Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

AN AXIOMATIC BASIS FOR GENERAL DISCRETE-EVENT MODELING

Sanjai Narain

Bellcore, MRE 2E260
445 South Street
Morristown, NJ 07962

ABSTRACT

The discrete-event technique (DET) is a powerful
technique for modeling and simulating dynamic
systems. However, with its previous formulations,
two problems arise. First, DET models can be
difficult to build. DET encourages one to think in
terms of the causality relation between events,
but provides only indirect means of expressing it.
Second, it can be difficult to reason about them,
i.e. to prove temporal properties such as safety,
not provable by simulation alone. This is because
the logic of event occurrences underlying DET is
specified only algorithmically, not explicitly. This
paper presents DMOD, a new formulation of
DET and proposes solutions to the above prob-
lems. It also presents an implementation of
DMOD models and of the reasoning techniques,
using the logic of definite clauses. This logic has
high expressive power and simple deductive pro-
perties.

1 INTRODUCTION

The discrete-event technique (DET) is a powerful
technique for modeling and simulating dynamic
systems. Many formulations of it have been pro-
posed, e.g. (Fishman 1973, Zeigler 1984, Evans
et al. 1965, Evans 1988, Suri 1987). A number of
well known commercial simulation packages e.g.
SIMSCRIPT or OPNET are based upon it. DET
is based upon the idea that the behavior of a sys-
tem can be represented by its history, i.e. the se-
quence of events which occur in it. DET defines
a technique for specifying and computing event
occurrences.

DET is powerful because it is able to model si-
tuations where effects of events depend not just
on their past but also on their future. These arise
frequently in dynamic systems. For example, in a
phone system, an effect of lifting a handset at T is
dial tone timing out at T+30, provided in between

1073

T and T+30, a digit is not dialed. Such a situa-
tion also occurs in, for example, preemptive
schedulers.

However, with previous formulations of DET,
two problems arise. First, DET models can be
difficult to build. This is because DET encourages
one to think in terms of the causality relation
between events, but allows one to express it only
indirectly. Second, it is difficult to reason about
DET models. Reasoning is necessary to prove
temporal properties, such as safety, which cannot
be proved by simulation alone. For example, in
the phone system, one may wish to prove that if
the time T taken by the user to dial a one-digit
number is less than the dial tone timeout value
T2, connection is assured. Clearly, one cannot
simulate for each of the infinite number of pairs
<T1,T2>, TI<T2, and check. Instead, one has
to analyze the logic of event occurrences. Howev-
er, this logic is not explicitly specified. Event oc-
currences are specified only by the simulation
procedure, which is algorithmic.

This paper proposes DMOD, a new formula-
tion of DET. It enables the user to directly speci-
fy the causality relation between events. Thereby,
model building is greatly simplified. DMOD also
defines event occurrences in a logical manner,
and uses it to build a framework for formulating
and proving temporal properties. Although not
discussed in this paper, DMOD is powerful
enough to model hybrid systems, i.e. those which
exhibit both discrete and continuous behavior.
An implementation of both DMOD models and
the reasoning framework is shown using the logic
of definite clauses (Kowalski 1979, Lloyd 1984),
the basis of the widely used language Prolog. This
logic has high expressive power and simple
deductive properties.

Section 1.1 outlines DET and discusses the
above problems in some detail. Section 2
presents DMOD. Section 3 discusses an imple-
mentation of it using the logic of definite clauses.

1074

Section 4 presents a framework for proving tem-
poral properties, as well as an implementation of
it using the above logic.

1.1 Outline of DET
A typical DET model of a system defines:

® A set of time stamped events

® A set of system states

e The relation schedules(S,E,F), meaning
that in state S, event E possibly causes
event F.

® The relation unschedules(S,E,F), mean-
ing that in state S, event E precludes
event F.

e The relation updates(E,S,S1), meaning
that event E changes system state S to
system state S1.

A history of the system is computed as follows:
three data structures, srate, clock, event queue are
maintained. Where E is the event in queue with
the least time stamp, E is removed from queue,
and recorded as occurring. clock is set to be the
time stamp of E. state is set to be newstate where
updates(E,state,newstate). Each event F such that
F is in the queue and unschedules(newstate,E,F),
is deleted from queue. Each event F such that
schedules(newstate,E,F), is inserted into queue.
This sequence of steps is repeated to yield a se-
quence of event occurrences, i.e. history. Compu-
tation of history is also called simulation.

For example, suppose we wished to model one
aspect of the simple phone system: when a hand
set is lifted, the network waits for 30 seconds for
a digit to be dialed. If it is not dialed within this
time, a time out occurs. Dialing occurs 15
seconds after the hand set is lifted.

We can model events of lifting a handset at T,
of dialing at 7, and of timing out at T using,
respectively, the expressions [hs(T), dial(T),
to(T). Now, [hs(T) schedules dial(T+15) and
to(T+30). Also, dial(X) unschedules any event
of the form ro(Y). Let lhs(0) occur. Then, by the
above procedure, only dial(15) occurs. However,
if ths(T) were to schedule dial(T+40), and lhs(0)
occurs, then both ro(30) and dial(40) occur.

It 1s reasonable to say that
schedules/unschedules relations are means to
define the causality relation between events.
Causality defines a sufficient condition for event
occurrence: if £ causes F and E occurs, then F

Narain

occurs. Thus, "E schedules F but G un-
schedules F" implicitly means "E causes F provid-
ed G does not occur in between."”

However, it is difficult to specify causality in
this indirect manner. This is because it is difficult
to associate a precise meaning with schedules and
unschedules. Given that S is the state after E has
occurred, schedules(S,E,F) is neither a sufficient
nor a necessary condition for occurrence of F. F
can be unscheduled. Also, another event in
another state can schedule F. Similarly, given
that S is the state after E£ has occurred,
unschedules(S,E,F) is neither a sufficient nor a
necessary condition for non-occurrence of F. F
can be rescheduled. Also, another event in anoth-
er state can unschedule F.

Furthermore, history is defined only in a pro-
cedural manner, not by means of axioms. Thus, it
is difficult to show that a property P such as safe-
ty, is satisfied by all histories. The traditional ap-
proach of starting from axioms defining P and his-
tory, and developing a proof using logical princi-
ples, cannot be employed.

DMOD proposes solutions to the above prob-
lems. For the first problem, DMOD eliminates
the scheduling and unscheduling relations in favor
of the single causality relation. causes(E,HE,F)
means "if HE is the history up to (but not includ-
ing) E, then E causes F". If E has occurred, then
causes(E,HE,F) is a sufficient condition for the
occurrence of F.

Situations where effects of events depend on
their future can be easily modeled. For example,
to model the rule causes(E,HE,F) if G does not
occur in befween, make FE cause an auxiliary
checking event check(E,F,TF), where TF is the
time stamp of F. This event definitely occurs.
When it does, it examines the history up to it to
see whether G occurs after E. If so, it causes
nothing. Otherwise, it causes F. See Section 3.1
for an example.

For the second problem, DMOD defines histo-
ry by means of axioms. A history is defined to be
a sequence of events satisfying two main condi-
tions, causal soundness and causal completeness.
Thus, it becomes possible to understand event
occurrences without any reference to event
queues. A procedure is also presented for com-
puting histories and, for a wide class of histories,
is shown to be equivalent with the axiomatic
definition. Event queues are restored in this pro-
cedure, but their status as purely efficiency dev-
ices is established.

Axiomatic Basis for General Discrete-Event Modeling

2 DMOD: A NEW FORMULATION OF DET

A DMOD structure is a tuple {Events, TimeS-
tamps, time, lt, eq, causes, init_event} where:

® Events is an enumerably infinite set of objects
called events.

® TimeStamps is an enumerably infinite set of ob-
jects called time stamps.

e time(E,T) is a relation between an event E and
a time stamp 7. time(E,T) models a function, i.e.
is subject to the following existence and unique-
ness restriction:

VEAT.time(E,T) AVS.time(E,S) D S=T.

® [((T1,T2) and eq(T1,72), T1,T2 time stamps,
are relations defining a total ordering between
time stamps, i.e. satisfying:

(1) Exactly one of {It(T1,T2), eq(T1,T2), It(T2,T1)}
holds.

(2) It(T1,T2) N 1t(T2,T3) D It(T1,T3).

(3) eq(T1,TI).

(4) eq(T1,T2) > eq(T2,T1).

(5) eq(T1,72) N eq(T2,T3) D eq(TI1,T3).

® nit_eventc Events is called the initial event.

® causes(E,HE,F) is a relation between events E
and F, and a finite sequence HE of events in
Events satisfying:

(@) VEVHEVF, the set {F:causes(E,HE,F)} is
finite.

(b) VEVHEVF. causes(E,HE,F) p time(E,T1) A
time(IF,T2)> It(T1,T2) y eq(T1,72).

We will use time(E) as an abbreviation for the
T such that time(E,T). Where TI1,T2 are time
stamps, TI<T2 is an abbreviation for [t(T1,T2) y
eq(T1,T2). Similarly for TI>T2.

Let P be a DMOD structure and S=/E0,E1,..]
be a finite, or enumerably infinite sequence of
events. Then S is said to be remporally ordered if
for each i, i>0 D time(Ei)<time(Ei+1) whenever
Fi+1 exists.

We now associate histories with a DMOD
structure P={Lvents, TimeStamps, time, lIt, eq,
init_event}. Let S=[L0,ELE2,..] a finite or enu-
merably infinitc sequence of events. Then § is

1075

said to be causally-sound, cs(S), if every event
in SR has a cause in S, i.e.:

Vj.j>0D3i.i<j A causes(Ei, [EO,..,Ei-1],Ej).

Note that the singleton sequence [E0] is trivial-
ly causally sound.

Let P be a DMOD structure and
S=[E0,E1,E2,..] be a finite or enumerably
infinite sequence of events. Then S is said to be
causally-complete, cc(S), iff it contains all caused
events, i.e.

VG.Vi.causes(Ei,[EO,..,Ei-1],G) D 3].j>0NEj=G

Let P be a DMOD structure. A history for P is
a finite or infinite sequence H of events such that:

(a) H begins with init_event

(b) H is temporally ordered

(c) No event occurs more than once in H
(d) H is causally-sound

(e) H is causally-complete

2.1 A procedure for computing histories

We now present a procedure for computing a
subset of histories associated with a DMOD
structure P={Events, TimeStamps, time, lt, eq,
init_event}. Let Seq=[E0,EI,..] be a temporally
ordered sequence of events. Then Seq is said to
be strictly progressive iff either Seq is finite, or for
each time stamp treTimeStamps there is an i such
that Ilt(t,time(Ei)). Thus, E0,E1,... is not strictly
progressive if time stamps of EO,EI,... are,
respectively:

1,2,2,2,2,2,2...
or
1, 1+1/2, 1+1/2+1/4, 1+1/2+1/4+1/8, ...

where 1,2,+,/ have their usual meanings. In
both cases, time stamps converge to 2.

Let S Le a set of events. Then E€S is said to
be an earliest event in S provided for each event F
in S, [E,F] is temporally ordered. Note that if S
contains events concurrent with each other there
can be more than one earliest event in S. Also, if
S is finite, it always contains an earliest event.

Procedure 2.1.1. Let P be a DMOD structure.
Record [Z0=init_event as the initial cvent. Sup-

1076

pose a partial history EQ,El,..,Em, m>0, has
been computed. We need to compute the next
event Em+1. For each i, 0<i<m, let Effects_i be
the set of events F such that:

causes(Ei, [EQ,..,Fi-1],F), and
F is not already in [EO,E1,..,Em], and
[Em,F] is temporally ordered.

Due to the restriction on causes, this set is
finite. Let Sm be the union of Effects_i, 0<i<m.
Again, this set is finite. If it is empty, halt. Other-
wise, it contains an earliest event Em+1. Take
this to be the next event. []

Intuitively, given a partial history H we deter-
mine the set Sm of all the events E, not in H,
which are caused by an event in H. We pick as
Em+1 an earliest event in Sm. Note that Sm can
contain more than one earliest event so the pro-
cedure is non-deterministic. A different history
would be computed for each choice of Em+1.

Sm represents the event queue of the DET pro-
cedure prevailing after Em has been computed.
In our case, it is reconstructed in its entirety after
every event. Thus, considerable inefficiency can
result. To alleviate it, we should construct Sm+17
incrementally from Sm. This is done by deleting
Em+1 from Sm, and inserting into it all events F
such that causes(Em+1,[EO0,..,Em],F), F is not in
[EO,..,Em+1], and [Em+1F] is temporally or-
dered.

We now prove the correctness of Procedure
2.1.1. The correctness of the more efficient ver-
sion can be similarly proved.

Theorem 2.1. Soundness and Completeness of
Procedure. Let P = {events, timestamps, time, It,
eq, causes, init_event} be a DMOD structure. Let
EO=init_event. A strictly progressive sequence of
events [E0,L1,..] is computed by the above pro-
cedure if and only if it is a history.

Proof: Simple, but omitted for reasons of space.
3 PROGRAMMING DMOD STRUCTURES

Let P be a logic program. We let [-A be an abbre-
viation for P|-A, i.e. that there is a proof of A
from P. Let R an n-ary relation symbol. Let
D1,..,Dn be subsets of HU(P), the Herbrand
Universe of P. This is the set of all non-variable
terms formed from the function symbols in P,
and can be taken to be the set of objects that "the
logic program is talking about”. Then R is said to

Narain

define the relation {<tl,..,m>|tleDI,..,mcDn A
|-R(t1,..,tn)} upon the set DI X .. X Dn, in the
presence of P.

Let P be a logic program and D a subset of
HU(P). Then seq(D) denotes the set of all finite
sequences formed from members of D.

Let an_event and a_time_stamp be two relation
symbols. Let events be the set {T|TEHU(P) A |-
an_event(T)}. Let timestamps be the set
{T|/TeHU(P) p |-a_time_stamp(T)}. Note that
these two sets can be empty, if there are no
clauses defining an_event or a_time_stamp in P.

In the presence of P, let:

(a) time define time* upon events X timestamps

(b) It define It* upon timestamps X timestamps

(c) eq define eq* upon timestamps X timestamps
(d) causes define causes* upon events X
seq(events) X events

Let init_event be a member of events. Then
{events, timestamps, time*, It*, eq* causes*,
init_event} is said to be a structure derived from P.
Now, P is said to be a DMOD program if there
exists a DMOD structure S derived from P.

3.1 Example: Setting Up A Phone Call

We now model the setting up of a call in a simple
phone system. When a caller lifts a handset, a
dial tone is initiated. The dial tone times out if no
number is dialed within a fixed duration. If a
number is dialed within this duration, the ap-
propriate phone rings.

We let a time stamp be the term 0 or s(X), X a
time stamp. Each time stamp denotcs a natural
number. We use 0,1,2,... as abbreviations for,
respectively, 0,5(0),s(s(0)),.... The definition of
a_time_stamp is:

a_time_stamp(X) if natural_number(X).

natural_number(0).
natural_number(s(X)) if natural_number(X).

Definitions of It and eq are as follows:

1(0,5(X)).
It(s(X),s(Y)) if It(X,Y).

eq(X,X).

The first rule states that 0 is less than every

Axiomatic Basis for General Discrete-Event Modeling

term of the form s(X). The second states that
s(X) is less than s(Y) if It(X,Y). The last defines
eq to be syntactic equality. (Note that eq could be
defined to hold among non syntactically equal
terms, e.g. 2 and 1+1).

Addition of natural numbers is defined as fol-
lows:

plus(0,X,X).
plus(s(X),Y,s(Z)) if plus(X,Y,Z).

Where N is a natural number, T a time stamp,
and Caller, Called arbitrary terms, an event is of
one of the following forms, with meanings given
in curly braces:

start(0) {The initial event with time stamp
0}

lhs(Caller,Called,T) {Caller lifts handset
to call Called at T}

dtto(Caller,T) {Deadline for Caller to dial
expires at T}

dials(Caller,Called, T) {Caller dials (single
digit) number of Called at T}
rings(Caller,Called, T) {Called gets a ring
from Caller at T}

The definition of an_event is:

an_event(start(0)).
an_event(lhs(Caller,Called,T)) if
a_time_stamp(T).
an_event(dtto(Caller,T)) if
a_time_stamp(T).
an_event(dials(Caller,Called,T)) if
a_time_stamp(T).
an_event(rings(Caller,Called,T)) if
a_time_stamp(T).

The time stamp of an event f(t1,..,tn,t) ist. To
define time, for each n-ary symbol in {lhs, dtto,
dials, rings, start} write the definite clause:

time(f(T1,..,Tn,T),T).

The definition of causes is given by the follow-
ing rules, with informal meanings given in curly
braces:

{C1. The initial event causes user(1) to lift his
hand set to contact emergency at 100.}

1077

causes(E,HE,F) if
E=start(0),
F=lhs(user(1),emergency,100).

{C2. When Caller lifts hand set to contact
Called, he dials him after delay 4.}

causes(E,HE,F) if
E=Ilhs(Caller,Called, T),
F=dials(Caller,Called,FT),
plus(T,4,FT).

{C3. When Caller lifts hand set to contact
someone at T, check after timeout delay 3 wheth-
er dial tone times out.}

causes(E,HE,F) if
E=lhs(Caller,Called,T),
F=check(E,dtto(Caller,FT),FT),
plus(T,3,FT).

{C4. Checking whether dial tone times out at T
causes dial tone to time out at T provided, in the
history since the hand set was lifted, there is no
event of Caller dialing.}

causes(E,HE,F) if
E=check(G,F,T),
F=dtto(Caller, T),
G=lhs(Caller,Called,PT),
HE=_*[G]*HG,
absent(dials(Caller),HG).

{C5. When Caller dials Called at T, Called
hears a ring after a connection delay 5, provided
dial tone has not already timed out at Caller.}

causes(E,HE,F) if
E=dials(Caller,Called, T),
F=rings(Caller,Called,FT),
plus(T,5,FT),
absent(dtto(Caller),HE).

Let f be a function symbol such that for some
terms t1,..,tn, f(tl,..,tn) is an event. Then, where
H is a sequence of events, absent(f(tl,..,tk),H),
k<n holds iff there is no event of the form
f(tl,..,tk,Xk+1,..,Xn) in H. absent is definable
using a logic program.

Theorem 3.1.1. P is a DMOD program.

Proof. We have to show that the structure
derived from P {events, timestamps, time*, It*,
eq*, causes*, start(0)} is a DMOD structure.

1078

The sets timestamps and events are enumer-
able as HU(P) is enumerable. As a relation R* in
the given structure is defined by the relation sym-
bol R in P, to prove a proposition Q involving
R*(t1,..,tn), prove Q with R*(t1,..,tn) replaced by
|-R(t1,..,tn). For example, to show that:

VEVHE. {F|causes*(E,HE,F)} is finite
show:
VEVHE.{F|P|-causes(E,HE,F)} is finite

The latter can be shown by a case analysis on
the form of E. For example, let £ be an event
lhs(C,N,T). Then, causes(E,HE,F) succeeds once
and only once using Rule C2, as plus always
succeeds. Similarly for other forms. Similarly, for
other propositions. QED.

3.2 Computing history for the phone system

We now apply Procedure 2.1.1 to the above
DMOD structure. The initial event EO=start(0).
By (Rule) C1I:

SO={lhs(user(1),emergency,100)}, so
El=lhs(user(1),emergency,100)

By E1,C2 and E1,C3:
SI1={check(lhs(user(1),100),dtto(user(1),103)),
dials(user(1),emergency,104)}, so
E2=check(lhs(user(1),100),dtto(user(1),103)).

By [£1,C2 and E£2,C4:

S2={drro(user(1),103), dials(user(1),emergency,104)},

so E3=dito(user(1),103).
By E1,C2:

S3={dials(user(1),emergency,104)}, so
E4=dials(user(1),emergency,104).

Note that £4 does not cause an event of ringing
at emergency as the occurrence of E3 falsifies the
last condition in Rule CS5. Thus the history is
[EO,E1E2 E3 E4]. It is easily verified that this is
the only history.

Narain

4 REASONING ABOUT DMOD STRUCTURES

We now present a framework for expressing and
proving properties about DMOD structures. A
natural class of such properties is about their his-
tories. Let P be a DMOD structure. Let
history(X) be true whenever X is a history for P.
Let X=[EO,E],..... Let prop be a condition
upon, possibly infinite, sequences of events. Typ-
ically, one proves that prop holds for all histories,
ie.:

V X.history(X) D prop(X). (A)

A proposition of the form (A) is said to be a
liveness property iff prop is of the form:

Jk.cond([EQ,..,Ek]).

where cond is a condition upon finite sequences
of events. Thus, a liveness property states that in
every history, there exists some event Ek after
which cond is satisfied.

A proposition of the form (A) is said to be a
safety property iff prop is of the form:

—3k.cond([EQ,..,EkL]).

where cond is a condition upon finite sequences
of events. Thus, a safety property states that in
every history, there is never any event Ek after
which cond is satisfied.

We now show how safety properties can be ex-
pressed in terms of those involving only finite
structures. Thereby, one can contemplate pro-
gramming any proof procedures one may develop.

Let P={events, timestamps, time, It, eq, causes,
init_event} be a DMOD structure. Let
S=[EO0,E1,..,Ek] be a finite sequence of events.
Then S is said to be internally causally incomplete,
ici(§) iff there exist G such that
causes(EL,[EQ,..,Ei-1],G), but G does not occur
in § and It(time(G),time(Ek)).

It is obvious that if S is a finite, initial segment
of a history H, then it is not internally causally in-
complete. If it is, then as H is temporally or-
dered, G cannot appear after Ek in H. Thus, H is
not causally complete.

Let fto(S) be true whenever S=[E0,El,..,Ek],
EO=init_event, is a finite, temporally ordered se-
quence of events in which no event occurs more
than once. Suppose we wish to prove a safety
property, i.e. that some condition cond does not

Axiomatic Basis for General Discrete-Event Modeling

hold for any finite initial segment of any history.
Then it is sufficient to show:

VS.fto(S) A cs(S) A cond(S) D ici(S) (B)

Now, let Q be a finite initial segment of a histo-
ry such that cond(Q). Then, fro(Q) A cs(Q).
Hence, by (B), ici(Q). Contradiction.

A brute-force approach for proving B is gen-
erating each sequence of events satisfying the left
hand side of B, (lhs(B)) and showing that it also
satisfies its right hand side. However, except for
the most trivial DMOD programs, the set of all
sequences satisfying lhs(B) will be infinite. Thus,
we cannot hope to explicitly generate each such
sequence. If B were true, our approach would not
terminate. We can, however, hope to represent
an infinite set of sequences by a finite constraint
C, and work directly with it. Then, we could still
expect termination in finite time.

Should we not be able to show from C that
each member of the set represented by it satisfies
ici, we could derive from it a finite set of con-
straints CI,..,Ck such that the union of the sets
represented by these is equal to that represented
by C. We could then attempt, recursively, to
show that each member of Ci satisfies ici.

It is particularly easy to implement this scheme
if each constraint is a set {Al,..,Ak}, each Ai a
condition of the form Ri(t1,..,tn) and Ri a relation
defined by a logic program. If Al,..,Ak is treated
as a query, and if it is transformed in one SLD-
step into the queries QI,..,Qm, then the set of
objects represented by {Al,..,Ak} is the union of
the sets represented by QI,..,Om. Thus, to show
that each member of the set represented by
{Al,..,Am} satisfies some property, we can con-
struct an SLD-search tree rooted at {Al,..,Am}.
At ecach node in the tree, a constraint of this
form would appear. The deeper the node is, the
more "information” it would contain about the
objects in {Al,..,Am}.

It now remains to show that cs, ici, cond and
fto are definable using logic programs. For cs we
have:

cs(Hist) if cs_1(Hist,[]).

cs_I1(Hist,Done) if same_events(Hist,Done).
cs_1(Hist,Done) if
Hist=HE*[FE]*H,
absent(E,Done),
HE=H[*[F]*HFFE,

1079

causes(F,HF,E),
cs_I(Hist,[E|Done]).

In ¢s_I(Hist,Done), Done is a subset of Hist. It
is true if all events in Done have a cause in Hist
and all remaining events, except the first one in
Hist also have a cause in Hist. The second rule
states that cs_I(Hist,Done) is true if Hist and
Done have the same events. Thes third states that
¢s_I(Hist,Done) is true if there is an event E in
Hist absent in Done which possesses a cause in
Hist and cs_I(Hist,[E|Done]) is true. Now, Hist
is causally sound if cs_I(Hist,[]) is true.

For ici we have:

ici(S) if
S=HE*[E]*H*[F],
causes(E,HE,G),
absent(G,S),
time(G,TG),
time(F,TF),
(TG, TF).

Similarly, fro can easily be defined using logic
programs. It only remains to choose cond in such
a way that it is definable using logic programs.
But a quite wide range of conditions can be
defined in this way.

Let P be a DMOD program extended by
definitions of cs, ici, fto and cond. Then the pro-
position:

VS.fto(S) p cs(S) A cond(S) D ici(S)
reduces to:
VS.P|-[fto(S) p cs(S) A cond(S)] D Pl-ici(S)

Propositions of this form also arise in questions
of logic program equivalence. Hence proof tech-
niques e.g. of (Clark & Tarnlund 1977, Kanamori
& Seki 1986, Baudinet 1988) can be utilized.

4.1 Proving properties about the phone system

We now show how our above scheme can be util-
ized for proving temporal properties about the
phone system of Section 3.1. It is easily proved
by simulation that the event
rings(user(1),emergency,109) does not occur.
IHowever, suppose, that there is a nuisance
user(2) who only keeps plugging and unplugging
his phone into an outlet at regular time intervals.

1080

His behavior can be expressed using the rules:

causes(E,HE,F) if
E=start(0),
F=plugs(user(2),0).

causes(E,HE,F) if
E=plugs(User,T),
F=unplugs(User,T+1).

causes(E,HE,F) if
E=unplugs(User,T),
F=plugs(User,T+1).

The first rule initiates the infinite loop, whereas
the second and third rules sustain it.

Now, the actions of user(2) have nothing to do
with the non occurrence of
rings(user(1),emergency,109). Still, to prove by
simulation that this event does not occur we
would still generate about 100 events for user(2).
It is desirable to avoid such inefficiency. Further-
more, suppose that we wanted to prove that no
event of the form rings(user(1),emergency,X) ever
occurs. This proposition cannot be proved by
simulation, as the history is infinite. We could
continue forever to generate plugging and unplug-
ging events without realizing that the ringing event
cannot occur.

We now show how our proof technique can be
used to avoid both the inefficiency and
insufficiency of the proof-by-simulation approach.
The structure of the proof is as follows: we first
prove that if an event dials(user(l),Place,T) oc-
curs then 7T=104. We do this by assuming that
dials(user(1),Place, T) occurs with Tz104. It must
possess a cause. Its only cause is obtained from
C2, and is lhs(user(1),Place, T-4). Its only cause
is obtained from C1, and is start(0), so T-4=100.
Thus, T=104. This contradicts T 104.

Now, to prove that rings(user(1),emergency,109)
does not occur, we assume it does. Then, by C5,
so must its cause dials(user(1),emergency,104),
subject to the constraint that no time out event
occurs before it. However, by C4 we have a con-
tradiction, since by it a time out event does occur
at 103. This is because, by C2, the cause of the
dialing event at 104 is one of lifting the hand set
at 100. In turn, by C3, this causes an event of
checking whether time out occurs at 103. By C4,
this causes time out at 103, provided between 100
and 103, no dialing event has occurred. We al-
ready established that the only dialing event oc-

Narain

curs at 104. We now carry out this proof in de-
tail.

Lemma 4.1.1. Let P be the DMOD structure
modeling the phone system, augmented by the
three rules for user(2). Let S a finite initial seg-
ment of a history. Then, there is no event
dials(user(1),Place,T) in S such that T=104.

Proof. We have to show:

Jro(S) A

cs_I1(S,[]) A
S=HE*[E]*H A
E=dials(user(1),Place,T) N
T#104 D

ici(S).

Consider the query:

fro(S),

cs_1(S,[]),
S=HE*[E]*H,
E=dials(user(1),Place,T),
T#104.

Replacing ¢s_1(S,[]) for E, we obtain:

fro(S),

cs_1(S,[E]),
S=HF*[F]*HFE*[E]*H,
causes(F,HF,E),
E=dials(user(1),Place,T),
T#104.

causes(F,HF,E) can only be expanded, without
immediate failure, using Rule C2, to yield:

fro(S),

cs_1(S,[E]),
S=HF*[F]*HFE*[E]*H,
F=lhs(user(1),Place,PT),
plus(PT,4,T),
E=dials(user(1),Place,T),
T=104,

Expanding ¢s_I(S,[E]) for I we obtain:

fro(S),

cs_I(S,[F,E]),
S=HG*[G]*HGF*[F]*HFE*[F]*H,
causes(G,HG, F),
I'=lhs(user(1),Place,PT),
plus(PT,4,T),
E=dials(user(1),Place,T),

Axiomatic Basis for General Discrete-Event Modeling

T#104.

causes(G,HG,F) can only be expanded, without
immediate failure, using Rule C1 to yield:

fro(S),

cs_1(S,[F,E]),
S=HG*[G]*HGF*[F]*HFE*[E]*H,
G=start(0),

F=lhs(user(1),emergency, 100),
plus(100,4,T),
E=dials(user(1),emergency,T),

T#104,

Expanding plus(100,4,T) to completion, we ob-
tain:

fro(S),

cs_1(S,[F,E]),
S=HG*[G]*HGF*[F]*HFE*[E]*H,
G=start(0),

F=lhs(user(1),emergency, 100),
E=dials(user(1),emergency,104),
104104,

But due to the last condition, this query cannot
succeed, i.e. it is impossible for S to satisfy the
left hand side of the implication at the beginning
of the proof. QED.

Theorem 4.1.1. Let P be the DMOD structure
modeling the phone system, augmented by the
three rules for user(2). Let S be a finite initial seg-
ment of a history. Then, there is no event
rings(user(1),emergency,109) in S.

Proof. We have to show:

fro(S) A

cs_1(S,[]) A

S=HE*[E]*H A
E=rings(user(1),emergency,109) N
D)

ici(S).

Consider the query:

fro(S),

cs_1(S,[]),

S=HE*[E]*H,
E=rings(user(1),emergency,109).

Expanding c¢s_1(S,[]) repeatedly, starting at E
we obtain:

1081

fro(S),

¢s_1(S,[B,C,D,E]),

B=start(0),

C=lhs(user(1),emergency,100),
D=dials(user(1),emergency,104),
E=rings(user(1),emergency,109),
S=HB*{B]*HBC*[C]*HCD*[D]*HDE*[E]*H,
absent(dtto(user(1)),HB*[B]*HBC*[C]*HCD).

Let N=check(C,dtto(user(1),103),103).

Case 1. Nisnotin S, i.e.:

fro(S),

cs_1(S,[B,C,D,E]),

B=start(0),

C=lhs(user(1),emergency, 100),
N=check(C,dtto(user(1),103),103),
D=dials(user(1),emergency,104),
E=rings(user(1),emergency,109),
S=HB*[B])*HBC*[C]*HCD*[D]*HDE*[E]*H,
absent(dtto(user(1)),HB*[B]*HBC*[C]*HCD),
absent(N,S).

By Rule C3, causes(C,HB*[B]*HBC,N), so due
to the last condition, ici(sS).

Case 2. Nisin S, i.e.:

fro(S),

cs_1(S,[B,C,D,E]),

B=start(0),

C=lhs(user(1),emergency,100),

N=check(C,dtto(user(1),103),103),

D=dials(user(1),emergency,104),

E=rings(user(1),emergency,109),

S=HB*[B]*HBC*[C]*HCN*
[N]*HND*[D]*HDE*[E]*H,

absent(dtto(user(1)),HB*[B]*HBC*[C]*

HCN*[N]*HND),

Case 2.1. There is no event of the form
dials(user(1),Place,T) in HCN, i.e.:

fro(S),

¢s_1(S,[B,C,D,E]),

B=start(0),
C=lhs(user(1),emergency,100),
N=check(C,dtto(user(1),103),103),
D=dials(user(1),emergency,104),
E=rings(user(1),emergency,109),
S=HB*|B]*HBC*[C]*HCN*

1082

[N]*HND*[D]*HDE*[E]*H,
absent(dtto(user(1)),

HB*[B]*HBC*[C]*HCN*[N]J*HND)
absent(dials(user(1)),HCN).

Let HN=HB*[B]*HBC*[C]*HCN. By Rule
C4 causes(N,HN,dtto(user(1),103)). Due to the
second last condition, ici(S).

Case 2.2. There is an event of the form
dials(user(1),Place,T) in HCN. Then T<I103. By
Lemma 1, § is not causally sound. QED.

Finally, to prove that no event of the form
rings(user(1), emergency,X) occurs, we show that
if such an event occurs, X=109. The proof is
analogous to that of Lemma 1. Now, use
Theorem 1.

ACKNOWLEDGEMENTS

The initial version of DMOD was developed
when the author was at The RAND Corporation.
The present, simpler version has been developed
at Bellcore. The author is grateful for valuable
discussions with Jeff Rothenberg, Norman
Shapiro, Louis Miller, Iris Kameny, Michael Mat-
tock, Jim Dewar, Linda Ness, Jane Cameron,
Y.-J. Lin, B. Gopinath, P. Varaiya and P.
Ramadge.

REFERENCES

Alur, R., Courcoubetis, C., Dill, D. [1990].
Model Checking For Real-Time Systems.
Proceedings of Fifth IEEE Annual Symposium
on Logic in Computer Science. Philadelphia,
PA.

Baudinet, M. [1988]. Proving Termination Proper-
ties of Prolog Programs: A Semantic Ap-
proach. Proceedings of IEEE Symposium on
Logic in Computer Science.

Cameron, E., Lin, Y.-J. [1991]. A Real-Time
Transition Model for Analyzing Behavior Com-
patibilities of Telecommunications Services.
To appear in Proceedings of ACM Conference
on Software for Critical Systems, New Orleans,
LA.

Clark, K., Tarnlund, S.-A. [1977]. A First-Order
Theory of Data and Programs. Proceedings of
IFIP.

Evans, J.B. [1988]. Structures of Discrete-Event
Simulation. An Introduction to the Engagement
Strategy. Ellis Horwood, New York.

Fishiman, G. [1973]. Concepts and Methods in

Narain

Discrete-Event Digital Simulation. John Wiley
& Sons, New York.

Glynn, P. [1989]. A GSMP Formalism for
Discrete-Event Systems. Proceedings of the
IEEE, January.

Inan K., Varaiya, P. [1987]. Finitely Recursive
Processes. Discrete Event Systems: Models and
Applications. Lecture Notes in Information Sci-
ence, 103, Springer Verlag.

Kanamori, T., Seki, H. [1986]. Verification of
Prolog Programs Using an Extension of Execu-
tion. Proceedings of Third International Confer-
ence on Logic Programming, London.

Kowalski, R. [1979]. Logic for Problem Solving,
Elsevier North Holland, New York.

Kowalski, R., Sergot, M. [1986]. A Logic-Based
Calculus of Events. New Generation Comput-
ing, Ohmsha Ltd., & Springer Verlag, 4.

Lloyd, J. [1984). Foundations of Logic Program-
ming. Springer Verlag.

Misra, J. [1986]. Distributed Discrete-Event Simu-
lation. Computing Surveys, March.

Narain, S., Rothenberg, J. [1989]. A Logic for
Simulating Dynamic Systems. Proceedings of
Winter Simulation Conference, Washington,
D.C.

Ness, L. [1990]. Issues Arising in the Analysis of
L.0. Proceedings of the DIMACS: Computer-
Aided Verification Workshop, June 18-21.

Ostroff, J. [1989]. Sythesis of Controllers for
Real-Time Discrete-Event Systems. [EEE
Conference on Decision Control, Tampa, FL.

Peterson, J.L. [1977]. Petri Nets. ACM Comput-
ing Surveys, vol. 9, No. 3.

Sandewall, E. [1989]. Combining Logic and
Differential Equations for Describing Real-
World Systems. In Proceedings of International

Conference on Knowledge Representation,
Toronto, Canada.
Suri, R. [1987}. Infinitesimal Perturbation

Analysis for General Discrete-Event Dynamic
Systems. Journal of the ACM, July 1987.

Zeigler, B. [1984]. Mulrifacetted Modeling and
Discrete-Event Simulation, Academic Press,
New York.

AUTHOR BIOGRAPHY

SANJAI NARAIN is a researcher at Bellcore,
Morristown, NJ. His current interests are in tem-
poral reasoning and real-time programming. The
context for his research is the interoperability
problem for fiber optics hardware.

