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ABSTRACT
This paper presents an overview of Arena--an
extendible modeling system that is built on

SIMAN/Cinema. A key idea behind Arena is the
concept of tailorability to a specific application domain
through the use of a template.

1 INTRODUCTION

During the past decade, there has been tremendous
progress in the development of new simulation
technology and related software. Most modemn
simulation tools now provide an interactive graphical
interface for model definition as well as real-time
graphical animation. These new capabilities represent a
significant improvement over earlier nongraphical,
batch-oriented modeling tools.

The many recent advances in simulation technology
have created a greater awareness and use of simulation
by industry. Managers are now more aware of the
potential benefits of simulation. However, even with
the many important advances that have been made over
the past several years, there are still many cases where
complex systems are being designed and implemented
without the benefit of simulation. In our view, a very
small percentage of systems that could benefit from
simulation are actually simulated, and the primary
reason for this is the high level of effort required to
employ simulation technology successfully. We believe
that the key to making simulation technology more
widely used is to make the tools significantly easier to
learn and use.

A number of authors have discussed the importance
of the complexity of simulation as an impediment to its
widespread acceptance. There are many potential users
who believe that they cannot successfully apply
simulation without employing an outside consultant
[O'Loughlin, et. al, 1988]. Even managers who realize
the benefits of simulation often abandon simulation
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attempts because models are too time-consuming and
labor intensive to write, test, debug and analyze
[Thomasma and Ulgen, 1988]. Resource requirements
and scheduling constraints often leave little or no time
to put together a detailed simulation analysis [Suri,
1988].

The desire for ease-of-use by practitioners is
highlighted by the growth in popularity of domain-
restricted simulation packages such as Witness and
ProModel for modeling manufacturing systems.
Although these packages lack the flexibility of a full-
capability simulation modeling language such as
SIMAN, they offer a more focused modeling
framework within a limited application domain. These
tools are often cited as being effective for use in rough-
cut modeling of simple manufacturing systems, but
limited in terms of general simulation modeling features
[Fegan, et. al, 1991]. For this reason, the usefulness of
these packages for modeling complex systems is
somewhat limited [Ulgen and Thomasma, 1990].

With the present state of simulation technology,
users are forced to make a choice between the ease-of-
use of the domain-restricted packages, and the
flexibility of languages [Law and McComas, 1990].
Although over time the packages are becoming more
flexible and the languages are becoming easier to use,
there remains a significant void between these product
categories. If the user elects to employ one of the
packages (if one exists for his/her domain of interest),
the limited flexibility provided by these packages may
result in an inaccurate representation of the system--
resulting in false conclusions from the model. On the
other hand, by electing to employ one of the languages,
the user is required to make a greater commitment in
time and effort to master the capabilities of the
language fully.

This paper presents a new SIMAN/Cinema-based
modeling/animation system, named Arena, developed
by Systems Modeling Corporation. In our view, this
new system represents a major advance in simulation
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technology by combining the modeling power and
flexibility of the SIMAN/Cinema system with the ease-
of-use of application-focused packages. Arena offers a
high level of modeling flexibility across a wide range of
problem domains, yet is very simple to learn and use.

Arena also provides a complete simulation
environment that supports all basic steps in a simulation
study. The Arena system includes integrated support
for input data analysis, model building, interactive
execution, animation, execution tracing and
verification, and output analysis. In this paper, we will
restrict our focus to the model building functionality of
Arena.

The key idea behind Arena is the concept of
tailorability to a specific application area. The Arena
system 1s not restricted to a specific set of predefined
modeling primitives, but can be easily tailored to a
domain-specific application area by means of an
application template. Hence a user of Arena who is
modeling health care systems could employ a health
care template that would contain modeling primitives
focused on health care systems (doctors, nurses, beds,
X-ray, etc.). Likewise, a person modeling traffic flow
in a city could employ Arena with a traffic flow
template that would contain modeling primitives
focused on traffic flow (roads, exit ramps, cloverleafs,
stoplights, etc.). Unlike conventional simulation
systems that have their modeling primitives "hard-
coded” into the software by the vendor, Arena allows
the modeling primitives to be "soft-coded” by the end
user by means of the template.

The application template concept is fundamental to
the flexibility and ease-of-use provided by Arena. This
mechanism makes it possible to provide the end user of
the product with a tool that closely matches the real
system being modeled--hence the user is presented with
concepts and terminology that are focused on his or her
problem.  This dramatically reduces the level of
modeling abstraction required by the user. However,
the user is not limited to the primitives provided by a
single domain-restricted primitive set. The user can
combine domain-restricted primitives from one or more
application-focused templates with the full modeling
power of the SIMAN simulation language and thereby
avoid the modeling "brick wall" encountered with
traditional hard-coded, domain-restricted packages.
The modeling power of SIMAN is made available to
the user as simply one additional template.

2 BACKGROUND
The Arena system is an extendible modeling

environment that is built upon the SIMAN/Cinema
simulation/animation software. Arena is a graphical
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modeling/animation system that is based on concepts
from object-oriented programming and hierarchical
modeling.  Since these two concepts represent the
foundation for the Arena product, we will briefly
review these concepts and discuss their significance to
Arena. As we will discuss, there is substantial overlap
between the concepts of object-oriented programming
and hierarchical modeling.

2.1 Object-Oriented Simulation Languages

Object-oriented programming is a powerful paradigm
gaining widespread use in software development.
Major software developers including IBM, Borland,
Microsoft, Next, and so on, have made strategic
commitments to the object-oriented approach to
software development. The Arena software was also
developed using an object-oriented approach--and this
proved to be a highly effective paradigm for this
development project. Although this paradigm is now
being widely embraced throughout the software
development community, it is interesting to note that
the first general language to promote an object
orientation was the simulation language Simula
(Birtwistle, et al., 1979). The concepts in modern
object-oriented languages such as C+ + and Smalltalk
are directly based on Simula.

Simulation languages tend to have an object focus
since they are used to represent physical objects in the
system being modeled--and it is therefore natural that
the object-oriented paradigm was first developed within
the simulation community. The entities, queues,
resources, transport devices, conveyors, etc., in
languages like SIMAN are used to represent physical
objects in the systems that are modeled. However,
languages such as SIMAN are not true object-oriented
languages. An object-oriented simulation language can
be distinguished from other simulation languages by its
support for the creation and description of new objects
[Bishack and Roberts, 1991].  Although traditional
languages such as SIMAN and GPSS incorporate
objects such as entities, queues, resources, etc., they do
not allow the user to create their own objects easily. In
an object-oriented approach, the user can create new
objects by building on the base objects included in the
language.

There have been a number of object-oriented
simulation languages developed over the years. A list
of 48 simulation models and languages written in
object-oriented programming languages is presented in
a recent survey [Thomasma, et al., 1990]. In addition
to Simula, these include MODSIM [Belanger, 1990],
Sim+ + (Lomow and Baezner, 1990], and Smalltalk-80
[Goldberg and Robson, 1989]. These languages allow
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the user to define and create new objects based upon the
predefined objects in the language.

Although these languages are relatively new, they
have not shared the same widespread use in practice as
their more traditional counterparts such as SIMAN,
SLAM, and GPSS. One of the reasons for this is the
level of expertise required to develop models with these
languages. The user is required to program in a C+ +,
Smalltalk, or similar language and design and develop
new objects for a particular application using the
object-oriented paradigm. Hence model development
requires a fairly high level of programming skills as
well as experience with the object-oriented paradigm.

2.2 Hierarchical, Modular Modeling

A related development to object-oriented simulation
languages has been a focus on hierarchical modular
modeling systems. A number of researchers have
developed hierarchical modeling systems including the
SIMAN  Module Processor [Tempelmeier and
Endesfelder, 1987], SAM [Concepcion and Schon,
1986], DEVS-Scheme [Zeigler et. al, 1989], SmartSim
[Thomasma and Ulgen, 1988], RESQME [Gordon, et
al., 1986], and ISI [Lane, et al., 1989]. These systems
employ a hierarchical framework to provide an
extendible modeling system.

Many of these systems employ object-oriented
concepts and are based on hierarchical modeling
concepts proposed in the DEVS formalism [Zeigler,
1984]. The basic concept embedded in the DEVS
formalism is that a simulation model can be built in a
hierarchical fashion. The base primitives of the system
can be combined to form new primitives (subsystems),
which can themselves be combined in a hierarchical
fashion with other primitives. By providing a
mechanism for managing the saving/retrieving of
subsystems, the concept promotes the idea of
application-specific  libraries. Once a specific
component has been modeled as a subsystem, it can be
re-used in other similar applications.

The hierarchical modular modeling systems are very
similar in concept to the object-oriented simulation
languages. These systems allow the users to create new
primitives from the base primitives provided by the
system. These systems also include a facility for easily
storing and retrieving user-derived subsystems and
incorporating these subsystems across multiple models.
In some cases, these systems provide a graphical
method for defining new primitives from the existing
primitives in the language. This approach is simpler
and more natural for a modeler than the programming
approach adopted by the statement-based, object-
oriented programming languages. The graphics-based

hierarchical modeling systems encourage a high degree
of reusability of subsystem models and promote the
concept of application-specific libraries.

The SIMAN Module Processor (SMP) developed by
Tempelmeier and Endesfelder provides a single level of
hierarchy that allows users to extend the modeling
system provided by SIMAN. Although this system
does not allow for multiple levels of hierarchy as
specified in the DEVS formalism, it does support the
concept of extendibility for modeling primitives. The
SMP reads modules from a user-written module library,
interprets them in relation to interactively specified data
(e.g., problem-specific parameters) and produces a
syntactically correct SIMAN simulation model. The
user can develop new modules and add these to a
library. Tempelmeier and Endesfelder have developed
module libraries for modeling flexible manufacturing
systems, warehouses, material handling systems, etc.,
and these have been used by SIMAN users in Europe to
simplify the modeling process.

SAM was one of the first implementations of a
hierarchical modular modeling system based on the
DEVS formalism. This system provides an
environment for specifying, designing, and analyzing
discrete event systems for distributed simulation.
DEVS-Scheme is an implementation of the DEVS
formalism in PC-Scheme, a dialect of LISP that
contains an object-oriented subsystem.

The SmartSim system developed by Thomasma and
Ulgen is also based on the DEVS formalism proposed
by Zeigler. This package is written in Smalltalk and
allows the user to build hierarchical submodels using
both primitive and user-created objects. New objects
are added to the system by writing the necessary object-
oriented code in Smalltalk. Once a new object is
created, the user draws an icon to represent the object.
The newly created object is then graphically
manipulated using this icon. The graphical interface of
SmartSim automatically generates a Smalltalk model
from a graphical representation of the model for
simulating the system. Because of the slow execution
speed of Smalltalk, a version of SmartSim was also
developed to generate SIMAN models automatically.

The RESQME system provides a graphical method
for implementing hierarchical models. The user can
create a submodel and draw a user-created icon to
represent that submodel. It is important to note that in
this system the user does not have to program in an
object-oriented language to add a new object to the
system--object creation is done graphically by placing
and interconnecting icons representing existing objects.
One of the interesting features of this system is that the
user can explode an icon during model execution to see
the operation of the submodel.
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The ISI product is a hierarchical, modular simulation
system written in a dialect of Lisp. Like RESQME,
this product allows the user to define graphically new
objects from the base primitives provided and to
associate a user-defined icon with the new object.
These objects can be stored in libraries and re-used.
Models (and new primitives) are developed by selecting
icons from the libraries and placing and interconnecting
these icons on the screen. One important feature of ISI
is that it was designed to make it very easy to modify
the primitive objects in the system as well as the model
generation function. Separate versions of ISI have been
developed for generating SIMAN, SLAM, and GPSS
models.

Although hierarchical modeling systems have many
important advantages over traditional languages, they
have had limited use in industry. There are several
factors that have limited the acceptance of these
systems. In some cases, the built-in modeling
primitives are very limited, and therefore the user must
create many new modeling primitives to represent the
components in the system. In some cases, object-
oriented programming skills are required to add new
objects to the system. In addition, in several cases the
necessary related functions such as animation, output
analysis, interactive model verification tools, etc., are
not well supported. The most significant factor,
however, is the limitation imposed on developing
application-specific libraries for use with these systems.
Although the general idea of application-specific
modeling libraries is embedded in these hierarchical
modeling systems, in our view, the current systems do
not provide an adequate framework for building truly
flexible and practical application-specific libraries.

3 THE ARENA MODELING FRAMEWORK

The Arena system is SIMAN/Cinema based and builds
upon concepts from both the object-oriented languages
and the hierarchical modular simulation systems.
Arena allows the user to create new modeling
constructs from the basic modeling primitives
consisting of SIMAN blocks/elements. ~ The user
defines a graphic icon to represent the new modeling
construct. This icon can be static or can incorporate
Cinema animation components.

To illustrate the basic concept, consider the SIMAN
block sequence QUEUE-SEIZE-DELAY-RELEASE
shown in Figure 1. In Arena, we could build a new
construct named SERVER to represent this sequence of
four SIMAN blocks. To do this, we would 1) define
the operands of our new construct SERVER, ii)
construct a submodel consisting of QUEUE-SEIZE-
DELAY-RELEASE and specify how the operands of
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SERVER are passed down to these component blocks,
and iii) draw an icon to represent the new SERVER
primitive.  This new SERVER primitive can be
employed in model building in exactly the same way as
the original SIMAN primitives in Arena. Hence the
SERVER primitive becomes an extension to the
SIMAN language.
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Figure 1: The SERVER Module

Existing SIMAN users who are accustomed to the
familiar top-down graphical flowchart representation
for SIMAN models will notice the left-right flow
convention used for modules in Arena. Hence entry to
a SIMAN module is on the left, and exit is on the right.
We have found this left-right flow convention to be
more natural for most applications than the more
traditional top-down format (entry and the top, exit on
the bottom) used by SIMAN. However, this
convention is arbitrary and can be easily changed from
application to application. Other than the location of
entry and exit points to the module, the SIMAN module
symbols are drawn the same as before.

From the beginning, the driving force behind the
design of the Arena product was support for the
development of truly flexible and practical application-
specific libraries. The functionality needed for building
flexible libraries of primitives dictated the hierarchical
framework and related functionality incorporated into
Arena. Although incorporating basic hierarchy into
Arena to accommodate the simple SERVER example
discussed above was relatively straightforward, the real
challenges were in providing a framework for hierarchy
that incorporated the necessary conmstructs to support
flexible application-specific templates fully. One of the
important ways that the Arena system differs from
previous hierarchical modeling systems is in the
flexibility provided by its hierarchical framework.

One of the fundamental requirements that was driven
by the need to support flexible application templates
was the need to support repeating subcomponents
within a module. For example, a derived module
representing a workcenter might have a variable
number of servers, and each server might have its own
set of associated data. To provide the necessary
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support for application template development, we felt
that it was necessary to allow the user who places the
module to vary the number of servers easily within the
module and to enter unique data for each server.

A second major issue that evolved as a requirement
for flexible and practical template support related to
multiple vanations in the definition of a module. The
basic issue here is the need to provide a single module
that represents many variations of a basic module
definition, based on the input data supplied by the user.
For example, a single workcenter module might
represent various types of workcenters whose
underlying structure (in terms of component modules
and associated operands) changes based on the user
inputs to the workcenter module.  Without this
capability, application templates would be required to
either 1) have an excessive number of modules, with
many of these being slight vanations of other modules
in the template or ii) incorporate routine logic within
modules to branch based on cases (thereby slowing
execution).

4 BASIC TERMINOLOGY AND CONCEPTS

Since the Arena system blends together concepts from
SIMAN/Cinema, object-oriented programming,
hierarchical modular modeling, as well as a number of
new concepts, it is helpful to define some basic
terminology used to discuss the hierarchical modeling
concepts in Arena.

4.1 Objects and Properties

The term SIMAN object is used in Arena to denote the
constructs used by SIMAN to represent physical objects
in the real system. Examples of SIMAN objects
include Resources, Conveyors, Transporters, Queues,
and Variables. There is a one-to-one correspondence
between objects in Arena, the elements in the
conventional SIMAN experiment, and the objects being
modeled in the real system. Everything that is defined
in the SIMAN experiment is defined to be an object in
Arena.

The characteristics of an object are referred to as
properties. For example, the speed,
acceleration/deceleration, and turning velocity factor
are all properties of a transporter object.  The
properties of objects correspond to the fields defining
each object in the SIMAN experiment.

4.2 Base and Derived Modules

The term module is used in Arena to denote the
modeling components used to construct a model of a

system. There are two basic types of modules; these
are called base modules and derived modules. Base
modules are the lowest level modules in Arena and
correspond directly to the SIMAN blocks. Hence a
QUEUE module in Arena corresponds directly to the
QUEUE block in SIMAN. Derived modules are built
up from one or more base and/or derived modules. For
example, the SERVER construct discussed earlier is an
example of a derived module built from the QUEUE,
SEIZE, DELAY, and RELEASE base modules. Note
that the SERVER module can be used in building
additional higher-level modules.

The user of Arena builds a model by placing and
interconnecting modules in a layout. For example, a
model of a simple service system might be built by
interconnecting modules from a general-purpose
modeling template representing the arrival process,
service process, and departure process. A model of an
emergency room might be built using modules from a
health care template representing the
reception/admission process, X-ray, and so forth. The
modeler may freely mix modules from multiple
application templates--including the base SIMAN
template.

4.3 Operands

A module may have operands that define values
associated with the module. For example, the
SERVER module might have operands defining the
queuing discipline, server name, and processing time.
The module creator defines the characteristics of each
operand including the positioning in the dialog box,
user prompt, default value, permissible values, and user
interface method (buttons, list box, toggles, etc.). The
user may view/edit the operands of a module by
double-clicking the mouse on the module in the layout--
this causes the dialog box for the module to appear.

The operands of a derived module may supply values
for operands of its component modules from which it is
constructed. For example, the string supplied for the
server name could be used to supply part or all of the
queue identifier in the QUEUE module and/or the
resource identifier in the SEIZE and RELEASE
modules. Note that operand values are not inherited up
from below--but are instead defined at higher-level
modules and then passed down to lower-level modules.
This is analogous to the passing of arguments from a
main program down to a function in normal
programming.

Module operands may either create or reference
SIMAN objects and their properties. Operands that
define the name of a SIMAN object (e.g., a resource)
are called namerands, and operands that reference
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properties of objects are called properands. For
example, the operand defining the queue identifier for
the QUEUE module is a namerand and may either
create a new instance of the queue object with the
specified name or reference an existing queue object.
The operand defining the queue ranking rule is a
properand since the ranking rule is a property of the
queue object.

4.4 Entry/Exit Points and Connectors

The entities in the model move from module to module
and activate functions that act upon the SIMAN objects
and thereby change the state of the system. For
example, an entity moving through the SERVER
module may change the state of the queue and resource
objects referenced by the module.  Entities enter
modules at locations called entry points and exit
modules at locations called exit points. The exit point
of one module may be connected to the entry point of a
second module by means of a graphical connector. An
entity passes through a connector in zero simulated
time.

4.5 User View

As discussed earlier, a derived module is created by 1)
defining the operands for the new module, ii) building
a submodel from existing base/derived modules to
represent the logic of the module, and iii) drawing an
icon to represent the new module graphically. This
icon is referred to as the user view of the Module
because it is the view of the Module seen by the end
user who places the module in his/her model.

The user view of a module is drawn by the module
creator to represent the new module graphically. The
user view can be a static icon or it can contain one or
more animation components. For example, the user
view for the simple SERVER module could be either a
static module symbol or an animated queue and
resource. It is also possible to provide the end user
with both alternate user views for this module--and thus
allow for both an animated and nonanimated
representation of the module.

The user view may also contain one or more
entry/exit points. These entry/exit points are used by
the end user of the module to interconnect this module
with other modules in the layout. They may be placed
in any position in the user view by the module creator.

4.6 Animation Objects

One of the important features of the Arena system is the
full integration of animation as a fundamental element
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of the system. Arena contains Cinema-based animation
objects including queues, levels, vanables, resources,
plots, histograms, transporters, conveyors, and paths.
These objects dynamically change position, shape, or
color during the execution of the model.

Animation can be incorporated into an Arena model
in several different ways. If Cinema animation
primitives are included in the user view of a derived
module, then these animation objects come along with
the module when it is placed in the layout. Animation
objects can also be freely added anywhere in the model
layout to embellish the animation that is included in the
modules' user view.

Note that when animation is included in the user
view of the modules, the building of the model and the
animation occurs simultaneously--i.e., the process of
building the model also constructs the animation. This
integration of model building and animation drawing is
a useful feature for many applications. However, in
some cases it is convenient to be able to separate the
development of the animation layout from the
development of the model. This provides greater
freedom for drawing the animation layout and also
supports the concept of multiple animation layouts for
the same model. Arena is flexible in this regard and
supports independent animation layouts as well as the
integrated approach of simultaneously building the
model and the animation.

Animation objects can also be temporarily added to
the layout during execution of the model as an aid to
model verification/validation. For example, the
simulation can be interrupted and an animated queue
can be added to view the current entities in the queue.
This queue could then be deleted and the run continued.

The Arena system also supports both concurrent and
play back animation of the model. In concurrent
animation, the animation objects are updated on a real-
time basis as the simulation is executing. This is an
essential feature for effective model verification and
validation activities. In playback mode, a trace file is
generated during the simulation run that contains a
time-ordered history of the significant events that
occurred during the simulation. This trace file can then
be use to playback an animation of the simulation.
Although the playback mode is restrictive and not
nearly as effective as concurrent animation for model
verification and validation activities, it is sometimes
convenient for repeated replays of an animation.

The Arena system contains many new and advanced
Cinema-based animation features. These new features
include a virtual drawing area with pan and zoom,
rotation of symbols along paths, direct editing features
such as  ‘'drag-and-drop," simplified  symbol
management, and much more [Conrad, 1992].
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S OBJECT-ORIENTED CONCEPTS IN ARENA

Although Arena is motivated by object-oriented
concepts, its approach to hierarchy is different from
most other object-oriented simulation languages. In
Arena, modules are defined hierarchically, but SIMAN
objects (i.e., resources, transporters, etc.) are not.
New SIMAN object types cannot be created as is done
in object-oriented languages. The available SIMAN
object types are built into Arena and cannot be changed
by the user. Hence the object-oriented concept of
extendibility applies to the modules and not the SIMAN
objects. In this sense, Arena might best be described as
module oriented as opposed to object oriented.

At first glance, the inability of the user to create new
object types within Arena may seem like a limitation,
but this is actually not the case. Since an operand of a
module may define the instance of an object or its
properties, objects can directly share in the benefits of
module hierarchy--even though they are not themselves
hierarchically defined. For example, we could define a
derived module named WORKCENTER, that is built
on top of the derived module named SERVER, and
supplies properties for one or more standard SIMAN
objects (queues, resources, conveyors, etc.) at multiple
levels of the hierarchy. In effect, objects can
piggyback onto the hierarchical definition of modules to
gain the benefits of hierarchy for themselves.

A key advantage of the approach employed by Arena
is that the derived modules are defined graphically, and
therefore no programming 1is required to build
application-specific libraries. Hence the development
of application-specific libraries is a modeling task and
not a programming task. This is not generally the case
in object-oriented simulation languages--these systems
typically provide extendibility for objects, but require
the user to program in an object-oriented language
(C++, Smalltalk, etc.) to add new modeling
primitives.

6 TEMPLATES

The real power of the Arena product is realized through
its support for application-focused  templates.
Numerous application areas have been discussed for
possible templates including computer systems,
communication systems, traffic flow, airport design,
fast food restaurants, high-speed packaging, health
care, process industry, package sorting, warehousing,
and many more. Each new application template brings
simulation technology much closer to a large class of
potential users.

In addition to general application areas, the
opportunity exists for developing company-specific

templates that contain primitives focused at a specific
company--thereby sharing the effort and expertise of a
few people. For example, an automotive manufacturer
could develop a template containing manufacturing
equipment and/or workcenter designs specific to
automotive assembly within the company. By tailoring
the modeling primitives to a specific company, such
templates can help make simulation technology a much
simpler and more widely used methodology throughout
the company.

In this section, we will briefly discuss four examples
of templates for use with Arena. The first is the basic
SIMAN template for building traditional SIMAN
models. The second is the Arena template, which is a
general modeling template that builds on SIMAN and
provides useful higher-level primitives (e.g., SERVER)
across a broad range of applications. The third is a
template for modeling general manufacturing processes.
The final example is a template for modeling
semiconductor wafer fabrication.

6.1 SIMAN Template

The SIMAN template contains base modules that
correspond directly to the SIMAN blocks/elements. By
selecting and interconnecting modules from the SIMAN
template, the user can build what is referred to as a flat
SIMAN model.

In its most basic use, Arena can be employed with
the SIMAN template to provide a graphical model
builder for SIMAN. Hence Arena and the SIMAN
template replace and expand on the functionality of the
original Blocks and Elements editors.

6.2 Arena Modeling Template

The Arena template contains derived modules that
provide general-purpose modeling primitives that are at
a higher modeling level than the standard SIMAN
blocks/elements. The objective of the Arena template
is to provide a comprehensive set of high-level
modeling primitives for modeling simple systems.

The basic idea behind this template is that SIMAN
models frequently contain a series of standard block
sequences such as QUEUE-SEIZE-DELAY-RELEASE
or QUEUE-ACCESS-DELAY-CONVEY. The Arena
template contains a collection of useful SIMAN block
combinations for general-purpose modeling.  The
Arena template modules typically correspond to
combinations of several base modules from the SIMAN
template.

For the new user, the Arena template provides an
easier entree into modeling using Arena. By providing
the modeler with higher-level primitives such as
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Arrival, Service, and Departure, the new user can build
simple models with less modeling abstraction--and
therefore, with greater ease and less learning. The new
user can then transition into using the base SIMAN
primitives as necessary to expand on the modeling
flexibility of the Arena template.

For the experienced user, the Arena template allows
the user to leverage the predefined modules in the
Arena template to develop large models more rapidly.
Since a single module in Arena typically corresponds to
several base SIMAN modules, large models can be built
more rapidly and with fewer errors. The modules in
the Arena template can be mixed with standard SIMAN
modules to provide a detailed modeling capability for
complex systems.

6.3 Manufacturing Template

The Manufacturing Template is a collection of modules
that may be combined to describe the process flow of a
manufacturing system. The template was designed to
support the majority of discrete manufacturing
applications; however, it is not limited to that
application domain. Each of the modules within the
template is made up of one or more SIMAN blocks
and/or elements. The modules have been designed to
allow for flexibility in modeling, while ensuring a user-
friendly modeling environment.

The Manufacturing Template supports various types
of process flow including unconstrained push,
constrained push and pull. Unconstrained push may be
utilized if there are no work-in-process (WIP)
constraints. Constrained push is used when blocking
occurs due to either physical space or WIP constraints.
The use of production and transfer authorizations
enable the template to provide just-in-time (JIT) type
pulling capability. Any of these process flow methods
or a combination of them may be used in a single
simulation model.

Various types of workcenter processing activities are
supported within the template. The processes
supported include single part, production, assembly and
batch processing. Single-part processing implies that
one part enters a workcenter and the same part exits the
workcenter upon  completion of  processing.
Production-type processing enables one part to enter a
workcenter and multiple parts of the same or different
part types to exit the workcenter. Assembly operations
are accomplished by combining all specified component
parts into an assembled part. Finally, both temporary
and permanent batching is available at the workcenters.
If parts require batch processing, a number of parts can
be grouped for the processing activities and unbatched
following completion.
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In incorporating the features of the SIMAN language
into the template, material handling capability is
strongly supported. Both free path and guided
transporters, as well as accumulating and
nonaccumulating conveyors, can be used to move parts
from one workcenter to the next. For less detailed
control of material handling, operator resources or
simple delays may be used for transfers.

The Manufacturing Template consists of three types
of modules: workcenter modules, component modules,
and data modules. Both the workcenter and component
modules consist of the logic portion of a manufacturing
system, including such functions as entering a
workcenter, exiting material handling, processing and
moving to the next workcenter. Workcenter and
component modules support modeling at multiple levels
of detail.  Workcenter modules include sufficient
functionality and flexibility to describe many
manufacturing systems. Component modules are
simply components of workcenter modules that allow a
user to incorporate detailed logic to represent a system.
Data modules allow the definition of information
related to objects used in the workcenter and component
modules, such as operators and parts.

Given that the Manufacturing Template consists of
two levels of logic modules (workcenter and component
modules), it supports both machine-based and jobstep-
based modeling orientations. In a machine-based
orientation, the logic defining what is to occur, though
not necessarily all of the data, is specified in
conjunction with the machine (or workcenter).
Workcenter modules may be used to define processing
logic and the default data associated with each
workcenter. In a jobstep-based orientation, the logic
defining what is to occur is specified with the jobstep
itself. By utilizing component modules, the processing
logic and data may be incorporated directly into the
process plan for a part. Combinations of the two
modeling orientations can be achieved by intermixing
the levels of logic modules.

6.4 Semiconductor Wafer Fabrication Template

The wafer fabrication template is designed to support
modeling of wafer fabrication operations in the
semiconductor industry. (This template is based on
prototype research performed by D. Phillips, G. Curry,
and B. Deuermeyer at Texas A&M University, and it
was developed with partial funding from SEMATECH.
John Fowler managed the development of this template
for SEMATECH and played a key role in the design of
the template.) While not restricted to this application
domain, the model structure and terminology used in
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this template are consistent with that found in wafer
fabrication applications.

Models that are built using this template consists of
two types of user input, model data and model rules.
Model data definitions include products, technologies
and jobsteps (process plans), recipes, workcenters,
resources, operators, and production schedules. Model
rules define the model logic to be used by a particular
workcenter or recipe--i.e., model rules define the logic
by which manufacturing lots seize and release sets of
resources, are batched and split apart, and undergo
processing delays. Given the large number of jobsteps
in a typical wafer fabrication model, model rules are
defined separately from the model data so that they may
be re-used.

A unique aspect of the wafer fabrication template is
that is it can generate either a standard simulation
model or a special model that is used to perform
analytical flow and queue analysis of the system.
Either of these models can be generated from the same
user description of the system--i.e., the user builds a
single model of the system and then selects which form
of the model (standard or flow and queue) they would
like to execute. Flow and queue analysis, as the name
implies, involves performing two types of analysis: a
flow analysis and a queuing analysis. First, flow
analysis is performed to determine the rate at which
products (manufacturing lots of wafers) flow through
individual components of the system. Second, based on
the calculated flow rates, an interactive queuing
analysis is used to calculate resource utilizations and
queue times.

The flow and queue analysis provides the same basic
performance measures for the system as does the
standard simulation model, but wuses queuing
approximation formulas to obtain the results. The
advantage of the flow and queue analysis is that it
executes much faster than a simulation model of the
same system. The advantage of the simulation model is
that it provides more accurate results.

7 SUMMARY

Arena is a new hierarchical modeling system based on
SIMAN and Cinema. The key feature of this system is
that it allows users to define new modeling primitives
(modules) that can be tailored to a specific problem
domain.  These domain-focused primitives can be
placed into libraries called templates. The development
of application-specific templates for use with Arena
creates the exciting opportunity to bring simulation
technology to a large cross section of people who
currently do not benefit from this technology. Arena
brings simulation technology much closer to the

application specialists--and does so across an unlimited
range of problem domains.
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