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ABSTRACT

Various methods have been proposed to conduct sim-
ulation optimization for discrete event systems such
as manufacturing systems and telecommunications
systems. We consider a periodic review (s,S) in-
ventory system and report on simulation experiments
with two proposed techniques: a deterministic “retro-
spective” approach and a gradient-based algorithm.

1 INTRODUCTION

The problem of interest involves inventory control of
an item — which we assume i1s measured in continu-
ous units (e.g., pounds) — where once every period
the inventory is reviewed and, if necessary, orders are
placed to replenish depleted inventory. An (s, S) or-
dering policy specifies that an order be placed when
the level of inventory on hand plus that on order —
called the inventory position — falls below the level
s, and that the amount of the order be the differ-
ence between S and the inventory position, i.e., order
amounts are placed “up to S.” In this paper, we con-
sider an infinite horizon problem and use simulation
to find the values of the parameters s and S that
minimize the average cost per period, where costs
are assocliated with ordering, holding, and shortages.
We assume general independent and identically dis-
tributed (1.i.d.) continuous demands, zero lead times,
full backlogging of orders, and linear ordering, hold-
ing and shortage costs. We investigate experimentally
two simulation optimization methods: a determinis-
tic “retrospective” algorithm and a gradient-based,
steepest-descent algorithm. Reviews of techniques for
simulation optimization can be found in Jacobsen and
Schruben (1989), Safizadeh (1990), and Fu (1994).
The retrospective approach to simulation optimiza-
tion was introduced in Healy and Schruben (1991),
with a more detailed development to be found in
Healy (1992). The basic idea is to solve a determin-
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istic optimization problem with respect to given re-
alizations of the stochastic effects as if the outcomes
of all uncertainties were known in advance. A similar
idea is proposed in Rubinstein (1991). In the context
of the inventory problem, the idea is to estimate the
optimal reorder and order-up-to values by solving the
deterministic optimization problem associated with
an observed or artificially generated n-period realiza-
tion of the demand process. The applicability of the
technique depends on the limiting properties of the
estimator as the length of the trajectory on which
the solution is based increases as well as the effort
involved in solving the corresponding deterministic
optimization problem.

The second approach involves estimating the gra-
dient of the performance measure of interest and ad-
justing the parameters according to the gradient dur-
ing the evolution of the simulation. The simulation
1s terminated when the gradient is “close enough” to
zero. Because the parameters are adjusted during the
actual simulation, yielding the optimal values at the
conclusion of a single simulation, this approach has
been called single-run optimization (Suri and Zaza-
nis, 1988). (In this sense, the retrospective approach
could also be deemed a single-run optimization tech-
nique.) Two main techniques can be used to do the
gradient estimation (see e.g., L’Ecuyer, 1991): per-
turbation analysis and the likelihood ratio. In this
paper, we utilize the perturbation analysis estimators
derived in Fu (1990b).

The rest of the paper is organized as follows. In
Section 2, we present the problem setting and the
test cases considered. In Section 3, we outline the
gradient-based algorithm utilizing perturbation anal-
ysis and present the results of various simulation ex-
periments. In Section 4, we do the analogous pre-
sentation for the retrospective approach. In Section
5, we conclude by commenting briefly on the results
from the two proposed approaches.
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2 PROBLEM SETTING

The inventory model of interest is a periodic review
inventory system with general i.i.d. continuous de-
mands, zero lead times, full backlogging of orders,
and linear ordering, holding and shortage costs. An
(s,S) ordering policy specifies that an order be placed
when the level of inventory on-hand plus that on-
order — called the inventory position — falls below the
level s, and that the amount of the order be the dif-
ference between S and the inventory position, i.e., or-
der amounts are placed “up to S.” The optimization
problem is to find the values of s and S which min-
imize long-run average cost per period. A potential
drawback of gradient-based optimization techniques
is their limitation to finding only local optima. How-
ever, for the (s,S) inventory system we consider —
with linear order, holding, and backlogging costs —
the cost function is convex, so the local optimum is
also globally optimal.
We define

W, = inventory level (on-hand minus on-backorder
in period n),

X, = inventory position (inventory level plus
outstanding orders in period n),

D, = demand in period n (ii.d. for all n),

F(-) = distribution function of D,.

We assume throughout that F(-) is absolutely con-
tinuous with density function f(-).

We consider the long-run average cost per period,
which consists of three components: ordering, hold-
ing, and shortage costs. First, we define the one-
period cost function by

Jo = I{Xp < s}HK +¢c(S - Xn)) + MW 4+ pW,,
where

h = holding costs/period/unit of inventory,
p = shortage costs/period/unit of inventory,
K = set-up cost for placing an order,

¢ = per-unit ordering cost,

z+ = max(0,z), and z~ = max(0, —z), and I{*} de-
notes the indicator function of the set. Again, since
we have assumed linear costs, a policy of the (s,S)
type is optimal. Also, since we have assumed zero
lead times, we have W,, = X,,. The performance mea-
sure of interest is the long-run average cost per period
function, i.e., the limit of the the n-period (random)
average cost per period function:

J = lim Jn, (1)

Jn = 2zt @
n

where J; is the one-period cost function defined
above. The optimization problem is to find s and
S to minimize J. Equivalently, we will define

A=5-s,

and find s and A to minimize J.

In this paper, we chose our test system to have
exponentially distributed demands, so that we could
easily compare the simulation optimization results of
the two methods to analytical results. Letting A\ =
1/E[D], we have (cf., e.g., Karlin 1958):

2K
Aopt = E) (3)
h+V2KhA
sopt. = —E[D] In <—+—h+p\—)’ 4)

J(s,A) = cE[D]

K + h(s — E[D] + AA(s + 4))(h + p)E[D]e
+ T+ A (5')

The eight test cases considered, each with ¢ = h =
1, are given in Table 1 below.

Table 1: Test Cases

Case | E[D] p K J* Sopt Aop
1 200 10 100 740.9 341 200
2 200 10 10,000 2200.0 0 2000
3 200 100 100 11844 784 200
4 200 100 10,000 2643.4 @ 443 2000
5 5000 10 100 17078 11078 1000
6 5000 10 10,000 21496 6496 10000
7 5000 100 100 28164 22164 1000
8 5000 100 10,000 32583 17582 10000

3 PERTURBATION ANALYSIS AND
GRADIENT-BASED OPTIMIZATION

Perturbation analysis is a technique for gradient es-
timation from a single simulation of a discrete-event
system (see, e.g., Ho and Cao 1991, Glasserman 1991,
as well as the tutorial by Ho and the state-of-the-art
review by Glasserman in these proceedings). Pertur-
bation analysis derivative estimators for (s,S) inven-
tory systems were derived in Fu (1990b), representing
the first application of perturbation analysis to inven-
tory systems. The technique applied was smoothed
perturbation analysis (see Gong and Ho 1987 and
Fu and Hu 1992), which uses conditional expectation
to overcome difficulties of infinitesimal perturbation
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analysis. The perturbation analysis derivative esti-
mators over N periods are given by (Fu 1990b):

(agsN)PA _ %[Z ht S p], (6)

W, >0 W, <0

(%), - v 22

N
cE[D]+ hE[(s — D)*] + pE[(D — s)*] - Liz1di

N
(1)
Note that these estimators correspond to the lead
time L = 1 in Fu (1990b), because here {X,} is de-
fined after the demand for the period is subtracted,
i.e., the recursive equation for {X,} is given by

X _ S - Dn+1 Xn <s
nHL = Xn - Dn+1 Xn 2 S

Perturbation analysis derivative estimators for more
complicated (s, S) inventory systems can be found in
Bashyam and Fu (1991).

An explicit algorithm for both derivatives, (6) and
(7), is given below.

PA Algorithm for 07 /3s and 0J/0A.
Initialize:
Jsum = 0; haz =0; n* =0;
H'sum =0; P'sum=0; X = Xo(< S); 2=5-X;
For each period:
Generate demand D according to F'(x);
If X > 0 then

Jsum = Jsum + hX; H'sum = H'sum + h X,
else

Jsum = Jsum — pX; P’'sum = P'sum — pX,
If X < s then

n* =n"+1,

haz = haz + f(2)/[1 — F(2)];

Jsum = Jsum+ K + c* (S — X);

z2=S—-5; X=5-D;
else

z2=X-5X=X-D;
At the end of N periods:
(0T )1pa = (H'sum + P'sum)/N;
(8J)spa = haz x (cE[D] + hE[(s — D)*]

+ pE[(D — s)*] — Jsum/N)/(N + 1);

(0T/0s)pa = (0T )1pa;
(0T /0A)pa = (0T )rpa+ (0T )spa-

The optimization algorithm is the following two-
dimensional Robbins-Munro stochastic approxima-

tion algorithm (cf. Kushner and Clark 1978):

(%),

[an =15 |- (32)"

_ a3 ax .. -
where A =a [ 4y a2 ] , aij € [-1,41],

3n;An

and {b,} is a scalar series modifying the step sizes.
We choose {b,} to be the following two-dimensional
adaptation of the accelerated harmonic series:

ﬁ +1 ifsgn (%%)PA,n+l # sen (%’Z)PA.n
1 _ & sgn (g%)PA,nH # sgn (g%)“m

bn+l

bL otherwise

(“sgn” denoting the sign function) with by = 1. Thus,
the step size is reduced only if both components of the
estimated gradient change sign. A more “accurate”
adaptation might involve the angle measure between
the previous and new gradients. Since A must be
positive, we project back to the previous point when-
ever the algorithm brings A less than zero. We also
restricted s > 0, so if this constraint were violated,
again a projection was employed. We chose the set of
coefficients for the matrix A corresponding to a de-
coupling of the two gradients, i.e., @;; = azp =1 and
a1z = as = 0, so our algorithm is simply

[ )= (5, )| (|

with updates done every N periods, i.e., every N pe-
riods, the values of s and A are changed according to
(8) and the PA algorithm reinitialized. Obviously the
performance of the algorithm, in terms of convergence
speed, will depend on all of the above choices.

We “naively” chose starting points
so=Ao=FE[D]/2. The simulation results for the eight
cases over 16 replications of 100,000 periods are given
in Table 2, presenting mean =+ (asymptotically valid)
95% confidence widths for J(s,,A,) at progressive
phases of the algorithm, with the value given for #
periods equal to 0 corresponding to J(so, Ag) and the
theoretical minimum given by J* = J(Sopt,Aopt)'
Of course, in practice, a stopping rule of some sort
would have to be specified.

Various different values of a and N were tried to
get some idea as to the sensitivity of the algorithm to
the choices of these parameters. The results for Case
1 are also included in Table 2. For the other cases,
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the qualitative effects were much the same, and hence
only one (“good”) choice for each of the other cases
is presented in the table.

From the results in this admittedly limited test set,
we see rapid improvement in the beginning for “good”
choices of @ and N, with much slower improvement as
the optimum is neared. Figures 1 and 2 graphically
illustrate the effect of the choices of a and N on the
early behavior of the algorithms. A single run from
Case 1 is represented by each curve on the graph.
Figure 5 gives the N = 50 case for the four different
values of a, whereas Figure 5 gives the N = 500 case.
It is clear that the early behavior depends heavily
on the choice of a, with too small a choice leading
to very slow movement, whereas too large a choice
may lead to erratic behavior. For example, for the
N = 5,a = 1000 case, 9 of the 16 replications ended
(at 100,000 periods) with J, under 751 — reasonably
close to optimal, whereas the remaining 7 replications
were above 2500, which is actually worse than the
starting value!

We have not attempted to give any convergence
proofs here. For a regenerative version of the algo-
rithm — where order points constitute regenerative
points, a proof along the lines of Fu (1990a) could
be obtained. For the version of the algorithm stud-
ied here, it is likely that convergence could be estab-
lished using martingale methods as in Chong and Ra-
madge (1991). It should be noted, however, that both
Fu (1990a) and Chong and Ramadge (1991) consider
infinitesimal perturbation analysis (IPA) estimators,
not SPA estimators, but it does not appear that this
difference should introduce any substantive difficul-
ties in the proofs.

4 A RETROSPECTIVE APPROACH

For a given realization of demand, J, in (2) repre-
sents a functional estimate of the long-run average
cost per period for all feasible values of (s,S). With
this in mind, define the n-period retrospective esti-
mator of the optimal (s, S) pair to be

(5,5) = argmin J, 9)
(s,5)ER?

Realizations of (§,5) are obtained by simulating n
period demands, {d;,d2, ..., dn}, and optimizing over
the corresponding deterministic cost function. In the
the process, it is necessary to restrict ourselves to
stationary (s,S) solutions since the solution to the
unconstrained sample path problem is trivially non-
stationary. That is, knowing the demand values we
can do no better costwise than ordering exactly the

amount in each period necessary to satisfy the de-
mand in the coming period. In general, a key re-
quirement of the retrospective technique is that the
underlying sample space of the stochastic component
(the demand values in this case) and its driving dis-
tribution be independent of the decision parameters.
Otherwise, realizations of stochastic effects could only
be obtained by fixing values of the decision parame-
ters a priori.

We briefly outline the solution to the deterministic
problem, referring the reader to Healy (1992) for de-
tails. A key observation is that the periods in which
an order is placed are completely determined by the
value of A = S — 5. Furthermore, for fixed A, J,
1s continuous, piecewise linear, and convex in S with
probability one. These observations suggest an algo-
rithm employing a search over values of A starting
with A = 0 (in which case an order is placed in each
of the n periods) and ending with A = Y""_, d; (be-
yond which point no orders are placed).

Let Sa represent the optimal order-up-to quantity
for a given value of A in the n-period sample path
problem and J,,(Sa,A) be the corresponding cost of
this policy. The structure of the deterministic prob-
lem is such that S, is a piecewise constant function of
A so that there exists only a finite number of subin-
tervals intervals over [0, c0) on which the value of Sa
differs. The idea is to identify these intervals, com-
pute the corresponding values Sa and Jn(Sa, ) and
choose the solution with minimum cost.

If d;., represents the i'* smallest of the n demand
values, then for 0 < A < d;.,, orders will be placed
in each of the n periods and

nJn, = nk + CZ?:l(S - X,') +

h32iza(S = X +p s, (S - Xi)~ (10)

Since orders are placed in each period, X; = S — d;
(with X¢ = S by assumption) so that

nJo= nK+(c—h)>_,di—npS+
(h+p) Y i, maz(S,di.n) (11)

The continuity, piecewise linearity and convexity in S
can be justified by examining the behavior of 7, over
ranges of S corresponding to the intervals between the
ordered values of the demands [0, d1.,), [d1:n,d2:n),..,
(dn-1:n), [dn:n,00). It then becomes straightforward
to establish the following result:

SA = dk:n VA € [O»dlrn) (12)

where k = [z'—‘_f;]
The subsequent intervals for A are identified as fol-
lows. Let 6 and é, be the lower and upper endpoints
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of the t" interval. At stage i + 1, we set & to be the
upper end of the previous interval. We then make
a pass through all n period demands, in the process
accumulating the values of demands in consecutive
periods until their sum ezceeds the new value of 6;.
This step identifies the periods in which orders are
placed in the original problem when A = §;. Let
D' ={d}:j=1,2,..,n'} be this set of accumulated
or coalesced demands where n’ depends on the value
of §;. Note that the quantity of total demand may
not be sufficient to guarantee that the last of the co-
alesced demands is strictly greater than ;. If this is
the case, this last value is omitted from the the set
D’. We view these values as a set of demands from a
subproblem of length n’ in which an order is placed
in every period. Once the number of orders is fixed
the problem is reduced to a tradeoff between hold-
ing and shortage costs. Consequently, the structure
of the resultant cost function at each stage is identi-
cal to (11). The only distinctions are the amount of
order costs, n’ K, and the holding costs that are in-
curred in those periods from the original problem in
which an order is not placed. These periods can be
identified during the execution of the accumulation
pass and the holding costs accounted for as follows.
Say the k" coalesced demand consists of demands
from periods [ through [+ m in the original problem.
Since the beginning of period ! constitutes a reorder
point, holding costs are incurred in periods ! through
I+ m — 1 in the amounts of h(S — di), h(S — (d +
diy1))y .., R(S=(di+ ...+ ditm-1)). For each pseudo
period k£ = 1,2,...,n/, let

Ar=di+(di+dip1)+ ...+ (di+ ... +digm-1) (13)

be the sum of the intermediate accumulations of the
demand values [ through I + m — 1. If during the
accumulation pass we are left with any demands the
sum of which did not exceed &, say periods { through
n, then there will also be holding costs in each of
these periods in the amounts of h(S —d;), h(S — (d; +
di41)), -, R(S = (di + ... + dp)). In this case, define

Apgr1= di+(di+digr) + o+ (di + ... + dp)(14)

and A,4; = 0 otherwise. In general, for all A €
[611d/l:n’)

nga= WK +e T d—h DI A
+ h(n—n')S
+(h+p) Z:’;lmaz(s,di:n') (15)

and

SA: d;c:n’ VAe[élvd’lz'n’) (16)

where

_ n'’p—(n—n')h
k= [ (17)
The ideas of this section are brought together in the
following algorithm.

Initialize:
61 = 6, = 0; min_cost = oo; dsum[0] = 0;
For each period: i =1,2,...,n

Generate d;,

dsum[i] = dsum[i — 1]+ d;

Enumerate A intervals:
While § < dsum/[n]

n' =0
reorder = 0
A=0

Coalesce demands:
For each period: 1 =1,2,...,n
d' = dsum(i] — dsum[reorder)

if(d<é)
A=A+d

else
n=n4+1

reorder = 1
insert d’ into ordered list of demands
Optimize over current interval:

6“ = d/l:n’
’i'—‘ |'n p—h!r‘:-;n )h-]
551 = d;c:n‘

cost = n'K + ¢(dsum(n] — dsum[reorder]) — hA
+ h(n - nl)‘§61+
+ h z:’cz_ll d::n’ + pZ?:’k-kl d:’:n’
Update min cost solution:
if ( cost < min_cost )
min_cost = cost

S =3y
A=6§
& = by

One is tempted to conclude that after each stage
in which the demands are coalesced there is one less
period in which an order is placed so that there are
exactly n + 1 separate intervals of A over which Jy is
constant. If this were the case, the running time of the
algorithm would be O(n?logn) since the While loop
(within which an O(n'log n’) sort of the pseudo de-
mands is performed) would be executed only n times.
A careful analysis, however, reveals that there may
exist for a given realization of demands as many as
(n — n' + 1) alternate configurations or intervals of
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A in which exactly n’ orders are placed, although in
practice much fewer are typically encountered. As a
consequence, the worst case computational complex-
ity is necessarily O(n®logn).

Experimental results for the set of problem in-
stances defined in Table 1 are given in Table 3. The
entries represent (asymptotically valid) .95 level in-
terval estimates for J(§, S) for various choices of n
up to 10,000, each one based on 16 independently
seeded replications. Conspicuously absent are entries
for n = 100,000 which proved to be computation-
ally prohibitive given the running time of the algo-
rithm. It should be noted that solutions for interme-
diate values of n are obtained at considerable expense
since the problem must be completely re-solved unlike
the gradient-based approach in which incremental up-
dates to the estimator can be made as the run length
is extended.

We refer the reader to Healy (1992) for a gen-
eral discussion of convergence properties of retrospec-
tive estimators and their application to the inventory
problem presented here.

5 CONCLUSIONS

It is difficult to give a very meaningful comparison be-
tween the two methods, because in some sense they
solve different versions of the problem. The single-run
stochastic approximation algorithm described here is
designed to give the optimal values for the infinite
horizon problem. The parameter values are contin-
uously changed as the simulation progresses, with
the final value obtained when the algorithm “settles
down.” In contrast, the retrospective approach de-
termines the optimum for a given finite horizon, with
the optimal values for the infinite horizon problem
found by taking the horizon large enough. However,
the computational burden increases with the horizon
length, so that in some sense it is not practical for
very lengthy horizons. On the other hand, application
of stochastic approximation for finite horizon length
is handled differently from the infinite horizon prob-
lem, because each iteration should “restart” from the
initial conditions, with the simulation length for each
iteration being the length of the finite horizon, so that
no choice of updating sequence length (NN in our algo-
rithm) need be made. Furthermore, since the finite
horizon gradient estimator can be proven unbiased,
convergence proofs are quite straightforward for the
finite horizon problem. However, since each itera-
tion requires a simulation of length of the horizon, it
is likely that for “moderate” horizons, the retrospec-
tive approach is computationally more efficient. In
the decision-theoretic framework proposed by Glynn

and Whitt (1992), the efficiency of an estimator is
taken to be inversely proportional to the product of
the sampling variance and the amount of work ex-
pended in obtaining the estimate. Under this crite-
ria, the results in Tables 2 and 3 indicate that the
retrospective approach has considerably lower sam-
pling variance than the perturbation analysis-based
gradient optimization algorithm, but the amount of
work expended in obtaining the estimates increases
rapidly for lengthy horizons.

Another topic worthy of further investigation is
how the two techniques might be combined to exploit
the most desirable properties of each. Perhaps the
most appealing aspect of the retrospective technique
is that 1t uses simulation to get ideas, not just eval-
uate ideas, by effectively concentrating the sampling
on the most promising solutions. Since the perfor-
mance of a prospective search technique is often de-
pendent on the quality of the initial solution, it would
be fail;lJy easy in this case to conduct a small retro-
spectiv/e experiment whose solution would serve as a
starting point for the gradient search.

In terms of implementation, it should be fairly clear
that the gradient-based algorithm is quite easily in-
corporated into a simulation, due to the ease in calcu-
lating the perturbation analysis gradient estimate. In
approximately the same amount of simulation effort
that would be required to get a reasonable estimate
of the cost function, the algorithm terminates with
near-optimal values of the parameters. The main dif-
ficulties are the two choices that have to be made as
to initial step size (a) and update period (N). The
experimental results indicate that selecting too short
of an ‘ﬁpdate period can lead to highly unpredictable
results. For many runs, it may achieve extremely
quick convergence to the optimal values, but for a
few runs, especially when the initial step size a is also
“too large,” the algorithm is initially led far astray,
leading to very poor results. On the other hand, se-
lecting too long of an update period may sacrifice
some computational efficiency, in the sense of waiting
unnecessarily “too long” before making a move. The
initial step size has much the same effect in the inverse
relationship to its value, 1.e., too small an initial step
size leads to slow convergence, but too large an initial
step size leads to erratic behavior. Probably the best
practical implementation would be to start with a
relatively small and N relatively large, and get some
initial “feel” as to a reasonable size for a, upon which
the algorithm can be “restarted” with the estimate of
a and with L reduced to obtain quicker convergence.
Another possibility is to use some sort of gradient av-
eraging, which in Fu and Ho (1988) tended to reduce
the sensitivity to the choices of ¢ and N.
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Table 2: Experimental Results for Stochastic Approximation Algorithm

# periods
Case | N a 0 100 1000 10,000 100,000 J*

1 5 1 1139.6  1013.94+20.1 925.6+15.9 876.7+9.5 848.6+6.2 740.9
1 5 10 1139.6 803.6+18.4 761.61+4.8 750.4+1.7 746.01+0.6 740.9
1 5 100 | 1139.6 812.5+36.6 767.0+£18.0 759.9+13.3 755.94+10.1 740.9
1 5 1000 | 1139.6 1888.9+533.6 1856.7+695.9 1915.3+802.2 2028.8+897.6 740.9
1 50 1 1139.6 1112.5+£3.5 1000.1+4.8 783.5+4.5 765.2+1.9 740.9
1 50 10 1139.6 944.84+20.1 774.41+6.0 745.6+0.7 742.940.2 740.9
1 50 100 | 1139.6 833.1+40.6 747.8+3.8 742.9+1.1 741.74£0.4 740.9
1 50 1000 | 1139.6 4758.4+884.8 1044.0+129.3 818.3+110.6 787.84+99.2 740.9
1 500 1 1139.6 — 1113.5+1.0 1001.2+1.3 771.1+04 740.9
1 500 10 1139.6 — 946.6+5.8 765.6+1.0 742.01+0.2 740.9
1 500 100 | 1139.6 — 788.6+11.3 743.240.9 741.5+0.2 740.9
1 500 1000 | 1139.6 — 4365.7+224.9  765.7+17.8 741.3+0.2 740.9
2 50 100 | 7739.6  2589.9+99.6  2281.9+46.5  2269.1+£39.4  2269.7+39.3 2200.0
3 50 10 8417.9 1391.3+114.6 1257.6+15.7 1225.3+6.4 1215.3+£6.0 11844
4 50 10 | 15017.9 3802.1+298.0 3345.1+11.4  3063.1+45.0 2968.1+26.3 2643.4
5 50 1000 [ 26890 18110+460 17432446 17314443 17258+33 17078
6 50 1000 [ 33490 226174659 21718479 21600+30 21553+14 21496
7 50 100 | 208849 693567729 370524443 312074262 30161497 28164
8 50 100 | 215449  73678+8159 413451860 35108+314 33954+116 32583

Table 3: Experimental Results for Retrospective Algorithm

# periods
Case 100 1000 10,000

1 797.7+£13.2 743.6+4.8 741.0+.04 7409

2 2276.2+20.7 2214.0+£2.8 2200.0+.01 2200.0

3 1861.0+127.2  1207.5+10.7 1184.7+.64 11844

4 3208.0+77.7 2678.5+15.4 2643.7x.67 2643.4

5 19015.24+435.7 17152492 17079+1.2 17078

6 22591.5+401.6 21553+58 21497+1.1 21496

7 46172.4+3345.0 28802+378  28165+17 28164

8 47625.24+2803.5 33733+199  32594+12 32583
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Figure 1: Comparison of Effect of Choice of @ for N = 50.
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Figure 2: Comparison of Effect of Choice of a for N = 500.
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