken from Dallery, David,
and Xie (1989). The input parameters for this line (Case
4) are in Table 11.

The numerical results are in Table 12. The IPA gradi-
ent vector estimate is obtained from observing 10 inde-
pendent replications. For each replication, the simulation
is run for a quantity of 100,000 products (warmup) to
eliminate the effect of the initial transient, and then
statistics are collected for a production quantity of
5,000,000. On the other hand, to get n gradient estimates
using CFD we need 2n sets of replications, each set hav-
ing the run lengths just stated. The gradient estimates are
shown in the table along with their 95% confident inter-
vals. It can be seen that the IPA estimate compares well
with the "CFD+simulation” estimate. However, the
CFD+simulation estimate takes 6.6 times the computa-
tional effort of the IPA estimate. (The CPU times are for
a Sun SPARC workstation).

Table 6: Main Performance Measures

Suri and Fu

Table 7: Machine Utilizations (Case 1)

CTL DTL Error
Simulation Simulation

Case 1 0.125+0.001 0.125+0.001 | 0.0%

TP Case 2 | 0.56110.003 0.573+£0.004 | -2.1%

Case 3 | 2.112+0.016 2.141+0.018 | -1.4%

Case 1| 5.970+0.001 5.979+0.001 | -0.2%

WIP Case 2| 4.035£0.017 | 4.041%0.033 | -0.1%

Case 3] 11.229+0.088 | 11.375£0.330 | -1.3%
Avg. Buffer

Case 1 3.971+£0.001 3.980+0.001 | -0.3%

Case 2 2.333+0.015 2.324+0.030 | 0.4%

Case 3

Bl 1.41+0.04 1.3610.04 3.7%

B2 0.90+0.02 0.88+0.04 2.3%

B3 0.87+0.02 0.89+0.04 2.2%

B4 0.86+0.02 0.8910.04 3.4%

BS 2.2140.03 2.29+0.05 3.5%

CTL DTL Error
Simulation Simulation
Block 0.857+0.001 | 0.857+0.001 0.0%
S1 Cycle 0.125+£0.001 | 0.125+0.001 0.0%
Down 0.018+0.001 | 0.018+0.001 0.0%
Cycle 0.125+0.001 ] 0.125+0.001 0.0%
S2 Down 0.875+0.001 | 0.875+0.001 0.0%
Starve 0 0 -
Table 8: Machine Utilizations (Case 2)
CTL DTL Emror
Simulation Simulation
Block 0.252+0.004 0.234+0.006 | 7.4%
S1 Cycle 0.187+£0.001 0.191£0.001 | -2.1%
Down 0.561+0.003 0.575£0.005 | -2.4%
Cycle 0.112+0.001 0.115£0.001 | -2.6%
S2 Down 0.591+0.003 0.603+£0.003 | -2.0%
Starve 0.297+0.002 0.283+£0.003 | 4.9%
Table 9: Machine Utilizations (Case 3)
CTL DTL Error
Simulation Simulation
Block 0.186+0.006 | 0.175+0.007 6.3%
S1Cycle | 0.752+0.006 |0.761+0.008 | -1.2%
Down 0.062+0.002 | 0.064+0.002 -3.1%
Block 0.181+0.006 | 0.190+0.009 -4.7%
S2 Cycle 0.591£0.004 |0.599+0.006 | -1.3%
Down 0.063+£0.004 | 0.061+£0.006 3.3%
Starve 0.165+0.003 | 0.150+0.006 10.0%
Block 0.156x£0.006 | 0.164+0.011 -4.9%
S3Cycle | 0.591+0.004 |0.610+0.001 | -3.1%
Down 0.070£0.004 | 0.069+0.005 1.4%
Starve 0.183+0.004 |0.157£0.011 16.6%
Block 0.128+0.005 |0.136+0.015 -5.9%
S4Cycle 0.591+0.004 |0.610+0.001 -3.1%
Down 0.063+0.005 | 0.068+0.005 -14%
Starve 0.218+0.007 | 0.186+0.017 17.2%
Block 0.098+£0.003 | 0.104+0.008 -5.8%
S5Cycle | 0.591+0.004 |0.610+0.001 | -3.1%
Down 0.0671£0.006 | 0.067+0.004 0.0%
Starve 0.244+0.006 |0.219£0.009 11.4%
Cycle 0.733+£0.005 | 0.756x0.001 -3.0%
S¢ Down 0.060+0.002 | 0.061+0.002 -1.6%
Starve 0.207+£0.007 | 0.183+0.002 13.1%
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Thus we see that the IPA algorithm already proven for
DT lines (Ho, Eyler, and Chien 1983) offers substantial
computational savings for gradient computation in CT
lines as well.

7 CONCLUSION

For practical purposes, it seems that DT lines can be rea-
sonably represented by CT models. The reason is that
one can expect much larger errors in the estimates of in-
put parameters (specially failure and repair rates). The
inaccuracies introduced by such errors would overshadow
those observed in Tables 6-9. '

We have, in fact, experimented with modifying the be-
havior of the CT model to make it behave "more like a
DT line". For instance, in the example at the end of sec-
tion 5, we can implement a restriction in the model that
whenever a machine is starved, it has to wait for a whole
unit of product to arrive (i.e. the buffer level must reach
unity) before it can start working. Other similar ideas
have been explored too. Some of these implementations
appear to give estimates that are closer to the PMs of the
DT line, but at the cost of several complications. First,
we realize that all such ideas introduce more types of
events, as well as the consideration of a discrete quantity
(a unit product), into the CT models. The resulting
model will be more like a simulation model of a DT line
which implies more events have to be simulated. This is
contrary to one of our aims of using the CT model.
Second, the translation of PMs back to the DT line be-
comes more complicated as well. Third, in our ongoing
research, we have successfully implemented IPA algo-
rithms (for gradient estimation) on the basic CT line.
With the more complex models, implementation of any
type of PA algorithms will be much less obvious.
Fourth, the CT model that we analyze corresponds to the
way an actual CT line would physically operate. So our
present and ongoing work (e.g. gradient estimation) can
be used by people designing such lines as well. This
would not be the case if we modified the CT model with
special rules. Finally, the CT model that we described in
this paper provides a simple and intuitive way to trans-
late the input parameters and PMs from/to a DT line. We
feel the ease and simplicity of translation, implementa-
tion, and speed of the simpler simulation, outweigh the
added accuracy that might be achieved.

Our study also suggests the possibility of applying
optimization algorithms to CT models as an approxima-
tion to the optimization of DT lines, for example, for
the optimal design of buffer sizes and cycle times. It is
conceivable that one could use a gradient estimation al-
gorithm, along with the "single run" optimization meth-
ods as in Suri and Leung (1987) on a CT model, and
then with a final translation algorithm obtain fast esti-
mates of near-optimal parameter settings for DT lines.
Our ongoing research is exploring these ideas. We hope
our study will provide the foundation for such research,
and stimulate additional work on this topic.
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Table 10: Gradient Estimates (Cases 1 and 2)

CFD + formula IPA
Case 1
dTP/C1| 2.292x10°5 (2.26240.327)x103
dTP/C2| 1.556x10-2 (1.554+0.013)x10-2
Case 2
dTP/dC1 1.817x10-2 (1.82140.016)x10-2
dTP/dC2| 3.497x10-3 (3.498+0.044)x10-3

Table 11: Input parameters for Case 4

M/c | Flow Mean Repair| Buffer | Isolated
Si | Rate | Operating | Rate | Size [Throughput
Ci |Volumeto| ri B(i) TP;
Failure w;
1 2.857] 85.714 ]0.250] 100 2.521
2 4.0 56.0 0.154 | 100 2.732
3 3.333] 116.667 }0.100] 150 2.593
4 3.125] 125.0 0.118 | 250 2.577
5 3.3331 120.0 0.083 | 250 2.500
6 3.226] 45.161 |0.286 2.581

Table 12: Gradient Estimates (Case 4)

Case 4 IPA CFD+Simulation

dTP/dC1

(1.42740.028)x10-1

(1.434+0.024)x10°1

dTP/dC2

(4.51340.052)x10-2

(4.518+0.048)x10-2

dTP/dC3

(1.029+0.009)x10-1

(1.029+0.010)x10-1

dTP/dC4

(9.14340.145)x10-2

(9.176+0.123)x10-2

dTP/dC5

(8.14840.234)x10-2

(8.193+0.198)x10-2

dTP/dC6

(7.849+1.143)x10-3

(7.883+1.230)x10-3

Simulation time for computing entire gradient vector:
IPA: 5090 seconds

CFD: 33820 seconds CFD/IPA = 6.64

ACKNOWLEDGMENTS

This work was partly supported by a grant from Ford
Motor Co.

APPENDIX : ALGORITHM FOR
SIMULATION AND COMPUTATION OF
MULTIPLE GRADIENTS OF A CT LINE

The definitions for the following variables are described
in the text: M, 1, 41, e*, q, Q, Ci, vi, o, B(j), W;, Uj,
and xj, fori=1,...,M,and j =1, ..., M-1, where the
argument ¢ is dropped for notational convenience. The
following notation is used in the CT line simulation al-
gorithm.

INF': A very large constant.

EM([i]:  Next possible event at §;.
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EBJj): Next possible event at Bj, and EB[M] de- for k =[2 ]to M {do K )1
notes the possible event T £ if vy # 0. temp[k]=—{ T k)= I(K*+1, k) +
TM[i]:  Time to th:occurrence of éM[i]‘ QSum[K*J[k] — QSum[K*+1][k]}I(v[K*] — v(K*+1]);

If (e* = BEg* ) then
fork=1toMdo
templk] = - { T1(K*+1,k) - I(K*, k)] +
QSum([K*+1][k] — QSum[K*][k]}/(v[K*+1] — v[K*]);

TBJi]: Time to the occurrence of EB[i], and TB{M]
is the time to the occurrence of EB[M].
Kum, Kp: Constants.
%

K : Index of triggering event. If(e* = Ty) then
L(j): Accumulator for average level of Bj. fork=1toM do
TSum(k]: MxI array of accumulators. temp[k] = — { TI(M k)+QSum[M][k]}Iv[M];

QSumfi][k], USum[i][k]: MxM array of accumulators. where 1(m. k) = 1, ifvfm] = Cy,
a,C,v, W, U, x,and L are the corresponding column "™ 7 10, otherwise.

vectors. The simulation algorithm is shown in 5 steps 3B-IPA. PERTURBATION UPDATE

and three procedures. The IPA algorithm is added to the fork=1toMdo{
simulation algorithm in the steps marked "IPA". TSum([k]= TSum[k] + temp[k];
fori=1toMdo

0. SYSTEM NﬂMI;A’HON . o INF- if (S; is failed) then
t=0;4=0;a=0:x=0L=0:q=0:xp=INF; USum{i][k] = USumli][k] - temp[K] ;
B(M) = INF; v; = Cy; Generate W; EB[M] = Tf: else
fori =2 to M do v; = min (vj.y, Ci); QSum[i][k] = QSum[i][k]+7-1(i k)

O-IPA. INITIALIZATION +v[i]-temp[k]; }
fork=ItoMdo{ 3. SYSTEM UPDATE

TSum(k] =0 ; t=t+A;q=q-vM - AL
fori=1toMdo wW=w-v - Au=u-1-1;
{ QSum[i][k] = 0 ; USum[i][k] =0} } forj=ltoM-1do{
1. NEXT EVENT AT MACHINES AND BUFFERS temp = xj; % = x; + (vj ~ V4 1) - A;

forj=1toM-Ido{ L(j) = L(j) + (temp + xj) - Ati2; }

case case
Vi > vj+1: { TBlj] = (B(j)~x)/(vj—vj1); * D vk 0] = .
EBJj] = B} e =Fg*: {og*=D;vg*=0, Ui sample(1/r;);
vi<vjyy: {TB[j] = xjl(Vi+1 = Vj); Update_Down_mcs (K );
E 3
EB[j] = BE}; } . Update_Up_mcs (K N n;}
vj=vj+1:  TB[j] =INF; e =Rg*: {Set_Flow_Rate (K");
el}d case } Wi = sample(w;),
fori=1ItoMdo{ Update_Down_mcs (K*);
if (o # D) then Update U (K* 1))
if (v; = 0) then TM[i] = INF; F o BF U U e
else { EM[i] = Fi; TM[i] = Wilvi; } ¢ =DFy": Updaie_Up_mes (K°); ,
else e =BEg*: Update_Down_mcs (K" );
{ EM[i] = Rj; TM[i] = Uj; } } end case
if (vpg #0) then TB[M] = glvy; 4. TERMINATION TEST
else TB[M] = INF; if (¢* = 7) then go to OUTPUT;
2.NEXT EVENT IN CTL else go to NEXT EVENT AT MACHINES AND
KM = argmin (TM[i]);i=1,2,.., M. BUFFERS;
KB =argmin (TB[i]);i=<1,2, .., M. 5. PMs OUTPUT
if (TM[Kpq] > TB{Kg]) then Throughput = Q/¢ ;
(K" =Kp: &t =TB[K]; ¢" = EB[K]; ) 5IPA GRADIENT QUTPUT
clse (K™ = Ki; &1 = TMIK]; ¢ = EM[K]; ) fork=110Mdo{ Gy = - QTSumfkJii2; }
3A-IPA. PERTURBATION GENERATION '

If (e* = Fg+ ) then procedure Set_Flow_Rate (n)
fork=1I1toMdo{ case

templk] = — { T1(K* k)+QSum[K*][k]}Iv[K*]; xp-1 =0and xp = B(n): vy = min (vy_1, Cp, vp41);
USum[K*][k] = 0; } xp-1 = 0and x,, < B(n): vy = min (vp.J, C,’:); "

If (e* = Rk~ ) then x = cv. = mi .

-1>0and xn = B(n): vy = min (Cp, vp4}):

for k = 1 10 M do temp(k] = USum{K*][k]; otherwise: {Vn=Cri 0i=00)
If ( e* = BFgx ) then end case:
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if (Vn = Vn-]) then on = S,'
if(Vn = Vn+]) then a" = B,'
procedure Update_Down_mcs (n)
while ((x; is empty) and (n <M - 1)) do
{n=n+1; Set_Flow_Rate (n), }
procedure Update_Up_mcs (n)
while ((xp, is full) and (n > 1)) do
{ Set_Flow_Rate (n); n=n-1;}
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