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ABSTRACT

Importance sampling is a well known technique that
can be used for either variance reduction or obtaining
performance estimates at multiple input parameter
settings from a single simulation run (“what if” sim-
ulations). However, in queueing simulations, there is
an essentially unique asymptotically efficient impor-
tance sampling distribution for estimating the prob-
ability of certain rare events (e.g., buffer overflows).
Furthermore, this unique distribution depends crit-
ically on the inputs of the model, thereby making
it difficult to obtain good “what if” estimates from
a single run. (An example of this is using a single
run to estimate the mean time until buffer overflow
at multiple arrival rates.) In this paper, we show
that a single importance sampling distribution can
effectively be used for both variance reduction and
“what if” simulation of certain rare events in models
of highly dependable systems.

1 INTRODUCTION

Importance sampling (see, e.g., Hammersley and
Handscomb (1964) or Glynn and Iglehart (1989)) is
a technique that has been used for either variance
reduction or for simultaneous estimation of output
performance measures at multiple input parameter
settings from a single set of sirnulation runs. Such
simultaneous estimation has been called the “what
if” approach in Rubinstein (1986) and Arsham et al.
(1989). (An extension of this approach for use in op-
timization is described in Rubinstein (1991).) In this
paper, we combine the variance reduction and “what
if” aspects of importance sampling in a particularly
effective manner for simulating rare events in a class
of models of highly dependable computing systems.
More specifically, from a single set of runs, we are
able to simultaneously obtain very accurate estimates
of the system failure time distribution corresponding
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to many different input failure rates and/or distribu-
tions. This is possible because the importance sam-
pling method used has the following properties:

e It is independent of the input failure distribu-
tions.

e It is guaranteed to produce accurate estimates
even as the input failure rates approach zero.

Contrast this situation to that of estimating the prob-
ability of rare events in queueing systems, e.g., in esti-
mating the mean time until buffer overflow for a large
buffer size. In such problems, the theory of large de-
viations has been used to select a good importance
sampling change of measure; see Frater, Lenon and
Anderson (1991), Parekh and Walrand (1989), Sad-
owsky (1991), and the references therein. The asymp-
totically optimal, and in a certain sense the only ef-
ficient, change of measure depends explicitly on the
input parameters. As a simple example, Parekh and
Walrand (1989) considered estimating the mean time
until a stable M/M/1 queue first exceeds queue length
N for large values of N. Suppose the queue has ar-
rival rate A and service rate p. Then, for large N,
the optimal change of measure interchanges A and
i, i.e., an unstable system with arrival rate p and
service rate A is simulated. While this is highly ef-
fective for a single given value of ), suppose one were
interested in estimating this quantity for a number
of different values of A, say Ay,..., A;. According to
the above theory, one should simulate k different sys-
tems with k different service rates Aj,..., Ak, since
simultaneous estimation from a single set of runs is
inefficient. Similarly, Arsham et al. (1989) and Ru-
binstein (1986) have found that, in simple queueing
systems, the “what if” approach can be applied to
estimate quantities such as expected queue lengths,
but the variance typically increases as the parameter
range increases.

However, in the highly dependable systems setting,
we are able to obtain extremely accurate estimates of
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probabilities that span ten orders of magnitude (cor-
responding to two orders of magnitude change in in-
put values) from a single set of replications.

The rest of the paper is organized as follows. In
Section 2 we review the concepts of importance sam-
pling and accurate estimation of rare events. In Sec-
tion 3 we describe a class of models of highly de-
pendable systems and a method of importance sam-
pling, called exponential transformation, for simulat-
ing such models. In Section 4 the results of exper-
iments combining variance reduction and “what if”
simulation on several different models are described.
Section 5 summarizes the results of the paper.

2 RARE EVENTS AND “WHAT IF” SIM-
ULATIONS

Consider the problem of estimating the probability
of a rare event 4, i.e., a(f) = Ep,(I(A)) where 6 is
some parameter, I(A) is an indicator random vari-
able corresponding to the event A and Ep,() de-
notes expectation when sampling under the distri-
bution P;. First consider the estimation of «(6)
for a single value of §. The standard way of doing
this is to use Py to generate n samples of I(4) and
form the estimator &(8) = S°7_, I(4)®) /n. (For any
random variable, say Z, Z(*) denotes its i-th real-
ization.) The variance of this estimator is given by
(a(8) — &*(9))/n ~ a(f)/n when «(f) is small. The
relative half width (or relative error, RE(f)) corre-
sponding to a 100 x (1 — §)% confidence interval is
given by RE(6) ~ z5/,/+/na(6) where z5/; is a mul-
tiplier from the normal distribution. As the event
becomes rarer, i.e., as a(6) — 0, then RE(6) — oo.
This means that if () is small, then n must be very
large in order to accurately estimate «(8).

One way to make the simulation more efficient is
to use importance sampling. Importance sampling
makes use of the identity a(8) = Ep/(I(A)Ly) where
P’ is some other measure (P’ must be chosen so that
P, is absolutely continuous with respect to P’) and
Ly is the likelihood ratio (Radon-Nikodym deriva-
tive). If P, and P’ have densities py and p', respec-
tively, then Lg(X) = pyp(X)/p'(X) where X repre-
sents a random sample. In this case we simulate
the system using P’ and form the new estimator
MOEDY I(A)(i)L(ez)/n, the variance of which is
given by o%(8)/n = [Ep/(I(A)L}) — o?(6)]/n. The
main problem in applying importance sampling for
variance reduction is to find an easily implementable
P’ such that Ep/(I(A)L2) < a(f), i.e., the new vari-
ance is significantly less than the original variance.
In estimating certain rare events in queueing systems
and highly dependable systems, there exists a P’ that

yields orders of magnitude reduction in variance.

If the importance sampling distribution is such
that the relative error, o(6)/«(f), remains bounded
as «(f) — 0, then it is said that the method sat-
isfies the “bounded relative error” property. In ef-
fect, this property implies that only a fixed sam-
ple size is required to get an accurate estimate of
a(0), no matter how rare the event is. In the case
of highly dependable systems with exponential fail-
ure and repair distributions, an importance sampling
heuristic described in Goyal et al. (1992) was shown
to have the bounded relative error property for cer-
tain performance measures in Shahabuddin (1990)
and Shahabuddin and Nakayama (1992). Similarly,
Nakayama (1991) showed that certain derivative es-
timates obtained using this heuristic have bounded
relative error. This heuristic was extended to such
systems with more general failure and repair time
distributions in Nicola, Heidelberger and Shahabud-
din (1992), and the bounded relative error property
in this case was established in Heidelberger, Nicola
and Shahabuddin (1992). (See the above papers, and
Juneja and Shahabuddin (1992) for more references.)

Now suppose we wish to estimate «(8) for several
values of §. Note that if the P’ which is required
for efficient simulation is independent of 6, then to
perform “what if” simulations, we need only do one
simulation run using P’ and use likelihood ratios to
get accurate estimates of a(f) at all values of 6 of
interest (there is one likelihood ratio for each 6). In
many rare event simulations, efficient changes of mea-
sure are very much dependent on the parameters of
the input distribution. This is particularly true, as
mentioned in the Introduction, for the estimation of
rare events in queueing systems. However, this is not
true for changes of measure that are used to simulate
highly dependable systems. We will describe such a
change of measure in the next section.

3 EXPONENTIAL TRANSFORMATION

In this section we will give a brief review of the type
of highly dependable systems we are considering, and
the change of measure that is used to simulate them.
The type of highly dependable systems for which
this change of measure is efficient are basically those
which can be modeled by the System Availability Es-
timator (SAVE) described in Goyal and Lavenberg
(1987) except that now the component failure times
and repair times are generally distributed, instead of
exponentially distributed. For ease of presentation
we will describe a simpler class of systems. Consider
a system in which there are N types of components
with N; components of each type. Component num-
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ber j of type ¢ will sometimes be referred to as com-
ponent (z,7). Each component can be in either of
two states: up or down. The system is considered
down when certain combinations of components of
each type are down. When a component of type 2
fails, it may affect components of other types (with
some probability) causing them to fail as well. There
are different classes of repairmen (each component
type is assigned a repairman class) and each repair-
man class repairs components with some priority dis-
cipline which can be fairly general. The problem is
as follows: given a fixed time ¢, estimate the unrelia-
bility U(¢) which is defined to be the probability that
the time to system failure, Tr, is less than .

A basic assumption is that the system is composed
of highly reliable components, so that the failure rates
are much smaller than the repair rates. In this case,
the event {Tr < t} is rare and U(t) is very small.
In mathematical terms, the assumptions that is used
is as follows. Let h;(z) denote the hazard rate of
component type ¢ when the age of the component is
z. Then there exists a small but positive parameter €
such that h;(z) < A€t where 0 < ); < oo and b; > 0.
The mean component repair times are considered to
be of order one. Under this and some more minor
assumptions it can be shown that P(Tr < t) (and
thus VARp(I(Tr < t))) is O(€") for some positive
constant 7. (A function f(e) is ©(€") if there exist two
constants, K; and K, such that K1€” < f(e) < Kae€,
for all sufficiently small € > 0.)

The change of measure which we use for highly de-
pendable systems is called exponential transforma-
tion and was presented in Nicola, Heidelberger, and
Shahabuddin (1992). A sample path consists of a se-
quence of component failure and component repair
events. Exponential transformation applies a change
of measure to the failure distributions of components.
Repairs are sampled from their original distribution.
Sample paths are generated as follows. Let t,, n > 0,
denote the time of the nth event (failure or repair) in
the system. Suppose the event at time t,_; has just
taken place. Let R, be the time of the next sched-
uled repair event after time t,_;. We generate an
exponentially distributed random variable X, with
rate ap,. If t,,_1 + X,, > R, then the next event is a
repair event. In that case we set ¢, = R,, schedule
any repairs (that may have been enabled by the free-
ing of a repairman) and continue as before. However,
if t,_1 4+ X, < R, then the next event is a failure
event and we set t, = t,_; + X,. Let A(s) denote
the set of components that are operational at time
s. Hence A(t;) is the set of components that are
operational just before the nth event. In case of a
failure event at time ¢,, component (3,j) € A(t;) is

chosen as the failing component with some positive
probability g;;(n) where Z(i,j)eA(t;) ¢ij(n) = 1. The
failing component may affect other components, in
which case the failure propagation probabilities are
sampled from their given distributions. Then any re-
pairs that may have become possible due to preemp-
tion are scheduled and the process continues.

The likelihood ratio expression for this change of
measure is given in Nicola, Heidelberger and Sha-
habuddin (1992). Assume that there exist finite pos-
itive constants a, @, ¢, g such that o < a, < @ for
all n and ¢ < qij(n)_s g for all 4, j and n. The
first inequality in the first assumption states that, for
small €, the component failure event rates are much
higher than before, i.e., the rate of component failure
events has been accelerated. It can be shown that
if the above properties are satisfied, then (under cer-
tain additional technical assumptions) estimates of
U (t) have the bounded relative error property.

There is considerable flexibility in choosing a,, and
gij(n) as long as all these quantities are greater than
or equal to a constant. In actual implementation,
the first failure time is sampled using an ag such that
there is a significant probability f of this event occur-
ring before the time horizon ends. This is called ap-
proximate forcing. For a given time horizon, f = 0.8
has been found to be quite good, and this value of
f was used in our experiments. Once a component
fails, then repair events are scheduled. In cases where
there are on-going repairs in the system, a, is cho-
sen such that, unlike in the original system, there is
a significant probability of a failure event happening
before the next repair event. This is a version of what
is called failure biasing. (Both forcing and failure bi-
asing were introduced in the context of Markovian
systems by Lewis and Bohm (1984).) In the experi-
ments we describe, all components had exponentially
distributed repair times with the same rate u, and we
set oy, = 0.5u whenever a repair is on-going. In the
event that all components are up following a repair,
we, in effect, “turn off” the acceleration of additional
failures. More specifically, the next failure event is
sampled from an exponential distribution whose rate
equals the sum (over all components) of the individ-
ual maxima of the hazard rates. In these experiments,
gij(n) was selected as follows. Suppose at time ¢n-1
there were M;(n) components of type i up and M(n)
different types of components with at least one com-
ponent up. Then g;;(n) = [L/M(n)]x [1/M;(n)]. This
is a version of what is called balanced failure biasing.

When the system is simulated as described above,
the importance sampling distribution is independent
of the different input failure distributions, thus allow-
ing efficient “what if” simulations.
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A method related to exponential transformation,
based on combining uniformization with importance
sampling, has also been described in Nicola, Heidel-
berger and Shahabuddin (1992). This approach also
has bounded relative error property under similar
conditions as those for exponential transformation.

4 EXPERIMENTAL RESULTS

In this section, we report on the results of simulation
experiments to test the efficiency of our importance
sampling techniques when used in “what if” simula-
tions. We consider two test models: one simple and
one complex.

The first model consists of two types of components
sharing a single repairman. There are three compo-
nents of type one and two components of type two.
The system is considered operational if there is at
least one component of each type operational. In this
example, all failure and repair times are assumed to
be independent and exponentially distributed. The
repairman gives preemptive priority to type two com-
ponents. The failure rate of component type ¢ is de-
noted by ); and the repair rate for both types of
components is fixed at g = 1. We parameterize the
model by € and consider several variations of this ba-
sic model. In a “balanced” system, the failure rates
are \; = A, = ¢, while in an “unbalanced” system,
the failure rates are A\; = € and X; = €2. (A system
is considered balanced if the failure rates of different
types of components are of the same order of mag-
nitude.) In addition, when a component of type two
fails, it affects, or causes, two components of type one
to fail simultaneously with probability a. We consider
two cases of such “failure propagation”: a = 0, in
which case we say the model is without failure propa-
gation, and a = 0.25, in which case we say the model
has failure propagation. This model falls within the
class of systems that can be modeled and solved nu-
merically by SAVE.

A state space diagram of this model, without fail-
ure propagation, is shown in Figure 1. Referring to
Figure 1, consider determining the most likely path
(sequence of states) leading to a system failure before
some fixed time ¢. For a balanced system and small ¢,
this most likely path is P, = {(3,2) — (3,1) — (3,0)}
which represents two failures of component type two
(with no repairs). The probability of this path is
of order €2, and any other path leading to a system
failure state is o(€?). Now consider an unbalanced
system. In this case, the most likely path to failure
is P, = {(3,2) — (2,2) — (1,2) — (0,2)} which has
probability of order €3. Notice that the balanced sys-
tem’s most likely failure path, P;, has probability of

order €* in the unbalanced system, and is thus much
less likely to occur than P,. Similarly, in the balanced
system, P, 1s much less likely to occur than P;.

The simulator described in Nicola, Heidelberger
and Shahabuddin (1992) was modified to handle mul-
tiple failure distributions as input. We used the expo-
nential transformation importance sampling method
that was described in Section 3 to simultaneously
simulate both the balanced and unbalanced systems
(without failure propagation) for eight values of e
spanning two orders of magnitude (from 0.0001 to
0.0128). Thus estimates for 16 different systems were
obtained from the same set of runs. A total of 256,000
replications were performed.

Figure 2 plots the point estimates for U,(100), the
probability that the system fails before time ¢t = 100.
Notice that these point estimates span approximately
8 orders of magnitude. In addition, the most likely
failure paths for the balanced and unbalanced sys-
tems are completely different, yet all point estimates
were obtained, in a single pass, from the same set of
replications. As will be seen in Table 1, the relative
errors of these point estimates do not increase as € de-
creases, in agreement with the bounded relative error
property. The intuitive explanation for this behavior
is as follows. With balanced failure biasing, all fairly
direct paths to the set of failure states, including the
most likely path(s), are traversed a reasonable num-
ber of times. This is enough to ensure good variance
reduction. In this example, when path P, is sim-
ulated, it contributes significantly to the likelihood
ratio corresponding to the balanced system but con-
tributes little to the likelihood ratio corresponding to
the unbalanced system. In effect, this sample is used
for the balanced system but is wasted for the unbal-
anced system. Similarly, when path P, is simulated,
it contributes significantly to the likelihood ratio cor-
responding to the unbalanced system but contributes
little to the likelihood ratio corresponding to the bal-
anced system.

Table 1 lists the values for U,(100) as calculated nu-
merically by SAVE, the point estimates for U.(100)
obtained from the simulation, and the relative half
widths of 99% confidence intervals (expressed as a
percentage). For example, in the balanced system
without failure propagation and with ¢ = 0.0001,
SAVE calculates that U.(100) = 1.980 x 10~°, the
simulation point estimate is 1.982 x 1076, and the
half width of a 99% confidence interval is 2.4% of
the point estimate. Throughout the table, notice the
close agreement between the numerical and simula-
tion results. Notice also the stability of the estimates
as represented by the relative confidence interval half
widths. This is especially true for small values of ¢,
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say € < 0.0032. In this case the relative errors in
the balanced system are all less than 2.4%, while in
the unbalanced system they are all less than 7.0%.
There is some increase in the relative errors as € in-
creases, but this is not worrisome since in that case
the event being estimated isn’t particularly rare. (Ac-
tually, for e = 0.0128 the importance sampling results
in a slight increase in variance over standard simula-
tion.) For small ¢, the importance sampling results in
many orders of magnitude improvement in variances
as compared to standard simulation.

As seen in Table 1, similar results were obtained
for the systems with failure propagation. In this
case, failure propagation does not change the order
of magnitude of U,(100), but simply increases it over
the value of the corresponding system without fail-
ure propagation. The results of Table 1 were gener-
ated from two sets of simulations, one set with failure
propagation and one set without failure propagation.

The second example we consider is the comput-
ing system model that was considered in Goyal et
al. (1992) and Nicola, Heidelberger and Shahabuddin
(1992). The system has two sets of processors with
two processors in each set, two sets of disk controllers
with two controllers per set, and six disk clusters with
four disks per cluster. Each set of disk controllers is
attached to three different disk clusters and each set
of processors is attached to both sets of disk con-
trollers. Data on the disks are replicated in such a
way that one disk in each cluster can fail without
causing data loss. The system is defined to be avail-
able if at least one processor from each processor set
has access to all data. This implies that at least one
processor per set, one controller per set, and three
disks per cluster must be operational. There is a sin-
gle repairman who repairs components according to
a FCFS discipline, and all repair times are assumed
to be exponentially distributed with rate p = 1.

We considered four different failure distributions
for the components with two different sets of means
for each distribution, corresponding to a total of eight
different sets of input distributions. The distributions
were Erlang with two stages (with a coeflicient of vari-
ation, CV, equal to 0.707), a Weibull with shape pa-
rameter equal to 1.25 (CV = 0.805), an Exponential
(CV=1.0), and a Hyperexponential with two stages
(CV = 2.0). For the Hyperexponential, the branching
probabilities were 0.2727 and 0.7273 and the mean of
the first stage was 12 times longer than the mean of
the second stage. For a given system, all components
were assumed to have the same type of distribution
(with possibly different means), e.g. all Weibull. The
two sets of means were as follows:

Set I: processors = 200,000; controllers = 200,000,

disks = 600,000

Set II: processors = 20,000; controllers = 20,000;
disks = 60,000

Table 2 reports on the results of simulating this model
with the eight sets of input distributions and means.
256,000 replications were performed to estimate U(t),
the probability that the system fails before time ¢, for
three different values of t: t = 5, ¢t = 50 and ¢ = 100.
For approximate forcing, we used a parameter such
that the first component fails before time ¢ = 100 with
probability 0.8. With this forcing parameter, the first
component fails before time ¢t = 50 about 55% of the
time, while it fails before time ¢ = 5 only about 8% of
the time. Thus about 92% of the replications are, in
effect, wasted for the estimates corresponding to ¢ =
5. As seen in Table 2, the estimates span 13 orders
of magnitude with a maximum relative error of 21%,
and yet were obtained from the same set of sample
paths using the same importance sampling change of
measure. The largest errors, corresponding to the
t = b estimates, are explained by the fact that at
least 92% of the samples are wasted with the chosen
forcing parameter. The estimates corresponding to
t = 50 and t = 100 span ten orders of magnitude
with a maximum relative error of 10%. Notice that,
for a fixed value of ¢, changing the failure distribution
(while keeping the mean fixed) can change U(t) by as
many as ten orders of magnitude.

5 CONCLUSIONS

This paper considered efficient estimation of the sys-
tem failure time distribution in models of highly de-
pendable systems. We investigated an importance
sampling heuristic, called exponential transforma-
tion, that is provably good (in the bounded relative
error sense). This method of importance sampling is
essentially independent of the underlying input fail-
ure rates and/or distributions of the model. This
fact can be exploited to simultaneously generate es-
timates for many different failure rates and/or distri-
butions from a single set of replications. Because of
the bounded relative error property, each estimate so
obtained is guaranteed to be accurate. Experimen-
tal results performed on several test models showed
the method to work well in practice: highly accu-
rate estimates spanning many orders of magnitude
were obtained from a single set of runs. Assuming
that the overhead to calculate the required likelihood
ratios is small, parametric studies can be performed
very efficiently using this approach.
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APPENDIX A: FIGURES AND TABLES

Figure 1: State Space Diagram of the Model With Two Types of Components (Without Failure Propagation)

Probability of System Failure Before Time 100

1E-10 ' L
0.0001 0.0002  0.0004  0.0008  0.0016  0.0032  0.0064  0.0128

Epsilon

Balanced System Unbalanced System
—— -k

Figure 2: Point Estimates for the Model With Two Types of Components (Without Failure Propagation)
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Table 1: Numerical and Simulation Results (Point Estimates and Relative Half Widths of 99% Confidence

Heidelberger, Nicola, and Shahabuddin

Intervals) for the Model With Two Types of Components

Table 2: Simulation Results (Point Estimates and Relative Half Widths of 99% Confidence Intervals) for the

Balanced Balanced Unbalanced Unbalanced

€ Without Failure | With Failure | Without Failure | With Failure
Propagation Propagation Propagation Propagation

0.0001 1.980 x 10°° [4.936x 1075 ] 5.886 x 10-1° [ 8.356 x 10717
1.982 4+ 2.4% 4,956 + 2.1% 5.948 + 6.7% 8.078 + 4.6%

0.0002 7.920 x 1078 1.974 x 10~° 4.701 x 10~° 6.677 x 10~°
7.928 £2.3% 1.980 £ 2.1% 4.756 + 6.6% 6.464 + 4.5%

0.0004 3.168 x 10~° 7.888 x 1075 3.758 x 10~8 5.337 x 1078
3.171 £ 2.2% 7.906 £ 2.0% 3.799 £ 6.5% 5.173 £ 4.4%

0.0008 1.267 x 10~% 3.150 x 10~* 3.002 x 10~7 4.265x 10~7
1.268 +2.1% 3.152 4+ 2.0% 3.031+6.4% 4.138 +4.3%

0.0016 5.068 x 10~* 1.256 x 10~3 2.394 x 10~° 3.403 x 10°°
5.078 £ 2.1% 1.255 £ 2.1% 2411+ 6.4% 3.302 + 4.4%

0.0032 2.026 x 10~3 4.986 x 103 1.905 x 10~° 2.709 x 10~°
2.0344+2.1% 4.986 + 2.2% 1.916 £ 7.0% 2.615 + 4.8%

0.0064 8.086 x 10~3 1.958 x 102 1.506 x 10~* 2.146 x 10~
8.130 £ 2.2% 1.960 + 2.2% | 1.533 4+ 10.2% 2.036 + 5.4%

0.0128 3.204 x 102 7.451 x 10~ 1.178 x 10~3 1.682 x 10~3
3.182 £ 3.2% 7.4444+44% | 1.1894+15.5% 1.521 4+ 8.4%

Computing System Model

Parameters t Erlang(2) Weibull Exponential | Hyperexponential

(CV =0.707) | (CV = 0.805) (CV=1.0) (CV = 2.0)

Set I 5 [2.393x 10718 | 5.061 x 10712 | 1.501 x 10~° 1.351 x 108
+21.0% +13.3% +11.7% +11.8%

50 | 3.552 x 10~™° | 2.118 x 10~19 [ 1.943 x 108 1.749 x 107
+9.4% +5.8% +4.9% +4.9%

100 | 3.126 x 10~1* | 6.281 x 10~V | 4.018 x 108 3.611 x 10~ 7
+8.9% +5.3% +4.4% +4.4%

Set 11 5 [2.391x 107 | 1.601 x 10~° | 1.500 x 10~7 1.350 x 10-¢
+21.0% +13.2% +11.7% +11.7%

50 | 3.5630 x 10711 | 6.697 x 10~% | 1.945 x 10~° 1.749 x 1077
+9.4% +5.7% +4.8% +4.8%

100 | 3.086 x 1071° | 1.983 x 107 | 4.001 x 10~° 3.564 x 10~°
+8.9% +5.2% +4.2% +4.0%
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