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1 INTRODUCTION

The time has come for the simulation commu-
nity to explore, or some would say re-examine,
the fundamentals of modeling and models. By
modeling is meant the process of building a
model where a model is a description of a
system. Most aspects of simulation activity
involve modeling and models. Throughout the
simulation community, there would be close to
unanimous endorsement of the following state-
ment by Simon (1990) “Modeling is a principal
— perhaps the primary — tool for studying the
behavior of large complex systems. When we
model systems, we are usually (not always)
interested in their dynamic behavior. Typically,
we place our model at some initial point in
phase space and watch it mark out a path
through the future.”

Even with unanimity of agreement on model-
ing as a principal tool, only a small amount of
research is directed to identifying underlying
principles, foundations, or fundamentals of
modeling as related to simulation. This panel
has been established to promote a greater
exploration of modeling principles. The panel
has decided to be heroic and present their basic
thoughts on modeling principles. In doing this,
we decided not to be bogged down by questions
relating to what constitutes a principle or to be
concerned during this first panel with the
formal definitions of modeling and model.
Basically we are looking for directions through
which we can establish modeling principles
which are acceptable to the simulation commu-
nity. We recognize that the current state of
affairs is a chaotic one. Hopefully, by brain-
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storming in the panel through direct question-
ing of each other and through audience partici-
pation, a better understanding of what is meant
by a modeling principle and how it should be
presented or stated can evolve. Our criterion
relating to the value of a modeling principle is
its acceptability to members of the simulation
community.

The form used for this paper is to have each
member of the panel present “principles” and
give brief discussions and/or justifications for
each principle. A principle can be a guideline,
an orientation, or a fundamental characteristic
associated with modeling and models. Audience
empowerment is envisioned through invitations
to be members of future panels on principles of
modeling if they are thought to be necessary
(probably deemed to be so a priori) and thought
to be useful (which may not be as easy to evalu-
ate). The panel starts with a clean slate and the
assumption that there are no established,
published principles of modeling. It is assumed
that all modeling principles presented have
been developed based on the panelists experi-
ence and interaction with colleagues. A naming
convention (panelist’s initials and number) in
this paper is employed for ease of reference
during the panel.

2 PRINCIPLES SUGGESTED BY PRITSKER
2.1 Basic Principles
Modeling Principle AP1 Conceptualizing a

model requires system knowledge, engineering
Judgement and model-building tools.
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A modeler must understand the structure
and operating rules of a system and be able to
extract the essence of the system without
including unnecessary detail. Usable models
tend to be easily understood, yet have sufficient
detail to reflect realistically the important
characteristics of the system. The crucial
questions in model building focus on what
simplifying assumptions are reasonable to
make, what components should be included in
the model, and what interactions occur among
the components. The amount of detail included
in the model should be based on the modeling
objectives established. Only those components
that could cause significant differences in
decision-making, including confidence building,
need to be considered.

A modeling project is normally an interdisci-
plinary activity and should include the decision
maker as part of the team. Close interaction
among project personnel is required when
formulating a problem and building a model.
This interaction causes inaccuracies to be
discovered quickly and corrected efficiently.
Most important is that interactions induce
confidence in both the modeler and the decision
maker and help to achieve a successful imple-
mentation of results.

By conceptualizing the model in terms of the
structural components of the system and prod-
uct (object) flows through the system, a good
understanding of the detailed data require-
ments can be projected. From the structural
components, the schedules, algorithms and
controls required for the model can be deter-
mined. These decision components are typically
the most difficult aspect of a modeling effort.

Modeling Principle AP2 The secret to being a
good modeler is recognizing the need and having
the ability to remodel.

Model building should be interactive and
graphical because a model is not only defined
and developed but is continually refined, up-
dated, modified, and extended. An up-to-date
model provides the basis for future models. The
following five model building themes support
this approach and should be used where fea-
sible:

1. develop tailorable model input procedures
and interfaces;

2. divide the model into relatively small
logical elements;
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3. separate physical and logical elements of
the model;

4. develop and maintain clear documentation
directly in the model; and

5. leave hooks in the model to insert exten-
sions or more detail, that is, build an
open-ended model.

Models developed for analysis by simulation
are easily changed, which facilitates iterations
between model specification and model building.
This is not usually the case for other widely-
used model analysis techniques. Examples of
the types of changes that are easily made in
simulation models are:

1. setting arrival patterns and activity times
to be constant, samples from a theoretical
distribution, or derived from a file;

2. setting due dates based on historical
records, manufacturing resource planning
(MRPII) procedures , or sales information;

3. setting decision variables based on a
heuristic procedure or calling a decision-
making subprogram that uses an optimi-
zation technique; and

4. including fixed rules or expert-system
using rules directly in the model.

Modeling Principle AP3 The modeling
process is evolutionary because the act of model-
ing reveals important information piecemeal.

Information obtained during the modeling
process supports actions that make the model
and its output measures more relevant and
accurate. The modeling process continues until
additional detail or information is no longer
necessary for problem resolution or a deadline is
encountered. During this evolutionary process,
relationships between the system under study
and the model are continually defined and
redefined. Simulations of the model provide
insights into the behavior of the model and,
hence, the system and leads to a further evolu-
tion of the model. The resulting correspondence
between the model and the system not only
establishes the model as a tool for problem-
solving but provides system familiarity for the
modelers and a training vehicle for future users.
Principle AP3 differs from Principle AP2 as it
relates to the modeling process not just the
model.
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2.2 Model-based Problem Solving

Modeling Principle AP4 The problem or
problem statement is the primary controlling
element in model-based problem solving.

A problem or objective drives the develop-
ment of the model. Problem statements are
defined from system needs and requirements.
Data from the system is the input to the model.
Its availability and form help to specify the
model boundaries and details. The modeler is
the resource that is used to build the model in
accordance with the problem statement and the
available system data. The outputs from the
model support decisions to be made to solve the
problem or the setting of policies that allow
decisions to be made in accordance with estab-
lished rules and procedures. Figure AP1 pre-
sents the components in the problem solving
environment when models are used to support
the making of decisions or the setting of policies.

Problem

Model versions

— Decisions

System

Data Policies

T

Modeler

Figure AP1: Model-based Problem Solving
Process

Modeling Principle AP5 In modeling com-
bined systems, the continuous aspects of the
problem should be considered first. The discrete
aspects of the model—including events, net-
works, algorithms, control procedures and
advanced logic capabilities—should then be
developed. The interfaces between discrete and
continuous variables should then be approached.

The world view of a combined model specifies
that the system can be described in terms of
entities, global or model variables, and state
variables. The behavior of the model is simu-
lated by computing the values of the state
variables at small time steps and by computing
the values of attributes of entities and global
variables at event times.
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There are three fundamental interactions
that can occur between discretely and continu-
ously changing variables. First, a discrete
change in value may be made to a continuous
variable. Examples of this type of interaction
are the completion of a maintenance operation
that instantaneously increases the rate of
processing by machines within a system, and
the investment of capital that instantaneously
increases the dollars available for raw material
purchase. Second, a continuous state variable
achieving a threshold value may cause an event
to occur or to be scheduled; e.g., the arrival of a
material handler to a prescribed position initiates
an unloading process. In general, events could be
based on the relative value of 2 or more state
variables. Third, the functional description of
continuous variables may be changed at discrete
time instants. An example of this is the change in
the equations governing acceleration of a crane
when a human is in the vicinity of the crane.

These principles describe a convenient initial
approach to the combined modeling of a system.
Modeling Principle AP2 applies to combined
modeling so that any initial order to the model-
ing sequence will be superceded. Modeling
Principle AP5 may be a corollary to a broader
modeling principle which prescribes that the
structural elements of a system be modeled first
with the procedural aspects of system perfor-
mance modeled subsequently.

2.3 Simulation Model Purpose

Modeling Principle AP6 A model should be
evaluated according to its usefulness. From an
absolute perspective, a model is neither good or
bad, nor is it neutral.

The purpose for modeling can be viewed at a
functional level. The functional levels to which
modeling has been applied are:

e asexplanatory devices to understand a
system or problem;

e as acommunication vehicle to describe
system operation;

¢ as an analysis tool to determine critical
elements, components and issues and to
estimate performance measures;

* as adesign assessor to evaluate proposed
solutions and to synthesize new alternative
solutions;

¢ as ascheduler to develop on-line operational
schedules for jobs, tasks and resources;
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* as acontrol mechanism for the distribution
and routing of materials and resources; and

* as atraining tool to assist operators in
understanding system operations.

Since modeling can be used at each of these
levels and across a wide spectrum of systems,
many types of outputs and analysis capabilities
are associated with models especially when
simulation is used as the analysis mechanism.
It is from this global perspective that a model
should be evaluated, not from a specific mar-
ginal return basis. Projects should be evaluated
on a “return” or ROI criterion. For models,
there is a need to establish classification
schemes and measures of model complexity as
well as algorithm computational complexities.

Modeling Principle AP7. The purpose of
modeling is knowledge and understanding, not
models.

Although this principle seems trite, it is
necessary to state because nonadherence to the
principle has been a pitfall associated with the
fields of industrial engineering, operations
research, management science, decision science,
computer science and statistics.

3 PRINCIPLES SUGGESTED BY HENRIKSEN

Modeling Principle JH1 Generality of
understanding comes at the end of a modeling
project; structure your modeling approach and
modeling environment accordingly.

(This principle encompasses some of the ideas
in Pritsker’s principles AP2, AP3, and AP4).
The purpose of building a model is to study the
operation of a system. At the outset of a model-
ing project, one generally has a good idea of
what system components, resources, algorithms,
and strategies are most important to successful
operation of the system. Furthermore, one
generally has a good idea of what measurements
will yield insights into these critical areas.
However, all non-trivial models yield surprises
and unanticipated insights. If one had these
insights to begin with, building a model would
be unnecessary. In the process of solving a
problem, one learns what the problem really is.

Any modeling approach which fails to take
this fundamental aspect of modeling into
account is doomed to fail. A successful modeling
approach must have many built-in feedback
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loops, allowing modeling assumptions, input
data, performance measures (outputs), system
configuration, and system operation strategies
to be easily modified as suggested by discoveries
in the modeling process.

Modeling Principle JH2 Know when to model
“top-down” and when to model “bottom-up.”

These days, suggesting the existence of
appropriate circumstances for “bottom-up”
approaches in any computer-related task may
be regarded by some as tantamount to heresy.
In general, we are predisposed to believe that
“top-down” is equivalent to “good. My own
feelings in this regard are biased by many years
experience as a systems programmer. When I
build a large piece of software, I know that it is
important to build some system components as
soon as possible, even when I know that I can’t
build them “right.” For example, if I'm building
a menu-based system, the contents of the menus
and how the menus relate to one another are
initially far more important than pretty appear-
ance and smoothness of operation of the under-
lying menuing software. After I've experi-
mented with my system, I can fine-tune the
menu mechanism. IfI place too much impor-
tance on the menu mechanism too early in the
project, I'll end up spending a lot of time build-
ing something that I'll have to change any way.

I think that modeling should be approached
in the same vein. Model components that will
be heavily exercised and that are likely to be
modified should be implemented as early as
possible in the modeling process.

Modeling Principle JH3 It’s important to
learn modeling techniques, but more important
to learn to consider the tradeoffs among alterna-
tive techniques..

When one learns algebra, one must master a
collection of rules, such as “adding the same
value to both sides of an equation preserves
equality.” The hope is that when the student is
presented with the equation “X - 7 = 12,” (s)he
will know enough to add 7 to both sides of the
equation, thereby showing that “X = 19.” On the
other hand, if the student adds a value of 1 to
both sides of the equation, an algebraically
correct operation, showing that “X - 6 = 13” is
hardly what we’re after.

In [Henriksen 1989], I discussed a number of
tradeoffs that should be considered in a modeling
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project: active vs. passive world-views, time
domain vs. state domain, macroscopic vs.
microscopic focus, toy models vs. real models,
detailed models vs. abstract models, variants
and invariants, implicit vs. explicit representa-
tions, etc. Each of these tradeoffs is potentially
critical to the success of a modeling project.
However, before one can consider the tradeoff
between two alternative approaches, one must
know what the approaches are.

4 PRINCIPLES SUGGESTED BY FISHWICK

Modeling Principle PF1 Models are associ-
ated with a set of questions.

One can take a mathematical model of a
system and associate it with the set of questions
that are answered by using that model. For
instance, if a barbershop is modeled as a queue-
ing system, then a queueing model is associated
with a set of questions represented by “How fast
does the barber cut hair?”, “What is the average
customer waiting time?” and “What are the peak
hours on an average day? The idea of models
relating to a set of questions relates to Pritsker’s
discussion of the problem statement (AP4 and
AP6). Now, let’s consider a different type of
question — “How much hair falls on the floor in
an hour?” Clearly, the queueing model, by
itself, is not sufficient to answer this question.
Therefore this new question must be associated
with another model that we have not yet cre-
ated. We can create a difference equation model
to model amount of hair cut over time; then, we
will have the use of two models (queueing and
difference) to answer a larger set of potential
questions. Ultimately, we would like to build a
black box shown in Figure PF1. A question (Q)
to be answered is taken as input into the box,
and the model (M) necessary to answer that
question is produced as output. Unfortunately
for us, no one has built these black boxes;
however, the construction of such a box is
possible and can be facilitated with the use of
expert system tools. In such a system, we can
have rules such as:

e Ifthe question relates to : speed of barber
or customers then use QUEUEING-
MODEL-3.

e Ifthe question relates to:. amount of hair
then use DIFFERENCE-MODEL-24.
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D-2. Difference Model
P-1:  Peti Network
QM-3: Queueing Model
M-9:  Semi-Markov
Set of all possible questions

“What Is the rate of

departing entities® MODE

QUESTIO —L>OM-3

Figure PF1 The Simulationist’s Q/M Black Box

With respect to the model name suffixes, one
must consider that there are many queues in
the barbershop system that may be of interest —
such as a FCFS queue for the electric trimmer if
there are many barbers and only one trimmer.
The same is true of the difference model — there
may be other difference models that reflect loss
of mustache hair or amount of money in the
barber’s drawer.

Modeling Principle PF2 Multiple modeling
paradigms will be required for a universal
modeling language.

In principle PF1, we advocated the need for
different models depending (1) on the problem to
be solved (i.e. problem statement), and (2) the
class of questions that need to be answered.
This suggests that our current method of
modeling — that is, relying on one modeling
paradigm — is somewhat deficient. This defi-
ciency is more clearly shown with an example of
resource allocation. Consider a resource such as
a lathe. The lathe may be “used” or requested
by many different parts, and the operation of
the lathe depends on the dimensions of the part
and the type of cuts to be performed. It may be
appropriate to use a Petri net to model the
resource allocation, and a set of differential
equations to model the lathe’s dynamics. Imme-
diately, we see a need to use two different
modeling techniques. Sometimes it is possible
to use a universal language for both models,
although it is more precise to use the appropri-
ate modeling method at the appropriate level.
What is needed in this case is a good way of
forming a bridge between Petri nets and differ-
ential equation-based modeling methods.
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Models are no longer to be considered single
entities, but rather full-fledged structures
representing networks or model “bases” contain-
ing different models and specific ways of trans-
lating between models during any point within
the simulation.

Modeling Principle PF3 Models are not
simply repositories of a system’s dynamics;
models help us reason about systems.

Ultimately, we want our models to be well
defined so that models can be validated and
reflect real system behavior. This sometimes
leads us to shun graphical approaches to simu-
lation modeling in favor of more rigorous repre-
sentations. This tendency toward formal repre-
sentation misses an important point — we create
models as a language so that we can converse
with one another about dynamic systems. IfI
want to talk to you about manufacturing floor
assembly line dynamics, I can do so by drawing
circles (for resources) and arcs (for transport) on
a blackboard. The circles and arcs do not
contain the lowest possible level of semantics for
modeling, but that does not demean their
utility. We understand the ultimate necessity
for attaching a detailed algorithm to represent
what the circles and arcs represent. Just as we
use natural language and not mathematical
symbols to communicate our intentions, we
must use whatever modeling methods that
promote effective communication about dynami-
cal systems.

Modeling Principle PF4 Closed-form evalua-
tions are integrated aspects of computer simulation.

It is traditional to differentiate iterative
evaluative methods (as “simulation”) and
“static” methods that provide direct solutions in
the form of algebraic equations parameterized
by time. This is a very narrow view of simula-
tion. Let me try to defend this somewhat
radical perspective. Computer simulation
modeling aims to create models of time-depen-
dent behavior. Our purpose, as simulationists,
is to study complex systems over time. The
temporal element, therefore, is central to
simulation; that is, simulation concerns itself
with time-dependency. Now, suppose that I
choose a differential equation model that has a
direct solution. This solution is of an equational
form where state variables are expressed as
functions of time. Since simulation is concerned

Pritsker (chair), Henriksen, Fishwick and Clark

with time dependent behavior, we can use these
equations by incrementing time and determin-
ing state variables. The fact that we are not
performing numerical integration should not be
a reason to describe our modeling as a “non-
simulation.” So, why do we have the distinction
of simulation vs. analytic method? For the most
part simulation has usually been associated
with the computer whereas direct methods have
been associated with human activity — therein
lies the difference. With the onslaught of effec-
tive computer methods for symbolic manipulation,
though, we see less of a need to artificially sepa-
rate “simulation” from“direct analysis.” Effective
symbolic manipulation requires lots of computer
memory and pointer manipulation; however, the
necessary speeds are now available on scientific
workstations. Computer technology has made it
possible to run large symbolic programs in
conjunction with the “smaller” simulation soft-
ware. Most future simulations will include
embedded calls to symbolic manipulation soft-
ware (such as Maple, Mathematica, Macsyma or
Reduce). A simulation will first check for a direct
solution prior to automatically assuming an
iterative one. Both methods (direct and iterative)
will lead to the same end result: a simulation of a
process over time.

5 PRINCIPLES SUGGESTED BY CLARK

Modeling Principle GC1 All models are
abstractions of reality.

A simulation modeler must recognize that the
simulation model, regardless of its level of
detail, is not reality. Sometimes a simulation
project assumes a life of its own in that the
detail and physical significance of the processes
represented give a realistic appearance to the
model. The modeler may take pride in incorpo-
rating many complex processes in the model in
order to give it credibility and gain acceptance.
Taken to an extreme, the model may become
cumbersome and difficult to use. If the modeler
and decision makers recognize that the model
will never exactly represent reality, they may
take a more cautious attitude towards adding
model detail. For example, adding logic to
represent lunch and personal breaks to a
manufacturing system model may give a realis-
tic appearance to the model, but the model still
will only be an imperfect representation of those
processes that are quantifiable.
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Modeling Principle GC2 Simpler models are
easier to analyze in a timely and comperehensive
manner.

Simpler models represent fewer interacting
processes; thus, they are usually easier to
construct. Moreover, simpler models have lower
computer execution times and fewer input
parameters to relate to model outputs. Most
likely, a simulation model with several hundred
input parameters will never be analyzed in a
comprehensive manner.

Modeling Principle GC3 Doubt may exist as
to whether inclusion of a process in a model will
effect the results.

A modeler may decide to omit a process from
a model because of the judgement that process
will not materially effect the conclusions from
the simulation study. For example, a model of a
supermarket checkout operation may omit the
process of lane hopping by customers based on
the judgement that lane hopping will not effect
the mean wait time. Until one compares results
with lane hopping with results without lane
hopping, one is uncertain as to the effect of lane
hopping. Possibly experience with other models
may help. However, how transferable is this
experience? Also, what if in the later stages of
the study, the decision maker asks for the
probability that a customer will wait more than
five minutes as a performance measure?

Modeling Principle GC4 The modeler should
consider the use and construction of two models:
a detailed and a simplified (rough cut) model.

A simplified model has two principal advantages:

¢ Permits rapid examination of alternatives and
subsequent elimination of weaker alternatives

* More readily reveals basic relationships among
input parameters and output performance
measures.

However, the simplified model may lack cred-
ibility and may give less accurate predictions of
output performance measure values. One may
use the detailed simulation model to compare
the most competitive alternatives and estimate
the magnitude of errors in the simplified model.
The simplified model may be (but not necessar-
ily) an analytic model. A rough cut model that
students in simulation classes have found useful
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is the calculation of average server utilizations
in steady state queueing networks from simula-
tion input data. High utilizations indicate
bottlenecks, and utilizations greater than 1.0
are impossible.

Modeling Principle GC5 Comparisons with a
detailed simulation model do not validate a
model in a scientific sense.

Since a detailed simulation model, regardless
of how realistic it appears, is not reality, it is not
necessarily a standard for scientific (empirical)
verification. Comparisons with a detailed
simulation model may indicate the effect on
outputs of differences in assumptions about
reality.

Modeling Principle GC6 Prepare a simulation
requirements specification prior to developing the
model.

The simulation requirements specification
documents the following:

¢ Description of the system to be represented
. Specify the scope of the system
. Describe principal operating features of the
system
¢ Purpose of the simulation model
. List the questions motivating the use of the
model
¢ Describe and list the model output performance
measures
¢ Describe and list the model input data
¢ Describe the principal simulation entities (the
model static structure)
. List and define the attributes for each entity

The requirements specification stops short of
specifying how the model is to be programmed,
but it specifies what the model is to do. Having
a clear picture of model requirements prior to
programming the model will save effort and
permit the development of a more understand-
able model structure. This is particularly
important when more than one individual
participates in the model development.

Model Principle GC7 Solicit inputs from the
decision makers/customers of the model for the
requirements specification.

The requirements specification guides the
simulation development effort, and the process
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of openly soliciting requirements from the
"customers” of the simulation project aids in
gaining acceptance of the recommendations
resulting from the simulation effort. These
customers often have more domain knowledge
concerning the system to be represented and the
decision to be influenced by the model than the
modeler.

Model Principle GC8 Obtain concurrence
with respect to the requirements specification by
the decision makers/customers of the simulation
project.

This concurrence among all parties with
respect to the requirements specification should
occur prior to developing the model. Without this
concurrence, problems are simply deferred until a
later time. Disagreement about the assump-tions
inherent in the model may prevent adoption of
recommendations from the simulation project.

Model Principle GC9 Tradeoffs may exist
between use of random variables and additional
input data.

We use random variables in a model to repre-
sent outcomes that are not predictable in a
deterministic sense from available information.
Clearly the time to perform an operation by a
human being may be described as a random
variable because of its unpredictability. However,
consider the times to perform an operation by a
numerically controlled machine that is capable of
operating on diverse types of jobs. If one knows
the particulars concerning each job, the operation
time may be predictable. Thus, the modeler has
the options of compiling a detailed list of job
sequences and times or using a probability
distribution to determine the operation times. In
a Computer Integrated Manufacturing environ-
ment this sequence of operation times may be
part of an existing database. However, one might
ask whether this historical sequence of jobs is an
appropriate scenario to influence decisions
concerning future operations. Analyses of exist-
ing data may indicate other options for replacing
random variables with added inputs. For ex-
ample, one might discover that human-paced
operations are sensitive to the time of day. The
variance of operation times given the fact that the
current time is the first hour of a shift may be
much smaller than the variance without knowl-
edge of the time of the day.

Pritsker (chair), Henriksen, Fishwick and Clark

6 RELATED MODELING RESEARCH

Research on modeling is extremely difficult.
Included in the bibliography are books and
papers on modeling. Basic research on under-
standing models and the modeling process are
reported by Polya, Wymore and Zeigler.
Henriksen and Pritsker have presented papers
at Winter Simulation Conferences that high-
light the significant questions on specialized
simulation modeling topics. Recently, Geoffrion
has written several basic papers on the funda-
mentals of structured modeling. These efforts
need to be considered in developing principles
that are useful for modeling practice.
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