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ABSTRACT

A considerable amount of interest has been generated
in recent years on the use of the Robbins-Monro pro-
cedure to optimize stochastic systems via simulation.
An important condition for this procedure to con-
verge to the optimal value of the parameter is that
the gradient estimator be unbiased. The technique
known in the literature as Pertubation Analysis (PA)
is especially promising in this respect. While this
technique has been predominantly applied to queue-
ing models, Fu (1990) for the first time used PA to
derive sample path derivatives of (s,S) inventory sys-
tems. His results, however, require the distribution
of the aggregated demand during each review period.
In this paper, we extend his results to (s,S) systems
where the demand has an associated renewal arrival
process. We derive a methodology to determine sam-
ple path derivatives of the average cost per period
with respect to S and s. Our methodology uses the
distribution of individual demands rather than. the
aggregated demand. Preliminary results from simu-
lation experiments indicate that our estimators are
unbiased and have very low variance.

1 INTRODUCTION

Consider the standard infinite horizon, single prod-
uct, periodic review inventory model with full back-
logging and independent demands. Under these con-
ditions, Scarf (1960) and Iglehart (1963) showed that
an optimal policy can be found within the class of
(s, S) policies. However, determining the actual op-
timal values of (s, S) can be computationally quite
complex, and hence, is rarely attempted in real op-
erating systems (Nahmias,1989). The usual means of
finding the optimal values is either through dynamic
programming or through stationary analysis. The
stationary analysis approach can only be applied to
restricted cases and usually involves numerical meth-
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ods which do not allow for easy sensitivity analysis
or optimization. The dynamic programming method
is a recursive means of finding the optimal values,
but is not well-suited for sensitivity analysis. Algo-
rithms to determine approximately optimal policies
can be found extensively in literature, but the ma-
jority apply only to systems with restrictive demand
distributions. A comprehensive comparison of several
approximate (s,S) policies can be found in Porteus

(1985).

Given the analytical complexity of (s,S) inventory
systems, one obvious way to analyze them is via sim-
ulation. While evaluating alternate systems through
simulation is fairly routine, optimization through sim-
ulation is a challenging problem. Suri and Leung
(1991) review some of the common methods to be
found in the simulation literature on stochastic opti-
mization. The methods they mention are all basically
alternative approaches to span the search space of the
system parameters of interest, and the list includes
Complete Enumeration, Random Search, Coordinate
Search, Pattern Search, and Response Surface Meth-
ods.

One other approach that has evoked considerable
interest within the simulation community in recent
years is stochastic approximation, which is based on
gradient search techniques. The pioneering work in
this area was done by Robbins and Monro (1951).
Central to the stochastic approximation approach are
the sample path estimates of the derivatives of the ob-
Jective function with respect to the parameters of in-
terest. Blum (1954) showed that, under certain con-
ditions, the process converges to the optimal value
of the parameter with probability 1. One important
condition for convergence is that the gradient esti-
mate be unbiased. The difficulty in obtaining such
an unbiased estimator, in order to achieve conver-
gence in reasonable time, perhaps explains why this
approach - until recently - was rarely adopted. Ru-
binstein (1986) used the finite difference estimator,



Application of Perturbation Analysis

which gives a biased estimate of the gradient. The
technique of perturbation analysis (PA) originated
by Ho and Cao (1983) is one promising technique
for obtaining unbiased derivative estimators from a
single simulation of the system. Suri (1989) pro-
vides an excellent overview of this technique via the
G/G/1 queue, and a comprehensive monograph on
PA with an upto date bibliography can be found in
Ho and Cao (1991). Suri and Leung (1991) used in-
finitesimal (IPA) estimates within a Robbins-Monro
procedure to investigate empirically the optimization
of a M/M/1 queue in a single run. Fu (1989) gave
a theoretical proof of convergence for a similar IPA-
based algorithm.

Application of perturbation analysis to (s,S) inven-
tory systems was addressed, for the first time, by
Fu (1990). He considered a periodic review system
with full backlogging and general holding and short-
age costs. In addition, the demands were assumed to
(1) occur once each period, (ii) be independent and
identically distributed (iid), and (iii) have a general
but continuous distribution function. For this system,
he derived the PA derivative estimators for the inven-
tory level and average cost per period with respect
to s and q (=S—s), and provided strong consistency
proofs by comparison with analytical results.

The primary objective of this paper is to extend his
work to the more general setting where the demand is
also characterized by a renewal arrival process. Since
the demand process will always have an associated ar-
rival process, the distribution of aggregated demand
per period has to be viewed as a convolution of a ran-
dom number of occurrences per period. For the ma-
jority of individual distributions, specifying the distri-
bution of such a convolution will be computationally
intractable. In this paper, we address this problem by
extending the methodology developed by Fu (1990),
such that the individual demand distribution and not
the aggregated demand distribution is used to derive
the PA gradient estimates of the objective function
with respect to s and S.

The rest of the paper is organized as follows. Sec-
tion 1 basically presents the theoretical foundation
laid down by Fu (1990). The concept of perturba-
tion analysis as applied to (s,S) systems is explained
via the single demand per period model and expres-
sions for the sample path estimates of the gradients
are derived. In Section 2, we focus our attention on
the general setting where the demand arrival process
is specified. We use the basic principles developed
in Section 1 to develop a methodology that could be
effectively used to derive sample path gradient esti-
mates for this more general setting. In developing
a methodology for the above system, a major diffi-
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culty is the absence of any closed-form solutions, even
for special cases. Consistency of the estimates can
be verified through the use of “sample path proofs”
(see, e.g., Glasserman and Gong,1990), but we do not
attempt such proofs in this paper. Instead, in Sec-
tion 3 we provide some computational results which
compare our PA estimates with those using the finite
difference method. Finally, in Section 4, we discuss
related problems that we are currently investigating,
as well as further potentially promising avenues of
research.

2 GRADIENT ESTIMATORS FOR AVER-
AGE COST PER PERIOD

We consider the single demand per period model, and
develop the expressions for the gradient estimators
using perturbation analysis. The objective function
is the average cost per period, which we shall denote
as L(s,S). Thus, we are interested in estimators of
the partial gradients §1/6S and 6L /6s. We shall first
derive the expressions for estimating §L/6S. We shall
then show that this solves the problem of estimating
6L/6s as well.

2.1 Infinitesimal Perturbation Analysis
The IPA Component of §L/6S

The intuitive idea behind the derivation of sam-
ple path estimators using perturbation analysis is
a thought experiment of introducing a perturbation
into the sample path and tracing its effect. Figure 1
shows the sample paths for the inventory system op-
erating at S (called the Nominal Path) and S+ AS
(called the Perturbed Path). The vertical lines in
the figure represent review periods. At the beginning
of each period, depending upon the observed inven-
tory level, a decision is taken on whether to order
or not. It is assumed that order lead time is zero.
After this decision is taken, the aggregated demand
for the period is subtracted out. As can be seen,
the figure depicts the situation where an infinitesimal
change in S produces an infinitesimal change in the
objective function—in this case, the average cost per
period. The PA literature refers to this case as one in
which there is no change in the sequence of events in
the perturbed path. In this case IPA can be applied
(see Ho and Cao 1983), the derivation of which turns
out to be quite straightforward.

Derivation of (61/6S5)1p4

Let N = length (in terms of number of periods)
of the simulation run,
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Figure 1: Infinitesimal Change between Nominal and Perturbed Paths
Nt = number of periods in which expression for (§L/65) tpa would, in fact, be an un-
the inventory level is positive, b‘iased_ estimator for (§L/6S). However, consider the
- - . . situation shown in Figure 2. The figure shows the
N~ = number of periods in which . . .
) ) ) two paths conforming to the IPA assumptions until
the inventory level is negative, the epoch 9. At that point, we observe an ordering
h = holding cost per period, change in the perturbed path. More specifically, it
and p = penalty cost per period. can be observed that in the nominal path an order

From the sample path it is clear that :

h[(AS) * N*] — p[(AS) * N~]

AL = N
Therefore
- _ .. AL _R[N*]—p[N]
(6L/5S)[PA = Al.érBOA_S- = ———N—— (1)

The above expression is actually derived under the
additional assumption that during any period, the
nominal and perturbed paths are both either positive
or negative. This assumption is justified since the
probability of the inventory levels of the two paths
having opposite signs in any given period is negligible.

2.2 Smoothed Perturbation Analysis : The
SPA Component of §L/6S

If there were no possibility of a change in the or-
der of events in the perturbed path, then the above

is placed which raises the inventory level to S. In the
perturbed path, the inventory level is greater than s
and, hence, an order is not placed. From this point
on, we can observe a finite change in the objective
function. At epoch t;, the two paths converge, and
from then on proceed according to IPA assumptions.
To derive the sample path derivative estimator for
this case, we use the technique known as Smoothed
Perturbation Analysis (SPA) formulated by Gong and
Ho (1987). We derive the SPA component of §L/6S
by the following expected conditional contribution,
under the limit AS — 0 :

E[ordering change effect] =

N

Y E[AL |w € Q:(AS)] * P{w € 2(AS)}(2)
i=1

where Q;(AS) = {sample paths where ordering
change occurs in period i due to AS}. The first term
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Figure 2: Finite Change between Nominal and Perturbed Paths

in the above expression is the expected finite change
in cost caused by an ordering change, and can in gen-
eral be obtained through a single “off-line” simulation
run. Figure 3 shows how this is done and is pretty
much self-explanatory. We start the run by initializ-
ing the inventory levels of the perturbed and nominal
paths to be infinitesimally above and below s, respec-
tively. We then take the reordering decision immedi-
ately, which thus sets up an ordering change between
the two paths. The sample paths are then simulated
until they converge at epoch t;. We denote the pe-
riod ¢y to #; as a cycle. At t; we re-initialize and
restart the sample paths. As can be seen, the cycles
here form a renewal process. The simulation is run
for an adequately large number of cycles, from which
the “off-line” estimator denoted by E[AL | AS — 0],
AL = AL/N, is computed as

L,—-L,
E[ALlAS——vO]zi—"—C——)
where L, = total cost of the perturbed path,
L., = total cost of the nominal path,
C = total number of cycles.

We shall derive expressions for both the right-hand
derivative (AS > 0), as well as the left-hand deriva-
tive (AS < 0) of L. This becomes useful since, de-
pending on the system parameters, one may yield a

lower variance than the other. This aspect is dis-
cussed further in section 2. Denoting these deriva-
tives as (6L/6S)Ep, and (6L/6S)5p, respectively,
we have

(SL/6S)tp, = —E[AL|AS — 0]

°N
N .
S P{w € i(AS)} 3)

i
1 Asl—rf}w AS

(61/88)3p4 = s BIAL | AS — 0]

N Pluei(AaST)

' ; N AS (4)
To derive an expression for the probability term, we
have to identify the situation where there exists the
potential for an ordering change. Once this is iden-
tified, we compute the probability that an ordering
change would actually occur, given such a situation.
The situation for a potential ordering change for the
right-hand derivative is shown in Figure 4, while that
for the left-hand derivative is shown Figure 5. Fig-
ures 4 and 5 define some sample path quantities that
are required for the derivations. For the right-hand
derivative, Figure 4 shows that a potential change
exists at reorder point n if the inventory level X, is
below s and the inventory level X,,_; is above s. For
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Figure 3: Offline Simulation to determine Efordering change effect]

the left-hand derivative, the requirement is that both
X, and X,,_; be above s. In both cases, the change
would actually have occurred if @ < AS. We now de-
rive the required expressions for the probability term
as follows :

Let the demand size be denoted by the random vari-
able D whose density and distribution functions are
g(.) and G(.) , respectively.

For the case of the right-hand derivative

P{Ordering Change} = P{a<AS|D>Z]

P[D-Z<AS|D> Z]

= P[DSZ+AS|D>2Z]
G(Z + AS)-G(2)

1-G(2)
Therefore,
Pla<AS|D> 7]
N AS
— lim G(Z + AS) - G(Z)] 1
= as—o+ AS 1-G(2)

- [P &)

For the case of the left-hand derivative, we proceed
likewise to get

Pla<AS|D<Z] _[9¢(2)
pdm AS = [G(Z)}

Thus, if we denote R+ and R~ to be the set of all re-
order points representing a potential ordering change
for the right-hand and left-hand derivatives respec-
tively, the final expressions for the SPA contribution
are :

(6L/6S)tp, = %E[AL | AS — 0]
9(Z;) ]
* TRRLTE A (5)
J.EZ,H [1 - G(Z;)
(6L/6S)5ps = EIAL]AS— 0]
9(Z;)
: Z [G(Zj) ©)
JER~
The total gradient (6L/65) is finally estimated as the
sum of the IPA and SPA components, where the SPA

component can be represented by either the right-
hand or the left-hand derivatives.
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Figure 4: Potential Ordering Change situation
for the Right-Hand Derivative

2.3 PA Estimators of §L/6s

For the estimators of (6L/6s), we do the IPA and SPA
analysis in a similar fashion. Let us first consider
the case when there is no ordering change between
the nominal and perturbed paths. For this case, the
nominal and perturbed paths are, in fact, identical.
A change from s to s+ As does not change the sample
path at all, as long as the sequence of events remain
unaltered. Hence, it follows that

(5L/6S)IPA =0 (M

For the SPA component, potential ordering change
situations for the right-hand and left-hand derivatives
are shown in Figures 6 and 7 respectively. From the
above Figures, and following the derivations resulting
in equations (5) and (6), we get

(6L/8s)Ep, = ——IIVE[ALIAs—rO]

. 9(Z;)

2 5 )
(6L/65)5pa = - EIAL] As— 0]

22wl ©

JjER-
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Figure 5 : Potential Ordering Change situation
for the Left-Hand Derivative

In the above equations, the sets ®* and R~ have a
similar interpretation as those in equations (5) and

(6).

3 Methodology for a General Arrival Process

In this section we consider the more realistic situation
where the demands are also characterized by an as-
sociated renewal arrival process. The approach used
here is largely similar to that discussed in the previ-
ous section.

3.1 The IPA Estimator

The expression for the IPA estimator remains the
same. The only change here is that the terms N*t
and N~ in equation (1) are replaced by the total time
that the inventory level is positive (T") and negative
(T~) respectively. Defining each period to have a
length equal to one time unit, we have

(6L/6S)ipa = M&—p[T—_] (10)
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Figure 6: Potential Ordering Change situation
for the Right-Hand Derivative

3.2 The SPA Estimator

As before, we derive estimators for both the right-
hand and left-hand derivatives. The expressions are
of the same general form as equations (3) and (4). In
fact, the term E[AL | AS — 0] is estimated in ex-
actly the same manner via an offline run. Difficulties
here can arise if the inter-arrival process has a general
distribution, the reason for which will be clarified in
the next section.

To estimate the probability term, we adopt a differ-
ent approach here. The difference lies in the way we
identify a situation that has the potential to cause
a potential change. This is explained via Figure 8
shown below.

After each demand occurrence, we inspect the in-
ventory levels just prior to the occurrence, and just
after the occurrence. As before, in the case of the
right-hand derivative, there is a potential for an or-
dering change if these levels are above and below s,
respectively. Such a situation is represented by epoch
ts. Similarly, for the left-hand derivative, potential
for ordering change exists if both levels are above s,
and is represented by epochs t; and t,. However, the
actual occurrence of the ordering change is dependent
on both the demand size as well as the occurrence of
the next demand. With reference to Figure 8, an or-
dering change would actually occur if @ < AS, and

Bashyam and Fu
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Figure 7 : Potential Ordering Change situation
for the Left-Hand Derivative

A > Y, where the random variable A represents the
time between successive demands. Thus if F(.) de-
notes the distribution function of the time between
successive demand arrivals, the expressions for the
SPA contributions are now computed as

(6L/6S)Ep, = %E[AL | AS — 0]

3 {28 ] n-ron}) an

JERT

(6L/6S)zp, = %E[AL | AS — 0]

|5 ]ru-rom} o

JER-

In equation (11), R* represents the set of demand
arrival epochs that are potential ordering change sit-
uations in the case of the right-hand derivative. Sim-
ilarly, R~ in equation (12) represents the correspond-
ing set for the left- hand derivative. We conclude this
section with the following comments :

(i) Having the opportunity to compute both the
right-hand as well as the left-hand derivatives
is important from the viewpoint of getting es-
timates that have as low a variance as possible.

(ii) We can now clarify one major difficulty that
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Figure 8: Conditions for an ordering change in a general (s,S) model having a renewal arrival process

arises if the inter-arrival times have a general
distribution. While doing the off-line simula-
tion, it is not strictly correct to start the run by
generating an inter-arrival time from the given
distribution. This can be seen by referring to
Figure 8. The figure shows a potential order-
ing change for the left-hand derivative at epoch
t;. When we perform the thought experiment
of determining the expected change in cost given
that ordering change does occur at t;, it becomes
clear that the arrival time of the first demand in
the off-line simulation would have to be gener-
ated from the distribution of the residual life,
ie. PI/A<Y 4a| A > Y]. Thus, the expected
effect per ordering change is no longer constant,
and hence, cannot be estimated via a single run.
We are, at this time, unable to comment on how
serious the inaccuracy would be if we were to ig-
nore the residual nature of the first arrival. For
the computational results reported in Section 3,
a Poisson arrival process is assumed for which,
due to the memoryless property, it is valid to
generate a fresh exponential arrival time for the
first demand.

4 COMPUTATIONAL RESULTS

(1) For the single demand per period discussed in

Section 1, analytical expressions for the IPA and
SPA components are available for the special case
where the demand size has an exponential distri-
bution with mean 1. It can be shown that the

following analytical expressions hold :
_ h(l+$—a—e'5)—p¢'s

(62,/63)”»,4 = 17353
(61'3/55)5}:,4

_ k+h{(S—3) (14552 =e~5)}—pe=°(5-2)
== (1+5-9)2

For the right-hand derivative, the term g(Z)/[1-

G(2)] is simply the reciprocal of the mean de-
mand, which, in this case happens to be 1. Thus,
we can expect the term g(Z)/G(Z) for the left-
hand derivative to be also equal to one in this
case. Furthermore, it can be shown that for
S—s=1,

the total number of “samples” for the
right-hand derivative

= the total number of “samples” for the
left-hand derivative

= N/2.

Using the above expressions, we tested the va-
lidity of the IPA and SPA expressions for the
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(2)

following (s,S) system :

*S$=3

¥*s=2

* Demand ~ exp(l) as required.
* holding cost per period = 10
* penalty cost per period = 50

* set-up cost = 10

We performed 10 replications and the results are
shown in Table 1, in the form of 95% Confidence
Intervals. As can be seen, the PA estimators ex-
hibit a very low variance, and are strongly con-
sistent.

To test the PA estimators for the general setting
discussed in Section 2, we considered the follow-
ing (s,S) system :

*S=10
*s=5
* holding cost per unit time = 10

* penalty cost per unit time = 50

* setup cost = 10

* inter-arrival times ~ exp(mean = 0.3125)

For the demand size, we considered three differ-
ent distributions :

(i) Exponential with mean = 2,
(i1) Uniform [0, 10]
(ii1) Weibull (4, 3)

For the Weibull distribution, the value of 3 was
chosen for the shape parameter to make the dis-
tribution resemble a normal distribution. The
scale parameter was given a value of 4 so that the
generated demands would be reasonable com-
pared to the values of S and s.

For each case, we ran 10 replications and com-
pared the PA derivatives with those derived via
the finite difference method (FDM) using com-
mon random numbers. The results are presented
in Table 2, again in the form of 95% Confidence
Intervals. From the table, it can be seen that
there appears to be good agreement between the
two approaches. One can also observe very tight
confidence intervals for the PA estimates as com-
pared to the noisy estimates produced by the fi-
nite difference method.

Bashyam and Fu

5 CONCLUSIONS

In this paper, we have made a preliminary attempt
at applying perturbation analysis to general (s,S) in-
ventory models. The results presented in this paper
indicate that a vast potential exists for such an appli-
cation. Our major motivation lies in the fact that PA
estimators of the required derivatives seem to exhibit
remarkably low variance. If, in addition, consistency
proofs of these estimators can be established, then
use of PA within a Robbins-Monro type procedure
for stochastic optimization of (s,S) models becomes
extremely attractive. It is generally accepted that
the finite differences method can yield unreliable esti-
mates of sample path derivatives, which would result
in slow convergence of the optimization procedure.
However, a lot of additional research remains to be
done. Some directions presently under way include :

e Deriving a sample path proof for the consistency
of the PA estimators in Section 2.

¢ Application of PA for other objective function
criteria, such as service levels.

e Application of PA to continuous review models.

e Application of PA to random lead time models.
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