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ABSTRACT

The purpose of this paper is to review some
advanced aspects of methods for analyzing data
produced by simulations. The review focuses on
methods for estimating parameters of stationary
output processes. The techniques include some
variations of the batch means method, sequential
methods, standardized time series estimators,
methods based upon Hoeffding’s inequality,
quantile estimation, and multivariate estimation
methods.

1 INTRODUCTION

The purpose of most simulations is to
develop an understanding of system behavior, with
the goal of using that understanding to make
decisions involving the system. The process of
developing and running the simulation involves
some combination of the following activities:
preliminary analysis of system operations; model
design and coding; verification; validation;
experimental design; performing simulation runs to
produce output data; and statistical analysis of
output data to estimate parameters. Each of these
activities contributes to understanding of system
behavior, but often the bottom line is knowing the
values of one or more system parameters that
measure performance. This paper focuses on the
last step: advanced methods for analysis of output
data to estimate one or more parameters that
describe system performance.

There are many statistical topics that are
related to output analysis: variance reduction,
experimental  design,  comparison  methods,
optimization and response surface methodology,
and initialization techniques.  While these are
important topics and are intimately related to
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output analysis, they will not be discussed in this
tutorial. Most of these topics are discussed in other
papers in this volume and a number of references at
the end of this paper relate to these topics.

Simulations can  be  classified as
terminating or non-terminating (Law 1980, 1983).
Terminating simulations run only until some
stopping criterion is met and data from
terminating simulations have the characteristic
that they are dependent upon the initial state of
the system.  Normally, analysis of such data
involves running independent replications and
applying standard statistical techniques to compute
a confidence interval for the parameter of interest
(Law 1980, 1983; Seila 1991). This paper does not
deal with methods for analyzing data from
terminating simulations.

Non-terminating simulations can
conceptually run indefinitely. We will assume that
the system is stationary, and therefore the output
process is stationary. In brief, an output process is
stationary if any finite collection of observations
has the same distribution as the same collection
shifted by an arbitrary amount.

A weaker form of stationarity is wide-sense
or covariance stationarity. A process is said to be

wide-sense  stationary if  E(X,) = E(X, n B
Var(X,) = Var(X, + p)  and  Cov(Xy, Xy n B
depends only upon h for all ¢t and all h. The

analysis methods considered in this paper apply to
strictly stationary and covariance stationary
processes.

This tutorial presents some advanced
topics in the analysis of output data when the
output process is stationary. Some of it is a
republication of the output analysis tutorial
presented at the 1991 Winter Simulation
Conference (Seila 1991). A number of excellent
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texts are available to provide the specific
algorithms and calculations for many of the
methods discussed (Bratley, Fox and Schrage 1983;
Fishman 1987b; Kleijnen 1974, 1975, 1982 Law and
Kelton 1991; Lewis and Orav 1989; Rubinstein
1981; Welch 1983). Sections 2 through 6 involve
methods for estimating the mean of the output
process. Section 2 presents a general discussion of
issues concerned with estimating the stationary
mean. Topics relating to the batch means method
are presented in Section 3. Section 4 discusses
methods for sequential estimation. Sections 5 and
6 present recently developed techniques using
standardized time series and Hoeffding’s inequality.
Finally, quantile estimation and multivariate
methods for estimating multiple parameters
simultaneously are the topics of Sections 7 and 8,
respectively.

2 GENERAL CONSIDERATIONS IN
ESTIMATING THE MEAN

Since any simulation run must be started
in a specific initial state, the data produced will
depend upon the initial conditions. However, as
contrasted to terminating simulations, steady-state
simulations eventually produce data that does not
depend upon the initial state of the system (or at
least, the dependence is sufficiently weak that it
can be ignored). Performance measures of interest
are defined in terms of the steady-state behavior of
the system. A great deal of effort has gone into
developing estimators for the mean of a stationary
output process. For example, one might be
interested in estimating the steady-state mean
waiting time for a customer in a queue or item in a
production system. The stationary mean can be
conceptualized in two ways. Let Xl’ X2‘ cen X
be the waiting times observed from n customers
while the system is operating in steady-state. The
mean waiting time is

This is the average waiting time for a very large
number of customers. Another way to interpret
the steady-state mean waiting time is to consider
an arbitrary customer who enters the system
without knowledge of the system state. His waiting
time is a random variable that has some
(unknown) distribution. ~ The stationary mean
waiting time is the expected value of this random
variable.

Suppose that observations are binary
random variables, having the value 1 if a specified
event occurs and 0 otherwise. Then, the mean of
these observations is the probability that the event

occurs. For example, let X, =1 if the jth
customer in a queueing system waits more than 2
minutes, and X, =0 otherwise. Then, the

expected value of X, is the probability that a
randomly selected customer must wait more than 2
minutes, or the proportion of customers in a very
long run who must wait more than 2 minutes.
Since proportions, or probabilities, are means of
appropriately defined binary observations, methods
for estimating means can also be applied to
estimate probabilities.

The point estimator for the mean is the
overall sample mean:

v 1 &
= Z
Let 0'— denote the varlance of the sample mean X

and suppose that SY is an estimator for 02.—\" Then

the 100(1 — «v)-percent confidence interval for p is

Tn Ty, — )25 where ¢ is the 100«

d,o
percentage point for the Student’s t-distribution
with d degrees of freedom. Various methods for
computing the confidence interval differ primarily
in the estimator Sy and the number of degrees of
freedom, d.

When analyzing data generated by a
stationary simulation, one must deal with two
problems: (1) the presence of initial data that
constitutes a transient portion of the output process
(the startup problem), and (2) autocorrelation
among the stationary observations. The method
for dealing with the initial transient portion is
normally to delete an initial segment of
observations from the data prior to applying
estimation methods. The problem one faces,
however, is to determine where one should truncate
the data to remove the initial transient portion.
This is a very difficult problem for which several
solution methods have been proposed, but also one
for which none has proved uniformly satisfactory
(Gafarian, Ancker and Morisaku 1978; Fishman
1972; Kelton 1987; Schruben 1982; Schruben, Singh
and Tierney 1983; Kelton and Law 1983; Welch
1981; Wilson and Pritsker 1978a, b).  Other
research has been concerned with how the initial
state of the system should be chosen so that the
transient portion will be minimized (Ilelton 1989
and references therein).

The effect of having autocorrelation among



the data is to increase the difficulty of estimating
the variance of the sample mean. Frequently, the
observations are positively autocorrelated. The
effect of positive autocorrelation is to cause the
usual sample standard error to be a biased
estimator of the standard error of the mean. If o2
is the variance of each X, and p. is the
autocorrelation between X, and X'i+j’

pj= Corr(X,, Xi+j)’ the variance of X is given

ie.,
approximately by:

2 0,'2 o0
0% =T l+22 pj

i=1

If X,,X,,... are independent, so that p.=10 for
J # 0, then the sample variance of the mean 32/n is

an unbiased estimator for oZ. However, if
re

X
o)
autocorrelation is  present, the term). p j

introduces a bias to the sample variancejo? the
mean s%/n, as an estimator c%. A confidence
interval computed  without  accounting for
autocorrelation will be too short and have a true
confidence coefficient which is smaller than the
nominal value used to compute the interval. That
is, a confidence interval which is computed to have
a confidence coefficient of 95-percent may have a
true confidence coefficient much smaller than .95.

3 THE BATCH MEANS METHOD

In the batch means method (Conway 1963;
Mechanic and McKay 1966; Law 1977; Fishman
1978a; Schriber and Andrews 1979; Schmeiser
1982), data from the stationary portion of the run
are grouped into batches and the sample mean is
computed for each batch. Under some mild
technical conditions, it is known that if the batch
size is large enough, the batch means will be
approximately uncorrelated (Law and Carson
1979). If this is the case, the batch means can be
treated as a sequence of independent, identically
distributed observations of the sample mean and
the usual method can be used to compute a
confidence interval for the mean.

The difficulty with the batch means
method is that the user must decide how large the
batches should be, and consequently, if the number
of observations in the run is fixed, the number of
batches to use. If the batch size is too small, the
batch means will not be uncorrelated and the
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confidence interval will often be too narrow and
have an erroneously low coverage probability. If
the batch size is too large, the confidence interval
will be unnecessarily large because the number of
batches will be too few. See Schmeiser (1982) for a
discussion of batch size effects. A number of
methods to determine the batch size have been
proposed (Fishman 1978a, b; Law and Carson
1979).

Fishman’s method is simple but has proven
to work successfully. In this method, one starts
with a sample size which is a power of 2 and
batches of size 1. Then, the method iterates
through a procedure which performs an hypothesis
test for lack of autocorrelation between adjacent
batch means and successively doubles the batch size
and halves the number of batches if significant
autocorrelation is found. The procedure stops when
either the autocorrelation between adjacent batch
means is not significantly different from zero, or
the number of batches is less than 8. In the former
case, the final batch size is used; in the latter, the
entire sample is declared too small and additional
observations must be generated. Schmeiser (1982)
has noted that if the autocorrelation function is
positive and decreasing, then one should almost
never need more than approximately 30 batches, so
in this case Fishman’s method can be modified to
start with 32 batches, say, instead of n batches. As
a by-product of Fishman’s method, one can plot
the p-value of the  hypothesis test for zero
autocorrelation between adjacent batch means
against the log of the batch size. In normal
circumstances, this is an increasing function.
Therefore, an appropriate batch size can be selected
from this plot by noting the first batch size where
the p-value exceeds the desired significance level.

The advantage of the batch means method
is that it seems to use the data more efficiently
than many alternatives. By deleting the initial
transient only once, the amount of data that is
discarded in the run is minimized. If the length of
the initial transient is misjudged too large, this
error is not multiplied by the number of
replications as in the independent replications
method, and if it is misjudged too small, this error
may cause the first batch mean to be biased but is
not likely to affect other batch means. A study
comparing several methods (Law and Kelton 1984)
has shown that the batch means method is
competitive with all of the other methods that have
been proposed and is generally superior to them in
terms of producing the smallest, most accurate
confidence intervals.
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Meketon and Schmeiser (1984) have
suggested that the batch means method could be
improved by forming batches that overlap. In this
scheme, which they called overlapping batch
means, the first batch consists of observations 1
through m, where m is the batch size. Then, the
second batch consists of observations 2 through
m+ 1, the third batch has observations 3 through
m + 2, and so on. The estimator of ¢2. is the usual
sample variance of the batch means, except that in
this case there are n—m+1 batches and their
sample means are clearly not uncorrelated.
Meketon and Schmeiser showed that, for large
batches, overlapping batch means produce a more
stable estimator of g% because the variance of s
for the batch means formed from overlapping batci\::
means is one third smaller than the variance of s,
formed using the usual non-overlapping batcﬁ
means. Welch (1987) later showed that both
traditional batch means and overlapping batch
means are specific cases of spectral estimation at
frequency 0, and moreover, that most of the
variance reduction from using overlapping batch
means can be obtained by forming three or four
sub-batches from each batch and using these sub-
batches to compute overlapping batch means. For
example, if a run consists of 40 batches of 32
observations each for a total of 1280 observations,
one can divide each batch into 4 sub-batches of 8
observations each. Then, the first (overlapping)
batch consists of observations 1 through 32; the
second, of observations 9 through 40; the third, of
observations 17 through 48, and so on. The batch
mean is computed for these batches, and the
sequence of batch means is then used to compute a
variance estimate for use in the confidence interval
calculation. This procedure will result in a
reduction of approximately 32 percent in the
variance of the variance estimate.

4 SEQUENTIAL METHODS

It is frequently the case that the analyst
wishes to estimate the parameter with a specified
precision. For example, in a manufacturing
simulation, one might wish to estimate the mean
processing time for a product with precision plus-
or-minus 1 hour, or estimate the mean utilization
of a particular machine with precision plus-or-
minus .05. In this case, the desired precision
determines the amount of data needed to compute
the confidence interval. However, some measure of
variance is required in order to compute the
appropriate sample size, and this quantity is

unknown. Sequential methods (IKabak 1968;
Fishman 1977; Law and Kelton 1982) solve this
problem by sequentially collecting data and testing
to determine if enough observations have been
collected to assure the desired precision of the
confidence interval. Many of the sequential
methods are based upon the results of Chow and
Robbins (1965) and Nadas (1969). The advantage
of sequential methods is that, if the technical
assumptions of the method apply, the precision of
the confidence interval is guaranteed; however, the
number of observations generated, and therefore,
the amount of computer time required for the
simulation is not predictable in advance. This
opens the possibility that the simulation run could
require more time than is available. A second
difficulty with sequential methods is that they
must be built into the simulation; i.e., one cannot
just run the simulation, store the output data on a
file, and analyze the data separately from the
simulation run. Instead, the test for the end of the
run must be made as the simulation is running. If
these two considerations do not pose a problem,
sequential methods are a preferable approach to
computing confidence intervals.

5 STANDARDIZED TIME SERIES

Another  estimator, called an area
estimator, is based upon the theory of standardized
time series and has been proposed as an alternative
to these techniques for estimating the standard
error of the mean (Schruben 1983). This estimator
assumes that the process has the ¢@-mixing
property, which, informally, states that if the
process runs for a sufficiently long time,
observations in the distant past are approximately
independent of those in the present. This is a
property which is easy to assume but for many
models is difficult to prove. If the process has the
¢-mixing property, a suitably standardized version
of the sample mean can be shown to converge to a
Brownian Bridge, and this property is used to
develop an estimator for the variance of the sample
mean based upon the area under the standardized
sample mean. The area estimator has been shown
to be less efficient in many cases than the batch
means and spectral estimators. A recent paper
(Glynn and Iglehart 1990) shows the relationships
between batch means and area estimators, and
compares their efficiencies for large sample sizes.
However, recent work on weighted versions of the
area estimator appears promising (Goldsman,
Meketon and Schruben 1990).
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6 SPECIAL METHODS FOR PROPORTIONS

Empirical studies (Law 1983; Law and
Kelton 1982, 1984) have shown that the actual
confidence coefficient for many of the methods is
somewhat less than the theoretical value. Thus, in
practice confidence intervals are not as reliable as
one would like. This is a result of the fact that the
methods for computing confidence intervals are
based upon the asymptotic distribution of the
sample statistics. Thus, the confidence coefficient
is accurate only in the limit as the sample size
approaches infinity. Recently, Hoeffding’s
inequality, which applies to the sample mean for
observations that are bounded, has been used to
develop conservative confidence intervals for
proportions (or probabilities) (Fishman 1986).
These confidence intervals, which apply to
independent  observations, require that an
expression involving the sample proportion be
solved numerically. The widths of the confidence
intervals are approximately 30-percent larger than
those using asymptotic normal theory, but they
have the desirable property that the confidence
coefficient is guaranteed to be at least as large as
the nominal value used to compute the confidence
interval.

7 METHODS FOR ESTIMATING QUANTILES

A p-quantile or 100pth percentile is a value
such that a specified proportion, p, of the
observations are less than the quantile.  For
example, the .9-quantile of waiting time for
customers in a stationary queueing system is a
value, 6, such that the probability that an
arbitrary customer must wait less than 6 is .90.
Quantiles are useful parameters if the objective of
the simulation study is capacity planning.
Unfortunately, however, quantiles, especially
extreme quantiles (p close to 0 or 1), are much
more difficult to estimate than means.

Several methods have been proposed for
estimating quantiles when the data is generated by
a stationary simulation (Iglehart 1976; Moore 1980;
Seila 1982a, b; Heidelberger and Lewis 1984). Most
of these methods use the sample quantile as the
point estimate. Heidelberger and Lewis suggest
using the maximum transform, in which the
sample is summarized by being grouped into
groups of k observations, and the maxima of the k
observations in each group selected to represent the
sample. Then, the r-quantile is estimated, where
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r:pk. When the observations are mutually
independent, theory is available to justify the
maximum  transformation; however, if the
observations are dependent, there is no theoretical
justification. The sample p-quantile, P,, is
computed by selecting the observation X; such that
100p percent of the observations are less than .\
and 100(1 — p)-percent are greater. The methods
differ in the way that the variance of Xl is
computed.

8 MULTIVARIATE ESTIMATION

Frequently, one wishes to use the same
simulation run to estimate two or more parameters
simultaneously. For example, in a manufacturing
system, one may wish to estimate the mean
processing time for items along with the utilization
of a particular critical machine. Normally, the
mean processing time, which one desires to
minimize, increases with machine utilization, which
one desires to maximize. Thus, there is a trade-off
between these two parameters.

Some special techniques (Seila 1984,
Charnes  1991) have been developed for
multivariate estimation in certain special cases.
More generally, however, Bonferroni’s inequality
can be used to compute a conservative confidence
coefficient for a set of simultaneous confidence
intervals. If k confidence intervals are computed
with confidence coefficients l—al, l—ay, ..,
1——ak, then the probability that all k confidence
intervals simultaneously include their parameters is

k
at least 1— 5 ;. Therefore, if one wants two

confidence E]tlervals to have simultaneous
confidence coefficient .95, each can be computed to
have an individual confidence coefficient of .975. If
each of five confidence intervals has confidence
coefficient .98, the simultaneous confidence
coefficient for all five is no less than .90. This is a
very general technique and has been shown to be
rather accurate (Schruben 1981).

The batch means method has been adapted
to multivariate output that is synchronized in the
sense that the observations on all parameters can
be formed into a sequence of vectors (Chen and
Seila 1987). This method uses Scheffe confidence
intervals and was shown to produce reliable
confidence regions. Like Fishman’s method, this
method chooses the batch size by testing for first-
order serial autocorrelation among the (vector)
batch means. Charnes found that a good test
statistic for this test is the F-approximation to the
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Wilks likelihood ratio test; see Charnes (1990).
Charnes (1989) has also examined the use of
multivariate autoregressive models to estimate the
mean. While these approaches have seen some
success, this area is the subject of ongoing research.

8 OTHER METHODS

Other methods have also been proposed for
estimating the mean of a stationary output process.
The spectral method (Duket and Pritsker 1978;
Fishman 1978; Heidelberger and Welch 1981a, b)
estimates o2 using established methods for
estimating tﬂ\e spectrum of a time series. The
concepts and calculations involved in applying this
method are more complex than those presented so
far, but it has been shown to perform well in a
number of cases, and software is available to
efficiently compute the spectrum. Other time series
methods (Schriber and Andrews 1984) attempt to
fit the output data to an empirical model and use
the estimated parameters of the model to estimate
the quantity (2).

For systems where the output process is
regenerative (Ross 1989), special methods to
estimate the mean and quantiles have been
proposed. A regenerative process has the property
that the sequence of observations can be grouped
into a sequence of independent, identically
distributed cycles of observations. It is known for
regenerative processes that the mean of the process
is equal to the ratio of the mean of the sum of the
observations over a cycle divided by the mean
number of observations in the cycle. This fact has
been used to develop a confidence interval for the
mean (Fishman 1973, 1974; Crane and Iglehart
1974, 1975; Crane and Lemoine 1977; Iglehart
1978). It has been observed (Law 1984) that in
many cases the batch means method performed as
well as or better than the regenerative method.
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